DOC023.52.03249.Mrz05

3400 sc Цифровая система анализа проводимости

Руководство по эксплуатации

UNITED FOR WATER QUALITY

© HACH LANGE, 2004. All rights reserved.

DOC023.52.03249.Mrz05

3400 sc Цифровая система анализа проводимости

Руководство по эксплуатации

© НАСН LANGE, 2004. Все права защищены.

Оглавление

Раздел 1 Спецификации	5
Раздел 2 Общая информация	8
2.1 Информация по безопасности	8
2.2 Общая информация по сенсору	8
2.3 Цифровой шлюз (Digital Gateway)	9
2.4 Принцип работы	9
	10
311 Размерные изображения контроплера	
312 Использование опшионального светозащитного экрана	13
3.1.3 Монтаж контроллера.	
3.2 Электрическая установка	16
3.2.1 Установка в кабелепровод	
3.2.2 Установка с использованием шнура питания	
3.2.3 Подключение питания в контроллере	16
3.3 Сигнализации и реле	20
3.3.2 Подключение аналоговых выходов	21
3.4 Установка сенсора	22
3.4.1 Подключение/проводка кабеля сенсора	22
3.4.2 Установка сенсора в поток пробы	24
3.5 Выполнение проводки цифрового шлюза	27
3.6 Монтаж цифрового шлюза	29
3.7 Подключение опционального цифрового вывода	29
Раздел 4 Управление	.31
41 Использование клавиатуры	
4 2 Возможности дисплея контроплера	
4.2.1 Важные нажатия кнопок	
4.3 Настройка прибора	
4.3.1 Соглашения по сокращениям в надписях программного обеспечения	
4.3.2 Регулировка контраста дисплея	
4.3.4 Установка времени и даты	34
4.3.3 Выбор отображаемого языка	34
4.4 Изменение названия сенсора	35
4.4.1 Включение системной безопасности	36
4.5 Опции выхода	37
4.5.1 Меню настройки выхода (Output Setup из System Setup)	37
4.5.2 Удержание/передача выходов (Hold/Transfer Outputs)	38
4.5.3 Освобождение выходов (Release Outputs)	39
4.6 Опции реле	39
4.6.1 Меню настройки реле (Relay Setup из System Setup)	39
4.7 Опции журнализации данных событий	41
4.7.1 Опции журнализации данных	42
4.8 Опции цифровой сети	43
4.9 Структура меню	43
4.9.1 Меню диагностики сенсора (Sensor Diagnostics)	43
4.9.2 Меню настройки сенсора (Sensor Setup)	43
4.9.3 Меню настройки системы (System Setup)	44
4.9.4 Меню тестирования/обслуживания (Test/Maint)	45

Оглавление

Раздел 5 Запуск системы	47
5.1 Общий порядок работы	47
5.2 Калибровка	47
5.2.1 Калибровка нуля (Zero Cal)	47
5.2.2 Одноточечная калибровка пробой	48
5.2.3 Одновременная калибровка двух сенсоров	49
5.3 Регулировка температуры	51
Раздел 6 Обслуживание	
6.1 Расписание обслуживания	
6.2 Чистка сенсора.	
6.3 Чистка контроллера	53
6.4 Замена предохранителя	53
Раздел 7 Устранение неполадок	
7.1 Коды ошибок	
7.2 Предупреждения	54
7.3 Общие вопросы устранения неполадок	
7.3.1 Проверка работы сенсора	55
7.3.2 Проверка на наличие паразитных контуров заземления	56
Раздел 8 Запасные части и принадлежности	57
Раздел 9 Гарантия, обязательства и рекламации	58
Раздел 10 Контакты	59
Приложение А Информация по регистрам ModBUS	60
Приложение В Дополнительная информация по сенсорам серий 34хх	69
В.1 Дополнительная информация по сенсорам серий 3410 3412	69
В.1.1 Технические данные сенсоров 43410 3412	69
В.1.2 Установка сенсоров	69
В.1.3 Установка сенсоров в поток пробы	70
В.2 Дополнительная информация по сенсорам серий 3415 3417	71
В.2.1 Технические данные сенсоров 3415 3417	71
В.2.2 Установка сенсоров	71
В.2.3 Установка сенсоров в поток пробы	71
В.3 Дополнительная информация по сенсорам серии	
В.3.1 Технические данные сенсоров 3494	
D.3.2 Установка сенсоров в воток вроби.	73 دح
D.4 цифровой шлюз (Digital galeway)	
В 5 1 Техницеские пацине камер байласа	
В. 6. Запасище цасти и приналежности	70
во оспосные засти и припадлежности	

Спецификации

Спецификации могут быть изменены без предварительного уведомления.

Таблица 1 Спецификации датчиков проводимости общего назначения

Компоненты	Коррозионно-стойкие материалы, полностью погружаемый датчик с кабелем 10 м
Диапазон измерений (проводимость)	См. таблицу 3 на стр. 7
Диапазон измерений (сопротивление)	См. таблицу 3 на стр. 7
Диапазон измерений (TDS)	См. таблицу 3 на стр. 7
Диапазон измерений (температура)	–20.0 до 200.0 °С (–4.0 до 392.0 °F)
Рабочая температура/влажность	–20 до 60 °С (–4 до 140 °F); отн. влажность 0–95%, без конденсации
Температура/влажность хранения	–30 до 70 °С (–22 до 158 °F); отн. влажность 0–95%, без конденсации
Время отклика	90% показания в пределах 30 секунд от ступенчатого изменения
Точность измерения	±2% от показания
Температурная точность	±0.1 °C
Воспроизводимость	±0.5% от показания
Чувствительность	±0.5% от показания
Калибровка/проверка	Согласно стандарту
Интерфейс сенсора	ModBUS
Стандартная длина кабеля датчика	Аналоговый датчик: 6 м (20 футов); Цифровой датчик: 10 м (32.8 фута)
Вес датчика	0.3 до 0.4 кг (прибл. один фунт) в зависимости от типа пробы
Размеры датчика	Зависят от типа пробы, см. рисунки с рис. 22 на стр. 25 по рис. 28 на стр. 27.
Вычисляемые измерения сенсор	а А и В:
% отказа	0–100%
% прохождения	0–100%
Отношение А/В или В/А	0–9.999, 0–99.99, 0–999.9, или 0–9999
Разность А-В ог В-А	Те же, что измерительные диапазоны, приведенные выше для проводимости, сопротивления или TDS
Аналоговые выходы (1 и 2)	0.00–20.00 мА или 4.00–20.00 мА
Режимы работы реле	Каждое реле (А, В, и С) может управляться: выбранными показаниями сенсора А или В (проводимость, сопротивление, TDS, или температура); вычисленными показаниями сенсора А и В (% отказа, % прохождения, отношение А/В, отношение В/А, разность А - В или разность В - А); программная сигнализация
Режим функции управления	Установки для высокой/низкой фазировки, уставки, полосы нечувствительности, таймера превышения подачи, задержки выключения и задержки включения
Режим функции сигнализации	Установки для нижней точки сигнализации, полосы нечувствительности нижней точки сигнализации, верхней точки сигнализации, полосы нечувствительности верхней точки сигнализации, задержки выключения и задержки включения
Режим функции таймера	Реле активируется по вводимому пользователем интервалу и значениям длительности
Режим функции статуса	Не конфигурируется; реле активируется только когда существует условие диагностического предупреждения сбоя анализатора или сенсора
Температурная компенсация	Автоматическая, от –20.0 до 200.0 °C (–4.0 до 392.0 °F) с выбором термосопротивления Pt 1000 Ом RTD или Pt 100 Ом, или вводимое пользователем вручную фиксированное значение

	Модель серии 3422 Сенсоры проводимости/ сопротивления	Модель серии 3433 Сенсоры проводимости/ сопротивления	Модель серии 3444 Сенсоры проводимости/ сопротивления	Модель серии 3455 Сенсоры проводимости/ сопротивления	
Материалы	Материалы, контактирующие с веществом				
Максималь	Титановые электроды (внешн. электрод из нерж. стали 316 для исполнения корпуса с удлиненным сенсором, используемого в сборке с шаровым клапаном), изолятор из PTFE тефлона, и обработанные прокладки О- кольца из Viton [®]	Графитовые электроды, корпус из Ryton [®] , и прокладки О-кольца из Viton [®]	Электроды из нерж. стали 316 и титана, изолятор из РЕЕК, прокладки О-кольца из фторэластомера	Электроды из нерж. стали 316, изолятор из PTFE тефлона, и прокладки О- кольца из пуфтороэластомера	
			Γ		
	При использовании с фитингом из Купаг (PVDF), уплотняемым вручную: 150 °С при 1.7 бар (302 °F при 25 рsi) При использовании с поставляемым производителем фитингом из нерж. стали 316, уплотняемым вручную: 150 °С при 1.7 бар (302 °F при 25 psi) При использовании со сборками шарового клапана из нерж. стали 316: 125°С при 10.3 бар (257°F при 150 psi)	Только для сенсора: 150 °С при 6.8 бар (302 °F при 100 psi) или 20 °С при 13.7 бар (68 °F при 200 psi) Сенсор с крепежом: Крепежные или трубопроводные материалы с более низкими показателями могут ограничить приведенные выше показатели по температуре и давлению.	Сенсор со встроенным шнуром Сенсор со встроенной полипропиленовой головкой J-box: 92 °C при 20.7 бар (198 °F при 300 psi) Сенсор со встроенной алюминиевой или из нерж. стали 316 головкой J-box: 200 °C при 20.7 бар (392 °F при 300 psi)	При использовании с поставляемыми производителем гигиеническими монтажными сборками: 125°С при 10.3 бар (257°F при 150 psi) ¹	
Скорость п	отока				
	0–3 м (0–10 фута) в секунду (полностью погруженный)				
Термокомп	енсатор				
	Pt 1000 RTD	Pt 1000 RTD	Pt 1000 RTD	Pt 1000 RTD	
Кабель сен	сора:	•	•	•	
	Аналоговый: Встроенный (без распред. коробки) 6- проводный кабель (4 проводника и два изолированных экранирующих провода); длина 6 м (20 футов) Аналоговый с головкой распред. коробки (опция) поставляется 6- позиционный клеммник во встроенной распред. коробке (полипропилен, алюминий, или нерж. сталь 316) Цифровой: PUR (полиэтилен) 5-жильный, экранированный, устойчив до 150 °С (302 °F), стандартная длина 10 м (33	Аналоговый: Встроенный (без распред. коробки) 6- проводный кабель (4 проводника и два изолированных экранирующих провода); длина 6 м (20 футов) Аналоговый с головкой распред. коробки (опция) поставляется 6- позиционный клеммник во встроенной распред. коробке (полипропилен, алюминий, или нерж. сталь 316) Цифровой: PUR (полиэтилен) 5-жильный, экранированный, устойчив до 150 °C (302 °F), стандартная длина 10 м (33	Аналоговый: Встроенный (без распред. коробки) 6- проводный кабель (4 проводника и два изолированных экранирующих провода); длина 6 м (20 футов) Аналоговый с головкой распред. коробки (опция) поставляется 6- позиционный клеммник во встроенной распред. коробке (полипропилен, алюминий, или нерж. сталь 316) Цифровой: PUR (полиэтилен) 5-жильный, экранированный, устойчив до 150 °С (302 °F), стандартная длина 10 м (33	Аналоговый: Встроенный (без распред. коробки) 6- проводный кабель (4 проводника и два изолированных экранирующих провода); длина 6 м (20 футов) Аналоговый с головкой распред. коробки (опция) поставляется 6- позиционный клеммник во встроенной распред. коробке (полипропилен, алюминий, или нерж. сталь 316) Цифровой: PUR (полиэтилен) 5-жильный, экранированный, устойчив до 150 °C (302 °F), стандартная длина 10 м (33	

Таблица 2 Спецификации	и датчиков проводимост	и специального назначения
------------------------	------------------------	---------------------------

1. Другие марки монтажных сборок и гигиенических зажимов могут снизить приведенные характеристики.

Константа ячейки	Собственный диапазон измерений			
сенсора	Проводимость (мкСм/см)	Сопротивление (МОм)	TDS	Соленость (РРТ)
0.05	0–100	0.002–20	См. примечание ¹	не применимо
0.5	0–1000	0.001-20	См. примечание ¹	< 1
1	0–2000	не применимо	См. примечание ¹	< 2
5	0–10000	не применимо	См. примечание ¹	< 15
10	0–200000	не применимо	См. примечание ¹	< 500

Таблица 3 Диапазоны измерения и константы ячейки сенсора

1. Чтобы определить, какую константу ячейки следует использовать, преобразуйте значение TDS полной шкалы в эквивалентное значение проводимости при 25 °C, умножив значение TDS на 2. Найдите это значение в колонке «проводимость», и используйте константу ячейки, соответствующую этому значению.

Таблицы 4 Спецификации контроллера sc100™

Описание контроллера	Управляемый микропроцессором измерительный модуль с отображением измеряемого значения, температуры, и системой управления через меню
Рабочая температура контроллера	–20 до 60 °C (–4 до140 °F); отн. влажность 95%, без конденсации при нагрузке сенсора <7 Вт; –20 до 40 °C (–4 до 104 °F) при нагрузке сенсора <25Вт
Температура хранения контроллера	–20 до 70 °C (–4 до158 °F); отн. влажность 95%, без конденсации
Корпус	Контроллер: металлический корпус NEMA 4X/IP66 с коррозионно-стойким покрытием
Питание	100–230 В ас ±10%, 50/60 Гц; Питание: 11 Вт при нагрузке сенсора 7 Вт, 35 Вт при нагрузке сенсора 25 Вт
Степень загрязнения/категория монтажа	11; 11
Выходы	Два (аналоговых (4–20 мА)) выхода, макс. импеданс 500 Ом. Опциональное подключение цифровой сети. ИК цифровое соединение.
Реле	Три однополюсных на два направления, конфигурируемых пользователем контакта с нагрузочной способностью 100–230 В ас, 5 А резистивной нагрузки максимум
Размеры	½ DIN—144 x 144 x 150 мм (5.7 x 5.7 x 5.9 дюйма)
Вес контроллера	1.6 кг (3.5 фунта)

Таблицы 5 Спецификации цифрового шлюза (Digital Gateway)

Bec	145 г (5 унций)
Размеры	17.5 х 3.4 см (7 х 1 ³ / ₈ дюйма)
Рабочая температура	–20 до 60 °C (–4 до 140 °F)

2.1 Информация по безопасности

Пожалуйста, полностью прочтите данное руководство перед распаковкой, настройкой, или управлением данным оборудованием. Обратите внимание на все указания по опасности и мерам предосторожности. Невыполнение данных требований может привести к серьезным травмам оператора или повреждению оборудования.

Чтобы гарантировать сохранение уровня защиты, обеспечиваемого данным оборудованием, не устанавливайте и не используйте данное оборудование никаким другим образом, кроме описанного в данном руководстве.

Использование информации об опасности

ОПАСНОСТЬ

Обозначает потенциально или неизбежно опасную ситуацию, которая, если ее не избежать, может привести к смерти или тяжелым травмам.

осторожно

Обозначает потенциально опасную ситуацию, которая может привести к незначительным или умеренным травмам.

Примечание

Информация, требующая особого внимания.

Предупреждающие метки

Читайте все метки и ярлыки, размещенные на приборе. Несоблюдение может привести к травмам персонала или повреждению прибора.

	Этот знак, если помещен на приборе, указывает на информацию по обращению и/или безопасности в руководстве по эксплуатации.
<u> </u>	Этот знак, если помещен на корпусе изделия или барьера, обозначает наличие опасности поражения электрическим током.
	Этот символ, если помещен на изделии, означает необходимость использования защитных очков или маски.
	Этот символ, если помещен на изделии, обозначает место соединения для защитного заземления.
	Этот символ, если помещен на изделии, обозначает положение предохранителя или устройства, ограничивающего ток.

2.2 Общая информация по сенсору

Цифровая контактная система проводимости sc100[™] позволяет легко и точно анализировать проводимость водных растворов. Система состоит из контроллера со встроенным дисплеем, и сенсором проводимости со встроенным датчиком температуры для измерений по месту.

Корпус контроллера соответствует NEMA 4X/IP66 и имеет коррозионностойкое покрытие, разработанное для устойчивости к коррозийным компонентам окружения, таким как солевые туманы и сероводород. Дисплей контроллера отображает текущее показание и температуру пробы если подключен к одному сенсору, или два показания с двумя соответствующими показаниями температуры, если подключены два сенсора. Имеются две модели сенсора, одна для приложений с температурами до 125°C (257°F) и вторая для приложений с температурами до 200°C (392°F).

Опциональное оборудование, такое как монтажные материалы для датчика, поставляются вместе с указаниями по выполнению всех действий пользователя по установке. Имеются несколько возможностей монтажа, которые позволяют адаптировать датчик к использованию во множестве различных приложений.

2.3 Цифровой шлюз (Digital Gateway)

Цифровой шлюз (Digital Gateway) был разработан, чтобы предоставить возможность использовать существующие аналоговые сенсоры вместе с новыми цифровыми контроллерами. Шлюз содержит все программное и аппаратное обеспечение, необходимое для взаимодействия с контроллером и выдачи цифрового сигнала.

2.4 Принцип работы

Контактные сенсоры проводимости (Contacting Conductivity Sensors) спроектированы для точного измерения проводимости/удельного сопротивления/TDS/солености от сверхчистой воды (0.056 мкСм/см) до 200,000 мкСм/см в чистых жидкостях. Проводимость является мерой способности раствора проводить электрический ток, а удельное сопротивление – мерой способности раствора оказывать сопротивление электрическому току. Общее количество растворённых в воде твёрдых веществ (Total Dissolved Solids, TDS) – это мера количества твердых веществ, растворенных в водной пробе, а соленость – мера растворенных в растворе солей.

Все сенсоры выпускаются с различными точно измеренными константами ячейку, из различных материалов, чтобы удовлетворить любые измерительные потребности, и идеально подходят для деионизации, обратный осмос, электро-деионизации, опреснения, химической чистоты, и других приложений с чистыми жидкостями.

Каждый сенсор отдельно тестируется для определения его абсолютной константы ячейки (показывается на его ярлыке в виде К =X) и значения термоэлемента (с точностью до 1.0 Ома). Константа ячейки (К) и температурный коэффициент (Т) вводятся в ходе конфигурирования прибора, чтобы гарантировать наибольшую возможную точность измерений.

Среди доступных констант ячейки имеются: 0.05, 0.5, 1.0, 5.0, и 10. Термоэлемент сконструирован таким образом, чтобы обеспечить быстрый отклик на изменения температуры и обеспечить высокую точность измерений.

ОПАСНОСТЬ

Выполнять действия по установке, описанные в данном разделе руководства, должен только квалифицированный персонал.

Рисунок 1 Компоненты базовой системы

1.	Контроллер	. Вин	нты с потайной головкой (4), M6 x 1.0, 100 мм
2.	Лапа крепления для монтажа на панель(2)	. Пло	оская шайба, внутр. диам. ¼ дюйма (4)
3.	Скоба для монтажа в панель и на трубу	. Кон	нтровочная шайба, внутр. диам. ¼ дюйма (4)
4.	Прокладка для монтажа на панель, резина	0. Ше	стигранная гайка, M6 x 1.0 (4)
5.	Винты с потайной головкой (4), M6 x 1.0, 20 мм	1 .Да ис.22	тчик (форма может отличаться, см. рисунки с на стр. 25 по рис. 28 на стр. 27).
6.	Винты с потайной головкой (4), M6 x 1.0, 150 мм		

Таблица 6 Детали, предоставляемые клиентом

Деталь
Провод 14-AWG для подключения электропитания через кабелепровод или кабель питания 115 или 230 V ас плюс кабельный ввод, соответствующий требованиям NEMA 4X
Высококачественный, экранированный приборный кабель для подключения аналоговых выходов плюс кабельный ввод, соответствующий требованиям NEMA 4X (имеются у производителя, заказываются отдельно)
Монтажные материалы для датчика (имеются у производителя, заказываются отдельно)
Светозащитный экран для монтажных конфигураций, при которых солнце попадает прямо на переднюю часть дисплея, см. рисунок 7 на стр. 13
Обычные ручные инструменты

3.1 Механическая установка

Устанавливайте контроллер в окружениях, защищенных от коррозийных жидкостей.

3.1.1 Размерные изображения контроллера

Рисунок 2 Размеры контроллера

Рисунок 3 Монтажные размеры контроллера

Установка

3.1.2 Использование опционального светозащитного экрана

Опциональный светозащитный экран был разработан для увеличения читаемости дисплее путем защиты его от прямого попадания солнечных лучей. Информацию по монтажу см. на рисунке 6 и рисунке 7. Информацию по заказу см. в Запчасти и принадлежности на стр. 57.

Рисунок 6 Компоненты набора светозащитного экрана

Рисунок 7 Монтаж контроллера в светозащитном экране

1.	Светозащитный экран	4. Схема расположения отверстий для	7. Скоба для монтажа на трубе –
		монтажа контроллера	надеть на стойку как показано.
2.	Стойка Uni-strut (при необходимости	5. Труба (вертикальная или	Затянуть крепежи для завершения
ПОЕ	ерните на 90°)	горизонтальная)	установки.
3.	Винт, контровочная шайба (по 2	6. Винт с шестигранной/шлицевой	,
шту	/ки)	головкой и квадратная гайка	

3.1.3 Монтаж контроллера

Присоедините контроллер к рейке или стене, или смонтируйте его в панели. Поставляемые крепежные материалы показаны на рисунке 8, рисунке 9, и рисунке 10.

Рисунок 8 Монтаж контроллера на вертикальную или горизонтальную трубу

1.	Контроллер	4.	Плоская шайба, внутр. диам. ¼ дюйма (4)
2.	Труба (вертикальная или горизонтальная)	5.	Шестигранная гайка, M6 x 1.0 (4)
3.	Держатель, для монтажа на трубу	6.	Винт с потайной головкой, M6 x 1.0 x 100 мм (4)

Рисунок 9 Монтаж контроллера на стену

1.	Контроллер	3.	Контровочная шайба, вн. диам. ¼ дюйма	5. для	Предоставляемые пользователем материалы а настенного монтажа
2.	Держатель	4.	Винт с потайной головкой, M6 x 1.0 x 20 мм (4)		

Рисунок 10 Монтаж контроллера в панель

1.	Контроллер	7. Контровочная шайба (4)
2.	Прокладка, резиновая, для монтажа в панель	8. Шестигранная гайка, М6 х 1.0 (8)
3.	Панель (макс. толщина 9.5 мм (³ / ⁸ дюйма))	9. Плоская шайба, внутр. диам. ¼ дюйма (4)
4.	Держатель, для монтажа в панель (2)	10. Винт с потайной головкой, M6 x 1.0 x 150 мм (4)
5.	Держатель, монтажный, для контроллера	11. Может потребоваться снятие коннекторов сенсора, см.
6.	Винт с потайной головкой, M6 x 1.0 x 20 мм (4)	раздел 3.1.3.1.

3.1.3.1 Снятие коннекторов сенсора

Для снятия коннекторов сенсора перед помещением корпуса контроллера в вырез в панели:

- 1. Отключите провода на клеммнике J5, см. рисунок 20 на стр. 23.
- **2.** Открутите и снимите гайку, фиксирующую коннектор сенсора внутри корпуса. Снимите коннектор сенсора и провода. Повторите шаг 1 и 2 для второго коннектора сенсора.

После того, как контроллер будет установлен на место в панели, установите коннекторы сенсора и подключите проводку к клеммнику J5 как показано на рисунке 20 на стр. 23.

3.2 🛕 🖄 Электрическая установка

ОПАСНОСТЬ

Прибор должен устанавливаться квалифицированным техническим персоналом для соблюдения всех применимых электротехнических норм.

Высоковольтная проводка контроллера прокладывается за высоковольтным барьером в корпусе контроллера. Барьер всегда должен оставаться на своем месте, кроме случаев, когда квалифицированный специалист выполняет прокладку проводки питания, сигнализации, или реле. Информацию по удалению барьера см. на Рисунке 11.

Рисунок 11 Удаление барьера напряжения

1.	Высоковольтный барьер	2.	Откройте защелку барьера и потяните на себя, чтобы извлечь барьер.

3.2.1 Установка в кабелепровод

В электрических приложениях с постоянной проводкой, ответвления питания и защитного заземления для прибора должны быть от 18 до 12 AWG. Информацию по кабельным вводам strain relief и водонепроницаемой уплотнительной пробке для отверстия канала см. на рис.15 на стр. 18. Информацию по выполнению проводки см. в разделе 3.2.3 на стр. 16. Для простоты установки используйте кабелепровод 0.75 дюйма (19 мм), или больший.

3.2.2 Установка с использованием шнура питания

Для сохранения номинальных характеристик по окружающей условиям NEMA 4X/IP66 возможно использование герметизирующего кабельного ввода типа strain relief и шнура питания длиной менее 3 метров (10 футов) с тремя проводниками калибра 18 (включая кабель защитного заземления), см. Запчасти и принадлежности на стр. 57. Сборку кабельных вводов strain relief и водонепроницаемой уплотнительной пробки для отверстия канала см. на рисунке 15 на стр. 19. Информацию по выполнению проводки см. в разделе 3.2.3 на стр. 16.

3.2.3 Проводка питания на контроллере

Прибор может быть подключен к линии напряжения питания путем прокладывания постоянной проводки в канале, или подключением шнура питания. Независимо от используемых типов проводки подключения выполняются к одним и тем же клеммам. Расположение клемм см на рисунке 12 на стр. 17. Для всех типов установки требуется и должно быть обозначено локальное отключение, спроектированное с учетом соответствия местным электротехническим нормам. Предлагаемые конфигурации локального отключения см. на рисунке 13 и рисунке 14.

Рисунок 12 Подключение проводки

1.	J1—Сетевой коннектор	8. Коннектор сенсора	
2.	J2—Разъем подключения опциональной сетевой карты	9. Коннектор сенсора	
3.	J5—Коннектор реле А	10. Ј6—Коннектор аналогового выхода (4–20 мА)	
4.	J6— Коннектор реле В	11. Ј5—Коннектор сенсора для фиксированной проводки	
5.	J7— Коннектор реле С	12. Место для сетевой карты	
6.	Предохранители (F1, F2)	13. Сервисный порт	
7.	J8—подключения переменного напряжения питания	14. Переключатель согласования сенсора/конфигурации сервисного порта	

Рисунок 13 Локальное отключение для шнура питания

Рисунок 14 Локальное отключение для линии питания с фиксированной проводкой

 1. Клеммы питания
 2. Сальник типа strain relief для шнура питания

- 1. Приобретите соответствующее оснащение с характеристиками по окружающим условиям NEMA 4X/IP66, см. рисунок 15.
- 2. Откройте откидную крышку контроллера с помощью крестовой отвертки.
- 3. Снимите высоковольтный барьер (см. рисунок 11 на стр. 16).
- Вставьте провода через сальник или втулку канала, расположенную в заднем правом отверстии в дне корпуса. Затяните сальник, если используется, для фиксации провода.
- 5. Подготовьте каждый провод как показано на рис 16 и вставьте каждый провод в клемму согласно таблице 7. Слегка потяните после каждого подключения, чтобы проверить прочность соединения.

Рисунок 15 Использование опционального Strain Relief и уплотнительной пробки отверстия канала

Рисунок 16 Правильная подготовка и установка провода

1.	Зачистите ¼ дюйма изоляции.	2.	Вставьте провода таким образом, чтобы изоляция упиралась в разъем, и
		ого	оленные части проводов не выступали из клемм.

Таблица 7 Информация по проводке питания

Номер клеммы	Описание клеммы	Цветовой код провода для	Цветовой код провода для Европы
		Северной Америки	
1	Фаза (L1)	Черный	Коричневый
2	Ноль (N)	Белый	Синий
3	Защитное заземление (PE)	Зеленый	Зеленый с желтой меткой

- 6. Закройте все неиспользуемые отверстия в коробке контроллера водонепроницаемыми пробками для отверстий канала, см. Запчасти и принадлежности на стр. 57.
- 7. Установите на место высоковольтный барьер, и зафиксируйте защелкой.
- 8. Закройте и закрепите крышку контроллера.

3.3 Сигнализации и реле

Контроллер имеет три незапитываемых реле с номинальной максимальной нагрузочной способностью 100-230 V ас, 50/60 Гц, 5 А. Подробности настройки реле см. в разделе 4.6 на стр. 39.

3.3.1 Подключение реле

Коннектор реле пригоден для провода 18-12 AWG (согласно применяемой нагрузке). Использование провода менее 18 AWG не рекомендуется.

быть резистивной. Пользователь должен обеспечить внешнее ограничение тока через реле на уровне 5 ампер с помощью предохранителя или размыкателя.

ОПАСНОСТЬ: Нагрузка реле должна Контроллер содержит три реле, спроектированных для использования с высокими напряжениями (более 30В-среднеквадр. действ. значение и 42.2Впиковое значение или 60 В пост. тока). Информацию по подключению см. на рисунке 17. Проводка не предназначена для низковольтных соединений. Питание реле не должно поступать по тем же проводам, что и питание контроллера. Программную настройку реле см. в разделе 4.6 на стр. 39.

ОПАСНОСТЬ: Клеммы реле и подключения переменного напряжения питания предназначены только для подключения одного провода. Не подключайте более одного провода к каждой клемме

Замыкающий (NO) и общий (COM) контакты реле соединяются при активной сигнализации или другом условии. Размыкающий (NC) и общий контакты реле соединяются при неактивной сигнализации или другом условии, или при отключении питания контроллера.

Рисунок 17 Соединения сигнализации и реле

3.3.2 Подключение аналоговых выходов

Предоставляются два изолированных аналоговых выхода (1 и 2). Каждый выход может быть установлен в 0-20 или 4-20 мА, и может быть назначен для представления измеряемой проводимости или температуры. Выполните соединения с помощью экранированной витой пары, и подключите экран на стороне управляемого компонента или на конце контура управления. Не подключайте экран на обоих концах кабеля. Использование неэкранированного кабеля может привести к радиочастотным излучениям или уровням чувствительности выше допустимых. Максимальное сопротивление контура 500 Ом. Программную настройку выходов см. в разделе 4.5 на стр. 37.

Выполните подключения проводки на стороне анализатора как показано в таблице 8 и рисунке 18.

Таблица 8 Выходные соединение (Клеммник J6)

Провода регистратора	Позиция на монтажной плате
Выход 2 +	1
Выход 2 –	2
Экран	3
Выход 1 +	4
Выход 1 –	5

Рисунок 18 Соединения аналоговых выходов

3.4 Установка сенсора

3.4.1 Подключение/проводка кабеля сенсора

Для простоты подключения к контроллеру кабель сенсора поставляется со снабженным ключом соединением quick-connect, см. рисунок 19. Сохраните колпачок коннектора для закрывания отверстия коннектора в случае, если необходимо снять сенсор. Для увеличения длины кабеля сенсора могут быть заказаны опциональные удлиняющие кабели. Если общая длина кабеля превышает 100 м (300 футов), необходимо установить согласующую коробку. См. Запчасти и принадлежности на стр. 57.

Рисунок 19 Подключение сенсора с помощью соединений Quick-connect

Измените контроллер для фиксированной проводки сенсора следующим образом:

- 1. Отключите питание контроллера.
- 2. Откройте крышку контроллера.
- **3.** Отключите и снимите существующие провода между коннектором quick connect и клеммной колодкой J5, см рисунок 20 на стр. 23.
- Снимите соединение quick-connect и провода и установите резьбовую заглушку в отверстие, чтобы сохранить номинальные характеристики по устойчивости к окружающим условиям.

Рисунок 20 Подключение сенсора фиксированной проводкой

Выполните фиксированную проводку сенсора следующим образом:

- 1. Отрежьте коннектор от кабеля сенсора.
- **2.** Снимите изоляцию с кабеля на 1 дюйм от конца. Зачистите по ¼ дюйма от конца каждого отдельного провода.
- **3.** Проведите кабель через канал и втулку канала или сальник strain relief и свободное отверстие в корпусе контроллера. Затяните сальник.
- **4.** Установите на место заглушку отверстия сенсора, чтобы сохранить номинальные характеристики по устойчивости к окружающим условиям.
- 5. Выполните проводку как показано в Таблице 9.
- 6. Закройте и закрепите крышку контроллера.

Номер клеммы	Назначение клеммы	Цвет провода
1	Данные (+)	Синий
2	Данные (–)	Белый
3	Запрос на обслуживание	не подключен
4	+12 B dc	Коричневый
5	Общий провод схемы	Черный
6 Экран		Экран (серый провод в существующем соединении quick-disconnect)

Таблица 9 Подключение сенсора на клеммном блоке Ј5

3.4.2 Установка сенсора в поток пробы

Имеются две схемы установки со сжатием. Для сенсоров с константой ячейки 0.05 используйте фитинги, уплотняемые вручную, выполненные из Kynar (PVDF) или нерж. стали 316, с соединением ½" или ¾" внешн. NPT. Для сенсоров с любой другой константой ячейки фитинги, уплотняемые вручную, выполненные из Kynar (PVDF) или нерж. стали 316, с соединением ¾" внешн. NPT. Во всех случаях, фитинги позволяют монтировать сенсор вставкой, на глубину до 102 мм (4 дюйма), в трубный тройник или резервуар. Переворачивание фитинга позволяет закрепить сенсор на конце трубы для погружаемого монтажа.

Более длинная версия сенсора может устанавливаться в сборку шарового клапана из нерж. стали 316, что позволяет вставлять/убирать сенсор без остановки потока процесса. Максимальная глубина вставки 178 мм (7 дюймов).

Примеры распространенных установок сенсора показаны на рисунке 21, а размерные чертежи показаны на рисунках с рис. 22 по рис. 28. Особенности установки смотрите в указаниях, поставляемых вместе с монтажными материалами.

1.	Вставной монтаж	5.	Погружение конца трубы	
2.	Вставной монтаж	6.	Неметаллический сенсор, погружение конца трубы	
3.	Неметаллический сенсор, вставной монтаж	7.	Гигиенический (CIP) фланцевый монтаж	
4.	Вставной монтаж в стенку котла	8. кор	. Шаровая вентильная вставка для сжатого сенсора с удлиненным орпусом сенсора	

Рисунок 21 Примеры установки сенсора

Рисунок 22 Прижимной сенсор, диаметр 0.5 дюйма

Рисунок 23 Прижимной сенсор, диаметр 0.75 дюйма

Рисунок 24 Прижимной сенсор с кончиком из Teflon®

3.5 Выполнение проводки цифрового шлюза

Примечание: Не затягивайте

завершена и две половины

не скручены плотно вместе

сальник до тех пор, пока проводка цифрового шлюза не будет Цифровой шлюз предназначен для предоставления цифрового интерфейса к контроллеру sc100 (или другому соответствующему цифровому контроллеру). Сторона, не обращенная к сенсору подключается к контроллеру как показано в разделе 3.4 на стр. 22. Выполните проводку кабеля от сенсора следующим образом:

 Проведите кабель от сенсора через сальник strain relief в цифровой шлюз, а затем правильно обработайте концы проводников (см. рисунок 16 на стр. 19).

2. Вставьте провода как показано в таблице 10 и рисунке 29.

- **3.** Убедитесь, что О-кольцо правильно установлено между двумя половинами цифрового шлюза, и скрутите две половины вместе. Затяните вручную.
- 4. Затяните сальник strain relief, чтобы зафиксировать кабель сенсора.

Сенсор (цвет провода)	Сигнал сенсора	Коннектор провода сенсора цифрового шлюза
Прозрачный	Экран	J1-1
Прозрачный с термоусадкой	Экран	J1-1
Красный	Управление	J1-2
Белый	Темп –	J1-3
Синий	Темп +	J1-4
Черный	Контрольный провод	J1-5

Таблица 10 Выполнение проводки цифрового шлюза

Выполнение проводки и сборки цифрового шлюза

1.	Передняя часть цифрового шлюза	7.	Гайка, strain relief
2.	О-кольцо(см. Запасные части и принадлежности на стр. 57)	8.	От сенсора
3.	Коннектор провода сенсора	9.	Вставьте провода в коннектор согласно таблице 10.
4.	Задняя часть цифрового шлюза	10. пер	Накрутите заднюю часть цифрового шлюза на еднюю
5.	Ввод кабеля	11. зад	Вставьте ввод кабеля и деротационную шайбу в нюю часть шлюза.
6.	Деротационная шайба	12. зав	Крепко затяните шнуровой ниппель. Сборка ершена.

3.6 Монтаж цифрового шлюза

Цифровой шлюз поставляется с монтажным зажимом для крепежа на стену или другую плоскую поверхность. Используйте подходящий крепежный материал для крепления его на стене. После того как выполнена проводка от сенсора к цифровому шлюзу, и две половины скручены вместе, поместите монтажный зажим над серединой цифрового шлюза и сожмите его, чтобы закрепить. См. рисунок 31.

Рисунок 30 Размеры цифрового шлюза

1.	Монтажный зажим	3.	Шестигранная гайка, ¼-28
2.	Винт с потайной головкой, ¼-28 х 1.25 дюйма	4. заж	Монтажный зажим, вставьте цифровой шлюз, сдавите хим до закрытия.

3.7 Подключение опционального цифрового вывода

Производитель поддерживает коммуникационные протоколы ModBUS RS485 и ModBUS RS232. Опциональная карта цифрового вывода устанавливается в позицию, показанную на рисунке 32 на стр. 30. Клеммный блок J1 предоставляет пользовательское подключение к опциональной сетевой карте. См. таблицу 11. Подключение клемм зависит от выбранной сетевой карты. Подробности см. в руководстве, прилагаемом к сетевой карте.

Номер клеммы	ModBUS RS485	ModBUS RS232
1	In +	—
2	ln –	—
3	Out +	—
4	Out –	_
5	Общий	Общий
6	Не подключен	Не подключен
7	Экран	Экран

Таблица 11 Сетевые соединения на клеммном блоке Ј1

Рисунок 32 Размещение сетевой карты в контроллере

4.

4.1 Использование клавиатуры

Передняя сторона контроллера показана на рисунке 33. Клавиатура состоит из восьми кнопок, описанных в таблице 12.

Таблица 12 Функции/возможности кнопок контроллера

Номер	Кнопка	Функция
2	S	Перемещает назад на один уровень в структуре меню.
3	menu	Перемещает в главное меню из остальных меню. Эта кнопка не активна в меню, в которых необходимо выполнить некоторый выбор или ввод данных.
4	$\bigcirc \bigcirc$	Перемещение по меню, изменение настроек, инкремент/декремент цифр.
5	home	Перемещает на главный экран измерений (Main Measurement) с любого другого экрана. Эта кнопка не активна в меню, в которых необходимо выполнить некоторый выбор или ввод данных.
6	enter	Принимает введенное значение и обновления, или принимает отображаемые опции меню.

4.2 Возможности дисплея контроллера

Когда сенсор подключен и контроллер находится в режиме измерений, дисплей контроллера будет отображать текущие показания по проводимости, плюс температуру пробы.

При запуске дисплей мигает, если произошла ошибка сенсора, если была активирована функция удержания (hold) выходов, и если сенсор в настоящий момент калибруется.

Активное системное предупреждение вызовет отображение с правой стороны дисплея значка предупреждения (треугольник с восклицательным знаком внутри).

Рисунок 34 Дисплей

1. Строка состояния. Показывает имя сенсора и состояние	3. Вспомогательные измерения	
реле. Буква реле отображается, когда на реле подана энергия.	4. Область значка предупреждения	
2. Основные измерения	5. Единицы измерения (µS, mS, S, mohm, TDS)	

4.2.1 Важные нажатия кнопок

 Нажмите кнопку **НОМЕ**, затем кнопку **Вправо** или **Влево** для отображения двух показаний, если подключены два сенсора. Продолжайте нажимать кнопку **Вправо** или **Влево** для переключения между имеющимися возможностями дисплея как показано ниже.

RTC:MM/DD/YY	SENSOR NAME	SENSOR NAME	MAIN MEASURE	SENSOR NAME	SENSOR NAME
24:00:00	103 µS/cm	7.00 pH	SENSOR 1: 103 µS/cm SENSOR 2: 7.00 pH	COND: 103 µS/cm TEMP: 23.5 °C	pH: 7.00 pH TEMP: 25.0 °C

 Нажмите кнопки Вверх и Вниз, чтобы переключить строку состояния снизу от отображаемых измерений на отображение вспомогательных измерений (температуры) и информации о выходе.

 В режиме меню на правой стороне дисплея может появляться стрелка, показывающая, что имеются дополнительные меню. Для отображения дополнительных меню нажмите кнопку Вверх или Вниз (согласно направлению стрелки).

≣MAIN MENU	SYSTEM SETUP	SYSTEM SETUP	SYSTEM SETUP
▶ SENSOR DIAG ▶ SENSOR SETUP ▶ SYSTEM SETUP ▶ TEST/MAINT	OUTPUT SETUP RELAY SETUP NETWORK SETUP DISPLAY SETUP J	DISPLAY SETUP SECURITY SETUP LOG SETUP CALCULATION ↓	► SECURITY SETUP ► LOG SETUP ► CALCULATION ► ERROR HOLD MODE

4.3 Настройка прибора

4.3.1 Соглашения по сокращениям в надписях программного обеспечения

Сокращение	Значение	Сокращение	Значение
Adj	Регулировать	Pass	Пароль
Cal	Калибровка	Preped	Приготовлен
Cont.	Продолжить	SN	Серийный номер
Dflt	По умолчанию	Std	Стандартный
Diag	Диагностика	Temp	Температура
Int	Внутренний	Vers	Версия
Meas.	Измерение	Xfer	Передача
P/F	Пройден/Неудачен		-

4.3.2 Регулировка контраста дисплея

Шаг	Нажать	Уровень меню/указания	Нажать
1	menu	MAIN MENU	_
2		SYSTEM SETUP	enter
3		DISPLAY SETUP	enter
4	_	ADJ CONTRAST	enter
5		(+0–50)	enter
6	menu fa	MAIN MENU или экран основных измерений	_

Шаг	Нажать	Уровень меню/Указания	Подтвердить
1	menu	MAIN MENU	_
2	\checkmark	SYSTEM SETUP	enter
3	\checkmark	DISPLAY SETUP	enter
4		LANGUAGE	enter
5		выберите язык	enter
6		MAIN MENU или экран основных измерений	_

4.3.3 Выбор отображаемого языка

4.3.4 Установка времени и даты

4.3.4.1 Установка времени

Примечание: Время доступно только в 24-часовом (военном) формате.

Шаг	Нажать	Уровень меню/Указания	Подтвердить	
1	menu	MAIN MENU	_	
2	\checkmark	SYSTEM SETUP	enter	
3	\checkmark	DISPLAY SETUP	enter	
4		SET DATE/TIME	enter	
5	\checkmark	выделите TIME	enter	
6		выберите символ для редактирования		
		выберите необходимое число	enter	
7	menu An	MAIN MENU или экран основных измерений	_	
4.3.4.2 Установка формата даты и даты

Шаг	Нажать	Уровень меню/Указания	Подтвердить
1	menu	MAIN MENU	_
2	\checkmark	SYSTEM SETUP	enter
3		DISPLAY SETUP	enter
4		SET DATE/TIME	enter
5	_	выделите DATE FORMAT	onter
6		выберите нужный формат даты	(anter
7	\checkmark	выделите DATE	enter
8		выберите символ для редактирования	—
		выберите необходимое число	enter
9		MAIN MENU или экран основных измерений	_

4.4 Изменение названия сенсора

Шаг	Нажать	Уровень меню/Указания	Подтвердить
1	menu	MAIN MENU	—
2		SENSOR SETUP	enter
3	\checkmark	выделите требуемый сенсор, если подключено больше одного сенсора	enter
4	\checkmark	CONFIGURE	enter
5	\checkmark	EDIT NAME	enter
6	$\langle \rangle$	выберите символ для редактирования	—
		выберите необходимую цифру	enter
7		MAIN MENU или экран основных измерений	_

4.4.1 Включение системной безопасности

sc100 поддерживает функцию защитного кода для ограничения несанкционированного доступа к настройкам конфигурации и калибровки. На заводе защитный код установлен в значение **sc100** (после пяти цифр должен быть поставлен пробел, чтобы удалить звездочку в конце). Порядок изменения защитного кода смотрите в разделе 4.4.1.1.

Имеются следующие две опции:

Disabled (Отключена): Все настройки конфигурации и калибровки могут быть изменены. Это является установкой по умолчанию.

Enabled (Включена): Все настройки конфигурации могут отображаться, но не могут быть изменены. Без ввода защитного кода доступ к меню калибровки (Calibration) и тестирования / обслуживания (Test/Maint) запрещен.

Шаг	Нажать	Уровень меню/Указания	Подтвердить
1	mery	MAIN MENU	_
2	\checkmark	SYSTEM SETUP	enter
3	\checkmark	SECURITY SETUP	enter
4	_	SET PASSCODE	enter
5	\checkmark	выделите ENABLED	enter
6		MAIN MENU или экран основных измерений	_

4.4.1.1 Редактирование защитного кода

Если защитный код включен (enabled), его можно редактировать. Пароль может состоять максимум из шести цифр (алфавитные и/или числовые и доступные символы). Если настройки прибора сбрасываются через выбор пункта меню Configure/Default Setup, защитный код будет установлен в значение по умолчанию. См. раздел 4.4.1. Если вы забыли измененный пароль, запросите мастер-пароль в службе поддержки клиентов, см. Служба ремонта на стр. 57.

Шаг	Нажать	Уровень меню/Указания	Подтвердить
1	menu	MAIN MENU	_
2		SYSTEM SETUP	enter
3		выделите SECURITY SETUP	enter

Шаг	Нажать	Уровень меню/Указания	Подтвердить
4		ENTER PASSCODE	onter
5		EDIT PASSCODE	enter
6		EDIT PASSCODE выберите символ (показан в скобках)	_
0		EDIT PASSCODE перейдите к следующему символу	enter

4.5 Опции выхода

Анализатор предоставляет два изолированных аналоговых выхода (Выход 1 и Выход 2). Настройка выходов описана в таблице в разделе 4.5.1.

4.5.1 Меню настройки выхода (Output Setup из System Setup)

Выберите OUTPUT 1 или 2

SELECT SOURCE (Выбор источника)

Нажмите ENTER для доступа к списку всех подключенных сенсоров. Выберите сенсор, который необходимо связать с выходом.

SET PARAMETER (Установить параметр)

Выберите необходимый отображаемый параметр и нажмите ENTER.

SET FUNCTION (Установить функцию)

Выберите LINEAR CONTROL, чтобы токовый выход повторял измеряемое значение. Выберите PID CONTROL, чтобы sc100 функционировал в качестве ПИД-регулятора.

SET TRANSFER (Установить передачу)

Обычно каждый аналоговый выход находится в активном состоянии, реагируя на измеряемую величину назначенного ему параметра. Однако, при калибровке, каждый выход может быть переведен в это предустановленное значение. Диапазон: 0–120

SET FILTER (Установить фильтр)

Позволяет пользователю усреднять значения аналоговых выходов по времени (0-60с). По умолчанию 0. Диапазон: 0–120

SCALE 0 mA/4 mA (Шкала 0 мA/4 мA)

Выбирает минимальный ток 0 мА или 4 мА (выходы будут установлены в 0-20 мА или 4-20 мА).

4.5.1 Меню настройки выхода (Output Setup из System Setup) (продолжение)

ACTIVATION (Активация)

Параметр FUNCTION установлен в LINEAR CONTROL

Если в параметре SET FUNCTION было выбрано значение LINEAR CONTROL, здесь могут быть

установлены верхнее и нижнее значения для токового выхода. По умолчанию: диапазон нижнего значения

(Low): 0–20, диапазон верхнего значения (High): 0–20, Low = 0; High = 20

Параметр FUNCTION установлен в PID CONTROL

Если в параметре SET FUNCTION было выбрано PID CONTROL, ПИД-управление может быть сконфигурировано следующим образом:

1. Установите режим (MODE): AUTO (авто) или MANUAL(ручной). Ручной режим по умолчанию: 100%

2. Установите фазу (PHASE): DIRECT (прямая) или REVERSE (реверсная) работа контроллера.

3. Установите уставку (SET SETPOINT): введите уставку, согласно которой ПИД-регулятор будет управлять процессом. Диапазон: 0–20

4. PROP BAND: контролирует полосу пропорциональности ПИД-регулятора. По умолчанию: 4.00 Диапазон: 0–200

5. INTEGRAL: контролирует период интегрирования в минутах. Диапазон: 0-999

6. DERIVATIVE: контролирует настройки контроля скорости. Диапазон: 0-999

4.5.2 Удержание/передача выходов (Hold/Transfer Outputs)

Во время нормально измерительного режима работы, аналоговые выходы могут быть удержаны на последних измеренных значениях. Чтобы включить удержание до тех пор, пока оно не будет снято:

Шаг	Нажать	Уровень меню/Указания	Подтвердить
1		MAIN MENU	-
2		TEST/MAINT	enter
3		введите защитный код, если включен	enter
4		HOLD OUTPUTS	enter
5	_	SET OUTMODE	enter
6		Выберите HOLD OUTPUTS или XFER OUTPUTS	enter
7		SET CHANNELS	enter
8		Выберите ALL (все) или любой подключенный сенсор	enter
9		ACTIVATION	enter
10	_	LAUNCH	enter
11	menu fame	MAIN MENU или экран основных измерений	показания будут мигать

Во время калибровки аналоговые выходы могут оставаться активными, удерживаться, или переводиться в предустановленное значение в мА. Если выход удерживается или передается во время калибровки, удержание или передача автоматически снимаются (освобождаются) по завершению калибровки. См. раздел 5.2, Калибровка на стр. 47.

4.5.3 Освобождение выходов (Release Outputs)

Шаг	Нажать	Уровень меню	Подтвердить
1	(ners)	MAIN MENU	_
2		TEST/MAINT	onter
3		HOLD OUTPUTS	enter
4	\checkmark	ACTIVATION	enter
5	—	RELEASE	enter
6		MAIN MENU или экран основных измерений	_

4.6 Опции реле

Шаг	Нажать	Уровень меню	Подтвердить
1	meru	MAIN MENU	_
2	\checkmark	SYSTEM SETUP	enter
3	\checkmark	RELAY SETUP	enter
4	_	выполните настройки согласно информации, приведенной в разделе	—

4.6.1 Меню настройки реле (Relay Setup из System Setup)

Выберите реле А, В, или С
SELECT SOURCE (Выбрать источник)
Выберите из имеющихся вариантов
SET PARAMETER (Установить параметр)
Выберите из имеющихся вариантов

4.6.1 Меню настройки реле (Relay Setup из System Setup) (продолжение)

Выберите реле А, В или С

SET FUNCTION (Установить функцию)

Источник установлен в Sensor (сенсор):

Alarm (сигнализация): Управляет реле согласно измеряемому параметру. Содержит раздельные точки сигнализации High (высокий) и Low (низкий), полосы нечувствительности, и задержку вкл/выкл (ON/OFF).

Feeder Control (управление подающим механизмом): Управляет согласно измеряемому параметру. Может быть настроена фазировка, уставка, полоса нечувствительности, таймер превышения подачи, и задержка вкл/выкл.

Event Control (управление событиями): Управление системой чистки (или эквивалентной) по времени.

Warning (предупреждение): Активируется при обнаружении анализатором предупреждения сенсора.

PWM Control: Позволяет реле предоставлять периодический выходной сигнал, чтобы обеспечить управляющее воздействие для уставки.

Freq Control: Позволяет реле работать циклически на частоте от мин. кол-ва импульсов в минуту до макс. кол-ва импульсов в минуту, чтобы обеспечить управляющее воздействие для уставки.

Источник установлен в RTC (часы реального времени):

Timer (таймер): Устанавливает таймер для системы чистки (или эквивалентной). Управляет удержанием выхода, интервалом, длительностью, и задержкой выключения.

SET TRANSFER (Установить передачу)

В обычном режиме, каждое реле управления или сигнализации активно, и реагирует на измеряемую величину или назначенный ему параметр. Однако, во время калибровки реле может быть переведено в предустановленное состояние вкл/выкл (on/off) согласно потребностям приложения. Выберите Energize (подать энергию) или De-energize (отключить энергию) и нажмите **ENTER**.

FAILSAFE (защита от сбоев)

Предоставляет средство указания того, что пропало питание на контроллере. Выберите YES (да), чтобы при нормальных условиях на реле подавалась энергия, и отключалась в аварийных условиях. Выберите NO (нет), чтобы при нормальных условиях на реле не подавалась энергия, а подавалась в аварийных условиях. Нажмите **ENTER.**

ACTIVATION (Активация)

Функция установлена в ALARM (сигнализация)

	LOW ALARM	Устанавливает значение для включения реле в ответ на уменьшение измеряемой величины. Например: если параметр low alarm установлен в 1.0 и измеряемая величина падает до 0.9, реле будет активировано.	
	HIGH ALARM	Устанавливает значение для включения реле в ответ на увеличение измеряемой величины. Например: если параметр high alarm установлен в 1.0 и измеряемая величина увеличивается до 1.1, реле будет активировано.	
	LOW DEADBAND	Устанавливает диапазон, в котором реле остается включенным после того, как измеряемая величина увеличивается выше нижнего порога сигнализации (low alarm). По умолчание это значение составляет 20% от диапазона. Например: если low alarm установлен в 1.0 и low deadband установлен в 0.5, реле будет оставаться включенным между 1.5 и 1.0.	
	HIGH DEADBAND	Устанавливает диапазон, в котором реле остается включенным после того, как измеряемая величина уменьшается ниже верхнего порога сигнализации (high alarm). Например: если high alarm установлен в 4.0 и high deadband установлен в 0.5, реле остается включенным между 3.5 и 4.0.	
	OFF DELAY	Устанавливает время задержки нормального выключения реле (0-300 секунд).	
	ON DELAY	Устанавливает время задержки нормального включения реле (0-300 секунд).	
Φ	ункция установлена в FEEDER CONTROL		

PHASE	Фаза "High" назначает уставку реле для отклика на увеличение измеряемой величины; и наоборот, фаза "Low" назначает уставку реле для отклика на уменьшение измеряемой величины.
SET SETPOINT	Устанавливает значение, при котором реле будет включаться.
DEADBAND	Устанавливает диапазон, в котором реле остается включенным после того, как измеряемая величина уменьшается ниже значения уставки (реле с фазой high) или увеличивается выше уставки (реле с фазой low).
OVERFEED TIMER	Устанавливает максимальный промежуток времени (0–999.9 минут), в течение которого реле может оставаться включенным.
OFF DELAY	Устанавливает время задержки (0–999 секунд) нормального выключения реле.
ON DELAY	Устанавливает время задержки (0–999 секунд) нормального включения реле.

4.6.1 Меню настройки реле (Relay Setup из System Setup) (продолжение)

Выберите реле А, В или С				
АСТІVАТІОN (Активация)				
Функция установле	Функция установлена в EVENT CONTROL			
SET SETPOINT	Устанавливает значение, при котором реле будет включаться.			
DEADBAND	Устанавливает диапазон, в котором реле остается включенным после того, как измеряемая величина уменьшается ниже значения уставки (реле с фазой high) или увеличивается выше уставки (реле с фазой low).			
OnMax TIMER	Устанавливает максимальный промежуток времени, в течение которого реле может оставаться включенным. Диапазон: 0–999 минут.			
OffMax TIMER	Устанавливает максимальный промежуток времени, в течение которого реле может оставаться выключенным. Диапазон: 0–999 минут.			
OnMin TIMER	Устанавливает максимальный промежуток времени, в течение которого реле может оставаться включенным. Диапазон: 0–999 минут.			
OffMin TIMER	Устанавливает максимальный промежуток времени, в течение которого реле может оставаться выключенным. Диапазон: 0–999 минут.			
Функция установле	на в TIMER (в SELECT SOURCE выбран RTC)			
HOLD OUTPUTS	Устанавливает OUTMODE для выбора работы в режиме удержания выходов и выбирает каналы, которые вызывают удержание выходов.			
INTERVAL	Устанавливает время выключения реле.			
DURATION	Устанавливает время включения реле.			
OFF DELAY	Устанавливает время для дополнительного удержания/вывода после того, как реле было выключено.			
Функция установлен	a B WARNING CONTROL			
WARNING LEVEL	Устанавливает уровень предупреждения для срабатывания реле. Диапазон: 0–32. Например: если в приборе активированы предупреждения 1–9, установите уровень предупреждения в 0, чтобы позволить всем предупреждениям вызывать срабатывание реле; установите уровень предупреждения в 5, чтобы позволить всем предупреждениям, начиная с 6 и выше, вызывать срабатывание реле. Установите уровень предупреждения в 9 или более, чтобы реле не срабатывало ни при каких предупреждениях. Полный список предупреждений см. в разделе 7.2 на стр. 54.			
Функция установлен	a B PWM CONTROL			
SET MODE	(Установить режим) Автоматический (Auto) или ручной (Manual)			
PHASE	(Фаза) Прямая (Direct) или реверсная (Reverse)			
SET SETPOINT	Уставка регулирования			
DEAD ZONE	(Зона нечувствительности) Область вокруг уставки, в которой выход выключен			
PERIOD	Период ШИМ (PWV) 3–60 секунд			
MIN WIDTH	Мин. ширина импульса, выраженная в 0.1 секунды			
MAX WIDTH	Макс. ширина импульса, выраженная в 0.1 секунды			
PROP BAND	Пропорциональная полоса регулирования			
INTEGRAL	Настройка интегрального регулирования (в минутах)			
ISET MODE	(Установить режим) Автоматический (Auto) или ручной (Manual)			
PHASE	(Фаза) Прямая (Direct) или реверсная (Reverse)			
SET SETPOINT	(часа) приман (влесс) или ревереная (нетегое)			
DEAD ZONF	(Зона нечувствительности) Область вокруг уставки, в которой выхол выключен			
	(мин. ширина) 0.001–200 импульсов в минуту			
	(макс. ширина) 0.001–200 импульсов в минуту			
PROP BAND	Пропорциональная попоса регулирования (за пределами зоны нечувствительности)			
INTEGRAL	Настройка интегрального регулирования (в минутах)			
↓ +				

4.7 Опции журнализации данных событий

sc100 предоставляет два журнала данных (по одному для каждого сенсора) и два журнала событий (по одному для каждого сенсора). Журналы данных сохраняют данные измерений с выбранным интервалом. Журнал событий хранит различные события, которые происходят с приборами, такие как изменения конфигурации, условия сигнализаций и предупреждений.

Журналы данных хранятся в упакованном двоичном формате, а журналы событий хранятся в формате CSV. Журналы могут быть скачаны или через цифровой сетевой порт или через ИК (IrDA) порт с помощью программы передачи файлов, которую можно получить у производителя.

4.7.1 Опции журнализации данных

Журнал данных сенсора:

Шаг	Нажать	Уровень меню/Указания	Подтвердить
1	monu	MAIN MENU	_
2		SYSTEM SETUP	enter
3		LOG SETUP	
4	\checkmark	LOG CHANNEL (выберите из отображаемых вариантов)	
5	\checkmark	SET PARAMETER (выберите из отображаемых вариантов)	enter
6	\checkmark	SET MODE	
7	\checkmark	SET INTERVAL	
8		MAIN MENU или экран основных измерений	_

4.8 Опции цифровой сети

sc100 предоставляет два способа цифровых коммуникаций с контроллером (порт цифровой сети и ИК-порт). Любой из этих цифровых портов может быть использован для доступа к данным настройки, данным измерений, или журналам данных/событий. Функции, имеющиеся для каждого из этих цифровых сетевых портов в отдельности, см. в руководстве, поставляемом вместе с выбранной сетевой картой.

4.9 Структура меню

4.9.1 Меню диагностики сенсора (Sensor Diagnostics)

SELECT SENSOR (Выбрать сенсор)			
	ERROR LIST	См. раздел 7.1 на стр. 54.	
	WARNING LIST	See раздел 7.2 на стр. 54.	

4.9.2 Меню настройки сенсора (Sensor Setup)

SELECT SENSOR (если подключено более одного сенсора) CALIBRATE (Калибровать) ZERO CAL Выполнить калибровку нуля, чтобы устранить смещение сенсора. **1 POINT SAMPLE** Выполнить одноточечную калибровку. SET CAL DEFLT Вернуть прибор к калибровочным настройкам по умолчанию. CONFIGURE (Конфигурировать) EDIT NAME Введите строку, состоящую макс. из 10 символов, и представляющую собой произвольную комбинацию букв и цифр, которая будет отображаться в строке состояния вместе с измеряемым значением. SET PARAMETER Выберите проводимость (Conductivity), удельное сопротивление (Resistivity), TDS, или соленость (Salinity). MEAS UNITS Выберите одну из отображаемых единиц измерения (в зависимости от параметра, выбранного в меню Set Parameter) Выберите градусы Цельсия (Celsius) или Фаренгейта (Fahrenheit). DEGREES C-F DISPLAY FORMAT Выберите из отображаемых вариантов для настройки разрешения дисплея. FILTER Укажите количество секунд для усреднения сигнала (0-60). По умолчанию: 0 секунд. LOG SETUP Выберите либо интервал сенсора, либо температуры. Если интервал включен, выберите из отображаемых опций, чтобы настроить частоту сохранения показаний сенсора или температуры. По умолчанию – отключено (Disabled). CONFIG TDS¹ Устанавливает коэффициент TDS. По умолчанию 0.49 ppm/мкСм. CELL CONSTANT Выберите Select Cell K, чтобы выбрать значение номинальной константы ячейки из отображаемых вариантов, которое близко к значению "К", указанного на сенсоре. Затем выберите Set Cell K, чтобы ввести конкретное значение "К", указанное на сенсоре. Ввод значения "К" исключает необходимость калибровки до тех пор, пока сенсор не будет заменен и настраивает диапазон измерений анализатора таким образом, чтобы он соответствовал конкретной константе ячейки. T-COMPENSATION Заводской настройкой по умолчанию для температурной компенсации является линейная с крутизной 2.00% на °C и эталонной температурой 25 °C. Настройки по умолчанию пригодны для большинства водных растворов. Чтобы ввести другие значения крутизны и эталонной температуры для необычного раствора, используйте опции меню, описанные ниже. LINEAR(линейная): Рекомендуется для большинства приложений. Нажмите ENTER для изменения крутизны или эталонной температуры. АММОNIA(аммиак): Отсутствует для TDS. Для получения помощи и информации для конкретного приложения обратитесь в службу технических консультаций. NATURAL WATER(природная вода): Отсутствует для TDS. Для получения помощи и информации для конкретного приложения обратитесь в службу технических консультаций. USER TABLE(пользовательская таблица): Используйте для конфигурирования таблицы термокомпенсации, в которую можно ввести до 10 параметров по шкале х и 10 параметров по шкале у. Для получения помощи и дополнительной информации обратитесь в службу технических консультаций.

4.9.2 Меню настройки сенсора (Sensor Setup) (продолжение)

SELECT SENSOR (если подключено более одного сенсора)

CONFIGURE (Конфигурировать)

TEMP ADJUST

TEMP OHMS

00					
	TEMP ELEMENT	Выберите тип температурного элемента (100РТ, 1000РТ (по умолчанию), или ручной), затем выберите Select Factor, чтобы ввести конкретный коэффициент "Т", указанный для сенсора.			
	FREQ REJECT	Выберите 50 Hertz или 60 Hertz, чтобы указать частоту, которая должна быть исключена.			
	DEFAULT SETUP	Сбросить настройки конфигурации в заводские настройки.			
DIA	G/TEST (Диагностик	а/тестирование)			
	SOFTWARE VERS	Показывает номер версии программного обеспечения.			
	DRIVER VERS	Показывает номер версии драйвера сенсора.			
	SERIAL NUMBER	Показывает серийный номер сенсора.			

Показывает сопротивление сенсора температуры в Омах.

Отображает измеряемую температуру и позволяет пользователю регулировать температуру на ±5 °C.

1. Это меню отображается, только если выбран параметр TDS.

4.9.3 Меню настройки системы (System Setup)

ОUTPUT SETUP (Настройки выхода, выберите выход 1 или 2)

	SELECT SOURCE	Обратитесь к списку всех подключенных сенсоров, и выберите сенсор, который будет управлять выходом.		
	SET PARAMETER	Выберите из отображаемых параметров.		
	SET FUNCTION	Выберите LINEAR CONTROL, чтобы токовый выход повторял измеряемое значение. Выберите PID CONTROL, чтобы sc100 работал в качестве ПИД-регулятора.		
	SET TRANSFER	Обычно каждые аналоговый выход находится в активном состоянии, реагируя на измеряемую величину назначенного ему параметра. Однако, при калибровке, каждый выход может быть переведен в это предустановленное значение.		
	SET FILTER	Усреднение измерений по времени (0–60 секунд). По умолчанию: 0 секунд.		
	SCALE 0 mA/4 mA	Выберите 0 mA или 4 mA в качестве минимального тока (выходы будут установлены в 0–20 мA или 4–20 мA).		
	ACTIVATION	Зависит от ранее выбранной функции (Function). См. дополнительную информацию в разделе 4.5 на стр. 37.		
RE	AY SETUP (Настройка реле, в	ыберите реле А, В или С)		
	SELECT SOURCE	Выберите подключенный сенсор или часы реального времени (RTC).		
	SET PARAMETER	Выберите COND (проводимость) или TEMP(температура)		
	SET FUNCTION	Выберите сигнализацию, управление подающим механизмом, контроль событий, или предупреждение. Функция таймера доступна при выборе RTC в качестве источника.		
	SET TRANSFER	Устанавливает реле в Energize (энергия подается) или De-energize (энергия отключается) (выбирается пользователем)		
	FAIL SAFE	Защита от сбоев. Выберите YES(да) или NO(нет) и нажмите ENTER. YES устанавливает нормальным условием для реле состояние с подачей энергии, что приводит к отключению энергии при возникновении условия ошибки.		
	ACTIVATION	Зависит от ранее выбранной функции. См. дополнительную информацию в разделе 4.6 на стр. 39.		

4.9.3 Меню настройки системы (System Setup) (продолжение)

NET	NETWORK SETUP (Настройка сети, это меню отображается только если в контроллере установлена сетевая карта)				
	MODBUS ADDRESS	Адрес Modbus. Выделите sc100 Analyzer, или любой подключенный сенсор, и нажмите ENTER для выбора. В качестве адреса выберите число от 1 до 247 (каждый источник должен иметь уникальный адрес), затем нажмите ENTER .			
I	BAUD RATE	Скорость передачи. Выберите скорость передачи 9600, 19200, 38.4К, 57.6К, или 115.2К			
:	STOP BITS	Стоп-биты. Выберите 1 или 2 стоповых бита.			
I	MODBUS MODE	Режим Modbus. Выберит	e RTU или ASCII		
Ī	DATA ORDER	Порядок данных. Выбери	ите NORMAL или SWAPPED.		
DISF	PLAY SETUP (Настройка дис	сплея)			
	ADJUST CONTRAST	Для увеличения и умены раздел 4.3.2 на стр. 33. Д	цения контраста используйте кнопки вверх и вниз , см. (иапазон 0–50		
	LANGUAGE	Язык. Выберите из предл меню на выбранном язын	пагаемых вариантов, чтобы включить вывод всех пунктов ке. По умолчанию: English (английский).		
:	SET DATE/TIME	Установка даты/времени времени (24-часовой (вое	. Выбирает формат даты для отображения и установки даты и енный) формат), см. раздел 4.3.4 на стр. 34.		
SEC	URITY SETUP (Введите 6-си	мвольный защитный ко	д)		
:	SET PASSCODE (Установка з	ащитного кода)			
		ENABLE	Включает системную безопасность. См. раздел 4.4.1 на стр. 36.		
		DISABLE	Отключает системную безопасность. См. раздел 4.4.1 на стр. 36.		
LOG	SETUP (Настройка журнала	a)			
I	DATALOG SETUP	Конфигурирует журнали:	зацию данных, если применима.		
CAL	CULATION (Вычисление)				
5	SET VARIABLE X	Выберите сенсор, соотве	етствующий переменной, установленной как "Х".		
:	SET VARIABLE Y	Выберите сенсор, соотве	етствующий переменной, установленной как "Ү".		
:	SET PARAMETER	Выберите параметр, который должен быть связан с переменной.			
:	SET FORMULA	Выберите формулу вычислений, производимых с "Х" и "Ү".			
ERR	ERROR HOLD MODE (Режим удержания при ошибке)				
l	HOLD OUTPUTS	Удерживать значения выходов при невозможности обмена данными с сенсором.			
2	XFER OUTPUTS	Перейти в состояние передачи при невозможности обмена данными с сенсором.			

4.9.4 Меню тестирования/обслуживания (Test/Maint)

STATUS (Статус)					
Показывает статус н	Показывает статус каждого реле и показывает, какие сенсоры подключены к контроллеру.				
OUTPUT CAL (Калибро	вка выхода)				
Выберите выход 1 и	ли 2				
	Калибруйте аналоговый выход, задавая значения, соответствующие 4 мА и 20 мА. Диапазон 4 мА: 0–65000; диапазон 20 мА: 0–25000				
HOLD OUTPUTS (Удерж	ание выходов)				
SET OUTMODE	Выберите Hold Outputs(удерживать выходы) или Xfer Outputs (передавать выходы)				
SET CHANNELS	SET CHANNELS Выберите для удержания или передачи любой отдельный сенсор, или все подключенные сенсоры.				
ACTIVATION Выберите Launch(запустить) или Release (освободить).					
OVERFEED RESET (Сброс превышения подачи)					

4.9.4 Меню тестирования/обслуживания (Test/Maint) (продолжение)

Сбрасывает таймаут превышения подачи.					
TEST OUTPUT (Тести	TEST OUTPUT (Тестирование выхода)				
Выберите выход 1	или 2				
	Установите аналоговый выход в требуемое токовое значение. Диапазон: 0–20				
TEST RELAY (Тестир	ование реле)				
Выберите реле А,	В, или С				
	Подайте (energize) или отключите (de-energize) энергию на выбранном реле.				
RESET CONFIG (Сбро	ос конфигурации)				
	Сброс в конфигурацию по умолчанию				
SIMULATION (Симуля	ация)				
Выберите SOURCI	E, SET PARAMETER, SET SIM VALUE				
	Симулирует измеряемое сенсором значения для тестирования выходов и реле. Диапазон: 0.00-20.0				
SCAN SENSORS (Сканирование сенсоров)					
Ручное сканирование сенсоров для определения, были ли добавлены или сняты сенсоры.					
MODBUS STATS (Статистика Modbus)					
Показывает статистику коммуникации по внешней сети.					
CODE VERSION (Версия кода)					
Показывает версию программного обеспечения контроллера.					

5.1 Общий порядок работы

- Подключите сенсор к контроллеру, выровняв направляющий выступ на коннекторе кабеля с прорезь в коннекторе контроллера, см. рисунок 19 на стр. 22
- 2. Подайте питание на контроллер.
- 3. При первом включении контроллера появится меню выбора языка. Пользователь должен выбрать язык из предлагаемых вариантов. С помощью кнопок вверх и вниз выделите требуемый язык и нажмите ENTER.
- 4. После выбора языка и при последующих включениях, контроллер будет искать подключенные сенсоры. На дисплее будет отображен экран основных измерений. Для доступа к меню нажмите кнопку **MENU**.
- 5. Установите сенсор в поток пробы как описано в разделе 3.4.2 на стр. 24.

5.2 Калибровка

Каждый контактный сенсор проводимости имеет уникальную точку нуля и смещение. При первой калибровке сенсора всегда выполняйте его обнуление. Обнуление обеспечивает наилучшую возможную точность измерения и устраняет расхождения между измерениями сенсора на двух разных каналах. После обнуления всегда должна выполняться калибровка.

5.2.1 Калибровка нуля (Zero Cal)

Обнулите сенсор, если он калибруется в первый раз. Перед обнулением убедитесь в том, что сенсор сухой.

Шаг	Нажать	Уровень меню/Указания		
1	meru	MAIN MENU	_	
2	\checkmark	SENSOR SETUP		
3		если подключено более одного сенсора – выберите требуемый сенсор		
4		CALIBRATE		
5		ZERO		
6		OUTPUT MODE выберите ACTIVE, HOLD, или TRANSFER		

Запуск системы

Шаг	Нажать	Уровень меню/Указания	Подтвердить
7	7 а Поместите датчик в воздух. Для продолжения нажмите Enter		enter
	Дождитесь стабилизации b Value: X mS/cm Temp: XX.X °C C		V enter
	C	выберите ACCEPT либо ABORT	
	d	Верните датчик в процесс	enter
8		MAIN MENU или экран основных измерений	—

5.2.2 Одноточечная калибровка пробой

Влажная калибровка требует погружения сенсора в соответствующим образом приготовленный раствор с эталонной проводимостью, или, при установке в пробу процесса, значение процесса должно быть определено лабораторным анализом или показаниями сравнения.

Извлеките датчик из процесса и почистите его. Возьмите эталонный раствор с известным значением, и выполните следующие действия:

Шаг	Нажать	Уровень меню/Указания		
1	meru	MAIN MENU	—	
2		SENSOR SETUP		
3		если подключено более одного сенсора – выберите требуемый сенсор		
4	_	CALIBRATE		
5	_	1 POINT SAMPLE		
6	\checkmark	OUTPUT MODE выберите ACTIVE, HOLD, или TRANSFER		

Шаг	Нажать	Уровень меню/Указания	
7	а	1-точечная проба. Поместите датчик в пробу. Для продолжения нажмите Enter.	√ orter
	b 1-точечная проба. Нажмите Enter когда стабильно. Value: X mS/cm Temp: XX.X °C		riter
	редактируйте значение раствора		orter
	С	c 1 Point Sample Complete	
	d Верните датчик в процесс		enter
8	meru home	МАІМ МЕЛU или экран основных измерений	

5.2.3 Одновременная калибровка двух сенсоров

- **1.** Начните калибровку первого сенсора, и дойдите до шага, на котором будет отображено "Wait to Stabilize".
- 2. Нажмите кнопку ВАСК (назад).
- **3.** Выделите Leave и нажмите **ENTER**. Дисплей вернется на экран основных измерений. Показания сенсора, калибруемого в данный момент, будут мигать.
- **4.** Начните калибровку второго сенсора, и дойдите до шага, на котором будет отображено "Wait to Stabilize".
- 5. Нажмите кнопку ВАСК (назад).
- **6.** Выделите Leave и нажмите **ENTER**. Дисплей вернется на экран основных измерений, и показания обоих сенсоров будут мигать.
- **7.** Для возврата к калибровке любого из сенсоров, нажмите кнопку **MENU**, выделите Sensor Setup и нажмите **ENTER**.
- 8. Выберите требуемый сенсор и нажмите ENTER.

5.2.3.1 Подготовка растворов с эталонной проводимостью

Используйте таблицу 13 для приготовления раствора с эталонной проводимостью со значением от 200 до 100,000 мкСм/см. Для достижения наилучшей точности приготавливаемое значение должно быть схожим с типичным измеряемым значением процесса. Для получения заявленной проводимости добавьте указанное количество грамм чистого, сухого NaCl в один литр деионизированной воды высокой чистоты, не содержащей CO₂ при 25 °C.

Т	Кол-во грамм NaCl, которое		
мкСм/см	мСм/см	ppm (NaCl) ¹	необходимо добавить
100	0.10	50	0.05
200	0.20	100	0.10
500	0.50	250	0.25
1000	1.00	500	0.50
2000	2.00	1010	1.01
3000	3.00	1530	1.53
4000	4.00	2060	2.06
5000	5.00	2610	2.61
8000	8.00	4340	4.34
10000	10.00	5560	5.56
20000	20.00	11590	11.59

Таблица 13 Растворы с эталонной проводимостью

1. При использовании шкалы измерения ppm для соединений, отличных от NaCl, для вычисления эталонного раствора используйте соответствующий химический справочник.

5.3 Регулировка температуры

Просмотрите или измените температуру, выполнив описанную ниже процедуру.

Шаг	Нажать	Уровень меню/Указания	Подтвердить					
1	menu	MAIN MENU	_					
2		SENSOR SETUP						
3	\checkmark	если подключено более одного сенсора – выберите требуемый сенсор						
4	\checkmark	DIAG/TEST						
5		TEMP ADJUST						
6		EDIT TEMP						
7	_	отображается температура (XX.X °C)	enter					
		EDIT TEMP (+XX.X) °C	(venter					
8	menu forme	MAIN MENU или экран основных измерений						

ОПАСНОСТЬ

Работы по обслуживанию, описанные в данном разделе, должны выполняться только квалифицированным персоналом.

6.1 Расписание обслуживания

Задача обслуживания	90 дней	Ежегодно
Чистка сенсора ¹	x	
Калибровка сенсора (если требуется регулирующим ведомством)	Согласно графику, утвержи руководящим ведомством	цаемому вашим

1. Частота чистки зависит от приложения. Более или менее частая чистка будет целесообразной для некоторых приложений.

6.2 Чистка сенсора

Для поддержания точности измерений держите сенсор в чистоте. Время между чистками (дни, недели, и т.д.) зависит от характеристик раствора процесса, и может быть определено исключительно опытным путем.

- 1. Почистите внешнюю часть сенсора паром или водой. Если загрязнения остаются, протрите мягкой, влажной тканью.
- Удалите большую часть загрязняющих отложений, осторожно протерев мягкой чистой тканью внутренний стержень электрода, и внешнюю концентрическую трубку электрода (внутреннюю и внешнюю поверхности). Затем промойте сенсор чистой, теплой водой.
- **3.** Приготовьте слабый мыльный раствор из воды и средства для мытья посуды, или схожего.
- 4. Погрузите сенсор в мыльный раствор на 2-3 минуты.
- С помощью щетки с маленькой щетиной, ватного валика, или ершика для трубок почистите весь измерительный кончик сенсора, добиваясь полной чистоты поверхностей электрода.
- 6. Если раствор чистящего средства не может удалить отложений на поверхности, используйте соляную кислоту (или другую разбавленную кислоту), чтобы растворить отложения. Погрузите сенсор в разбавленную кислоту не более, чем на 5 минут.
- **Примечание:** Кислота должна быть настолько разбавленной, насколько это возможно, но все же достаточно сильная, чтобы очищать. Следует опытным путем определить, какую кислоту следует использовать, и насколько она может быть разбавленной. Некоторые стойкие покрытия могут потребовать других чистящих средств. Для получения помощи в таких сложных случаях обратитесь в службу технических консультаций.
- **7.** Промойте сенсор чистой, теплой водой, а затем поместите сенсор обратно в слабый мыльный раствор на 2-3 минуты, чтобы нейтрализовать остатки кислоты.
- 8. Промойте сенсор чистой, теплой водой.
- Откалибруйте анализатор с помощью процедуры, описанной в руководстве по эксплуатации анализатора. Если добиться калибровки не удается, проверьте сенсор с помощью процедуры, описанной в разделе устранения неполадок.

осторожно

Перед чисткой кислотой, определите не могут ли образоваться какие-либо опасные продукты реакции. (Например, сенсор, используемый в цианидной ванне, не следует помещать для чистки непосредственно в сильную кислоту, т.к. может образоваться ядовитый цианидный газ.) Кислоты опасны. Используйте соответствующую защиту для глаз, и одежду, согласно рекомендациям по безопасности обращения с используемыми материалами

6.3 Чистка контроллера

При плотно закрытом корпусе прибора, протрите внешнюю поверхность влажной тканью.

Замена предохранителя

В контроллере имеются 2 предохранителя, которые вы можете заменять. Сгоревшие предохранители являются показателем проблемных окружающих условий. Определение причины и замена предохранителей должны выполняться только квалифицированным персоналом. Для замены предохранителей см. рисунок 35 и выполните следующие шаги:

- 1. Отключите питание от контроллера (включая контакты реле, если они подключены к источнику питания).
- **2.** Откройте откидную крышку контроллера, полностью открутив четыре невыпадающих болта.
- **3.** Снимите высоковольтный барьер; потяните за рычажок невыпадающего крепежа, затем потяните прямо за барьер. Отложите барьер в сторону, чтобы позже установить его на место.
- **4.** Извлеките старые предохранители и замените их предохранителями того же типа и номинала (T, 1.6 A, 250 B).
- 5. Установите высоковольтный барьер на место.
- 6. Закройте крышку контроллера и затяните четыре болта вручную.
- 7. Подключите питание к прибору.

Рисунок 35 Замена предохранителя

7.1 Коды ошибок

В случае ошибки сенсора, измеряемое значение сенсора на экране будет мигать и все контакты, и токовые выходы, связанные с этим сенсором будут удерживаться. Следующие условия приводят к миганию показаний сенсора:

- Калибровка сенсора
- Таймер реле цикла промывки
- Разрыв коммуникаций

Выделите меню Sensor Diag и нажмите **ENTER**. Выделите Errors и нажмите **ENTER**, чтобы определить причину ошибки. Ошибки описаны в таблице 14.

Таблица 14 Коды ошибок

Отображаемая ошибка	Определение	Решение
ADC FAIL	Плохие показания АЦП	Обратитесь в службу работы с покупателями
SENSOR FAIL	Плохие показания АЦП сенсора	Обратитесь в службу работы с покупателями
FLASH FAIL	Сбой операции с Flash-памятью	Обратитесь в службу работы с покупателями

7.2 Предупреждения

При наличии предупреждения сенсора все меню, реле и выходы будут функционировать в обычном режиме, но на правой стороне дисплея будет мигать значок предупреждения. В главном меню выберите Sensor Diag и нажмите **ENTER**, чтобы определить причину предупреждения.

Предупреждение может использоваться для срабатывания реле, и пользователи могут настроить уровни предупреждений, чтобы определить серьезность предупреждения. Предупреждения описаны таблице 15.

Таблица 15 Коды предупреждений

Отображаемое предупреждение	Определение	Решение
TEMP < -20 °C	Измеряемая температура ниже –20 °C (-4 °F).	Температура за пределами диапазона: Увеличьте температуру процесса, или прекратите использование до тех пор, пока температура процесса не поднимется выше –20 °C (–4 °F). Неисправен сенсор температуры: Проверьте температуру потока пробы независимым устройством для измерения температуры. Если температура находиться в пределах диапазона, обратитесь в службу технических консультаций.
TEMP > 200 °C	Измеряемая температура выше 200 °C (392 °F).	Температура за пределами диапазона: Уменьшите температуру процесса, или прекратите использование до тех пор, пока температура процесса не опуститься ниже 200 °C (392 °F). Неисправен сенсор температуры: Проверьте температуру потока пробы независимым устройством для измерения температуры. Если температура находиться в пределах диапазона, обратитесь в службу технических консультаций.

7.3 Общие вопросы устранения неполадок

Проблема	Решение						
Пользовател	ь не может вспомнить защитный код.						
	Обратитесь в службу технических консультаций, и запросите мастер-код. Контактную информацию см. в разделе Служба ремонта на стр. 57.						
Выполнили F	Reset Config (сброс конфигурации) и текущий защитный код больше не работает.						
	Защитный код был сброшен в заводскую настройку по умолчанию SC100_ (после защитного кода необходимо ввести пробел, чтобы удалить последнюю звездочку). Введите заводской код по умолчанию.						
Показания не	естабильны						
	Выполните чистку и калибровку сенсора						

7.3.1 Проверка работы сенсора

- 1. Отключите сенсор от анализатора или распределительной коробки.
- 2. Почистите сенсор, выполнив процедуру из раздела 6.2 на стр. 52.
- 3. Возьмите известный образец (относящийся к NIST предпочтителен для многих приложений) и выполните измерения.
- 4. Подключите сенсор к контроллеру или соединительной коробке.
- 5. Если результат измерений не укладывается в спецификацию (отличается от значения, указанного на ярлыке ± заявленной ошибки образца), обратитесь в службу технических консультаций. Контактную информацию см. в разделе Служба ремонта на стр. 57.

7.3.1.1 Проверка линейности сенсора

- Возьмите два образца, один близкий к максимуму для интересующего диапазона (образец верхнего значения), а другой – со значением, лежащим посередине между образцом верхнего значения и 0 (образец среднего значения).
- Подготовьте 50 мл образцов верхнего и среднего значения в стаканах по 100 мл, и добавьте 50 мл деионизированной воды в другой 100 мл стакан.
- **3.** Вставьте сенсор в стакан с деионизированной водой. Запишите стабильные показания.
- **4.** Извлеките сенсор из деионизированной воды, и осторожно стряхните, чтобы удалить лишнюю воду.
- **5.** Вставьте сенсор в образец верхнего значения. Запишите стабильные показания.
- Извлеките сенсор из образца верхнего значения, промойте деионизированной водой и осторожно стряхните, чтобы удалить лишнюю воду.
- 7. Поместите сенсор в образец среднего значения и запишите стабильные показания.

Показания для образца среднего значения должны лежать посередине между показаниями, полученными для деионизированной воды и образца высокого значения. Если это не так, сенсор может быть неисправен. Обратитесь за помощью в службу работы с покупателями; контактную информацию см. в разделе Служба ремонта на стр. 57.

7.3.2 Проверка на наличие паразитных контуров заземления

Паразитным контуром заземления называется две или более электрически заземленных точек с разными потенциалами.

Признаки возможного наличия паразитного контура заземления

- Показания анализатора смещены от действительного значения на постоянную величину.
- Показания анализатора застыли на одном значении.
- Показания анализатора не соответствуют шкале (выше или ниже шкалы).

Хотя источник паразитного контура заземления определить сложно, есть несколько распространенных причин:

- Компоненты, такие как регистраторы или компьютеры, подключены к неизолированным аналоговым выходам.
- Не использовались экранированные кабели, или экраны кабелей не были правильно подключены.
- Внутри подключенной распределительной коробки имеется влага или коррозия.

7.3.2.1 Определение наличия паразитного контура заземления

- При отображаемом экране измерений проводимости, поместите сенсор в непроводящий контейнер (пластик или стекло), наполненный раствором с эталонной проводимостью с известным значением. Запишите показания анализатора для этого раствора.
- **2.** Подключите один конец провода к надежному заземлению, например, металлической водопроводной трубе. Поместите другой конец провода в эталонный раствор с сенсором.
- **3.** Отметьте текущие показания анализатора и сравните их с показаниями, полученными на шаге 1. Если показания различаются, присутствует паразитный контур заземления.

Подсказка по устранению неполадок

Для определения причины паразитного контура заземления используйте систематичный метод устранения неполадок. Если возможно, начните с заземления всех экранов и электрических земель к одной стабильной точке. По одной за раз отключите все насосы, моторы и переключатели, которые контактируют с процессом. Каждый раз проверяйте, не исчез ли паразитный контур заземления.

Запасные детали

ном.
8300
0018
0318
7200
7300

Принадлежности

Деталь	Кат. ном.
Кабель, удлинение сенсора, 7.7 м (25 футов)	5796000
Кабель, удлинение сенсора, 15 м (50 футов)	5796100
Кабель, удлинение сенсора, 31 м (100 футов)	5796200
Карта цифрового вывода для коммуникаций ModBUS RS232	5920000
Карта цифрового вывода для коммуникаций ModBUS RS485	5920001
Коробка согласующей нагрузки	5867000
Крепежные материалы, вставка (шаровой клапан), серия 3422, SS, константа ячейки 0.05 МН	1113M2C
Крепежные материалы, вставка (шаровой клапан), серия 3422, SS для всех остальных констант ячейкиМН	1114M2C
Комплект монтажных деталей, труба	5794400
Комплект монтажных деталей, шаровой поплавок	5794300
Заглушка, уплотнение, отверстие кабелепровода	5868700
Шнур питания с кабельным вводом strain relief, 115 В	5448800
Шнур питания с кабельным вводом strain relief, 230 В	5448900
Светозащитный экран	5869000
Кабельный ввод strain relief, Heyco	16664

Реагенты и образцы

Предмет	Количество	Кат. ном
Раствор с эталонной проводимостью, 100-1000 мкСм/см		25M3A2000-119
Раствор с эталонной проводимостью, 2000-100000 мкСм/см		25M3A2100-119
Раствор с эталонной проводимостью, 200000-300000 мкСм/см	1 L 2	25M3A2200-119

HACH LANGE гарантирует, что поставляемое изделие не имеет дефектов материалов или производства, и принимает на себя обязательства отремонтировать или заменить любые неисправные детали.

Гарантийный период для приборов составляет 24 месяца. При заключении в пределах 6 месяцев с даты приобретения контракта на обслуживание, гарантийный период увеличивается до 60 месяцев.

Для дефектов, куда также входит отсутствие заявленных свойств, поставщик обязан, при исключении других требований, выполнить следующее: все детали, которые в пределах гарантийного срока, исчисляемого начиная со дня доставки, становятся непригодными для использования, или значительно ухудшаются, по причинам, наличие которых до момента доставки может быть доказано, в частности, по причине неправильной конструкции, некачественных материалов или неправильного изготовления, по усмотрению поставщика будут отремонтированы, или будут бесплатно по предоставлены новые детали. Об обнаружении таких дефектов необходимо письменно сообщить поставщику не позднее, чем через 7 дней после обнаружения дефекта. Если покупатель не известит поставщика вышеуказанным образом, считается, что предоставленное изделие принято, несмотря на дефект. Исключаются дополнительные обязательства, касающиеся любых прямых или косвенных убытков.

Если в течение гарантийного периода требуется оговоренное производителем специфичное для прибора обслуживание со стороны пользователя (сопровождение), или обследование сервисными инженерами производителя (сервис), и эти требования не выполнены, тогда гарантия для повреждений, возникших в результате несоблюдения данных требований, аннулируется.

Любые другие требования, в частности требования по возмещению убытков для косвенных убытков, не могут быть заявлены.

Расходные материалы и повреждения, вызванные неправильным обращением, ненадежным монтажом или несоответствующим использованием исключаются из данного соглашения.

Надежность приборов процесса НАСН LANGE была подтверждена в испытаниях во многих приложениях, и поэтому они часто используются в контурах автоматического управления для обеспечения наиболее экономичной возможной работы соответствующего процесса.

Чтобы избежать или ограничить косвенные убытки, рекомендуется проектировать контура управления таким образом, чтобы неисправность в приборе приводила к автоматическому переходу на резервную систему управления; это является наиболее безопасным для окружающей среды и процесса рабочим состоянием.

Контакты

10.1 Адреса

DR. BRUNO LANGE

GMBH & CO. KG Willstätterstraße 11 D-40549 Düsseldorf Тел. +49 (0)211-5288-0 Факс +49 (0)211-5288-143 info@hach-lange.de www.hach-lange.de

HACH LANGE LTD

Lennox Road Basingstoke Hampshire, RG22 4AP Ten. +44 (0)1256 333 403 Φaκc +44 (0)1256 330 724 info@hach-lange.co.uk www.hach-lange.com

Название группы	Название тэга	Регистр #	Тип данных	Длина	R/W	Описание
Measurements	Calculated Value	40001	Float	2	R	Значение, вычисляемое из двух показаний сенсора
Setup	Language	40003	Unsigned Integer	1	R/W	Текущий системный язык
Setup	Date Format	40004	Unsigned Integer	1	R/W	Текущий формат отображения даты (0 = DD/MM/YY; 1 = MM/DD/YY; 2 = DD-MM-YY; 3 = MM-DD-YY)
Setup	Error Hold Mode	40005	Unsigned Integer	1	R/W	Состояние удержания в режиме ошибки (0 = удерживать выходы; 1 = перевести
Setup/Analog Output 1	Source	40006	Unsigned Integer	1	R/W	Выбирает источник данных для этого выхода (0 = нет; 2 = сенсор; 4 =
Setup/Analog Output 1	Sensor Select	40007	Unsigned Integer	1	R/W	Выбирает сенсор-источник, когда Source = Sensor (0 = sensor1; 1 = sensor2)
Setup/Analog Output 1	Measurement Select	40008	Unsigned Integer	1	R/W	Выбирает измерение для сенсора (0 = Meas1 3 = Meas4)
Setup/Analog Output 1	Туре	40009	Unsigned Integer	1	R/W	Выбирает тип вывода (0 = линейный вывод; 1 = ПИД-регулирование)
Setup/Analog Output 1	Transfer Value	40010	Float	2	R/W	Устанавливает предаваемое значение
Setup/Analog Output 1	Filter	40012	Unsigned Integer	1	R/W	Устанавливает значение выходного фильтра в секундах (0 до 120 сек.)
Setup/Analog Output 1	0mA – 4mA Select	40013	Unsigned Integer	1	R/W	Выбирает 0мА/4мА в качестве мин. вы- водимого значения (0 = 0мА; 1 = 4мА)
Setup/Analog Output 1/Linear	Min Setting	40014	Float	2	R/W	Устанавливает минимальное выводимое значение
Setup/Analog Output 1/Linear	Max Setting	40016	Float	2	R/W	Устанавливает максимальное выводимое значение
Setup/Analog Output 1/PID	PID Mode	40018	Unsigned Integer	1	R/W	Устанавливает режим ПИД (0 = авто; 1 = ручной)
Setup/Analog Output 1/PID	PID Manual Set	40019	Float	2	R/W	Устанавливает ручное выходное значение ПИД (0.0 до 100.0%)
Setup/Analog Output 1/PID	PID Setpoint	40021	Float	2	R/W	Задает уставку ПИД
Setup/Analog Output 1/PID	PID Phase	40023	Unsigned Integer	1	R/W	Устанавливает фазу ПИД (0 = прямая; 1 = обратная)
Setup/Analog Output 1/PID	PID Proportional Band	40024	Float	2	R/W	Устанавливает пропорциональную полосу ПИД
Setup/Analog Output 1/PID	PID Integral Time	40026	Unsigned Integer	1	R/W	Устанавливает время интегрирования ПИД (мин)
Setup/Analog Output 1/PID	PID Derivative Time	40027	Unsigned Integer	1	R/W	Устанавливает время дифференцирования ПИД (мин)
Setup/Analog Output 2	Source	40028	Unsigned Integer	1	R/W	Выбирает источник данных для этого выхода (0 = нет; 2 = сенсор; 4 = вычисление)
Setup/Analog Output 2	Sensor Select	40029	Unsigned Integer	1	R/W	Выбирает сенсор-источник, когда Source = Sensor (0 = Sensor1; 1 = Sensor2)
Setup/Analog Output 2	Measurement Select	40030	Unsigned Integer	1	R/W	Выбирает измерение для сенсора (0 = Meas1 3 = Meas4)

Таблица 16 Регистры ModBUS контроллера

Название группы	Название тэга	Регистр #	Тип данных	Длина	R/W	Описание
Setup/Analog Output 2	Туре	40031	Unsigned Integer	1	R/W	Выбирает тип вывода (0 = линейный вывод; 1 = ПИД-регулирование)
Setup/Analog Output 2	Transfer Value	40032	Float	2	R/W	Устанавливает предаваемое значение
Setup/Analog Output 2	Filter	40034	Unsigned Integer	1	R/W	Устанавливает значение выходного фильтра в секундах (0 до 120 сек.)
Setup/Analog Output 2	0mA–4mA Select	40035	Unsigned Integer	1	R/W	Выбирает 0мА/4мА в качестве мин. вы- водимого значения (0 = 0мА; 1 = 4мА)
Setup/Analog Output 2/Linear	Min Setting	40036	Float	2	R/W	Устанавливает минимальное выводимое значение
Setup/Analog Output 2/Linear	Max Setting	40038	Float	2	R/W	Устанавливает максимальное выводимое значение
Setup/Analog Output 2/PID	Mode	40040	Unsigned Integer	1	R/W	Устанавливает режим ПИД (0 = авто; 1 = ручной)
Setup/Analog Output 2/PID	Manual Set	40041	Float	2	R/W	Устанавливает ручное выходное значение ПИД (0.0 до 100.0%)
Setup/Analog Output 2/PID	Setpoint	40043	Float	2	R/W	Задает уставку ПИД
Setup/Analog Output 2/PID	Phase	40045	Unsigned Integer	1	R/W	Устанавливает фазу ПИД (0 = прямая; 1 = обратная)
Setup/Analog Output 2/PID	Proportional Band	40046	Float	2	R/W	Устанавливает пропорциональную полосу ПИД
Setup/Analog Output 2/PID	Integral Time	40048	Unsigned Integer	1	R/W	Устанавливает время интегрирования ПИД (мин)
Setup/Analog Output 2/PID	Derivative Time	40049	Unsigned Integer	1	R/W	Устанавливает время дифференцирования ПИД (мин)
Setup/Relay 1	Source	40050	Unsigned Integer	1	R/W	Выбирает источник данных для этого реле (0 = нет; 1 = часы реального времени; 2 = сенсор; 4 = вычисление)
Setup/Relay 1	Sensor Select	40051	Unsigned Integer	1	R/W	Выбирает сенсор-источник, когда Source = Sensor (0 = sensor1; 1 = sensor2)
Setup/Relay 1	Measurement Select	40052	Unsigned Integer	1	R/W	Выбирает измерение для сенсора (0 = Meas1 3 = Meas4)
Setup/Relay 1	Туре	40053	Unsigned Integer	1	R/W	Выбирает тип реле (0 = сигнализация; 1 = управление; 2 = статус; 3 = таймер; 4 = событие)
Setup/Relay 1	Transfer Setting	40054	Unsigned Integer	1	R/W	Выбирает передаваемое значение для реле (0 = энергия отключается; 1
Setup/Relay 1/Alarm	High Alarm	40055	Float	2	R/W	Задает верхнюю уставку сигнализации
Setup/Relay 1/Alarm	Low Alarm	40057	Float	2	R/W	Задает нижнюю уставку сигнализации
Setup/Relay 1/Alarm	High Deadband	40059	Float	2	R/W	Задает полосу нечувствительности верхней сигнализации
Setup/Relay 1/Alarm	Low Deadband	40061	Float	2	R/W	Задает полосу нечувствительности нижней сигнализации
Setup/Relay 1/Alarm	On Delay	40063	Unsigned Integer	1	R/W	Задает время задержки включения
Setup/Relay 1/Alarm	Off Delay	40064	Unsigned Integer	1	R/W	Задает время задержки выключения
Setup/Relay 1/Control	Setpoint	40065	Float	2	R/W	Задает уставку контроллера

Название группы	Название тэга	Регистр #	Тип данных	Длина	R/W	Описание
Setup/Relay 1/Control	Phase	40067	Unsigned Integer	1	R/W	Устанавливает фазу контроллера (0 = низкая; 1 = высокая)
Setup/Relay 1/Control	Deadband	40068	Float	2	R/W	Задает полосу нечувствительности контроллера
Setup/Relay 1/Control	Overfeed Timer	40070	Unsigned Integer	1	R/W	Устанавливает значения таймера превышения подачи (мин)
Setup/Relay 1/Control	On Delay	40071	Unsigned Integer	1	R/W	Устанавливает задержку включения (сек)
Setup/Relay 1/Control	Off Delay	40072	Unsigned Integer	1	R/W	Устанавливает задержку выключения (сек)
Setup/Relay 1/Control	Reset Overfeed Timer	40073	Unsigned Integer	1	R/W	Сбрасывает таймер превышения подачи
Setup/Relay 1/Event	Setpoint	40074	Float	2	R/W	Задает уставку события
Setup/Relay 1/Event	Phase	40076	Unsigned Integer	1	R/W	Задает фазу события (0 = низкая; 1 = высокая)
Setup/Relay 1/Event	Deadband	40077	Float	2	R/W	Задает полосу нечувствительности события
Setup/Relay 1/Event	On Max Time	40079	Unsigned Integer	1	R/W	Задает максимальное время включения (минуты)
Setup/Relay 1/Event	On Min Time	40080	Unsigned Integer	1	R/W	Задает минимальное время включения (минуты)
Setup/Relay 1/Event	Off Max Time	40081	Unsigned Integer	1	R/W	Задает максимальное время выключения (минуты)
Setup/Relay 1/Event	Off Min Time	40082	Unsigned Integer	1	R/W	Задает минимальное время выключения (минуты)
Setup/Relay 1/Timer	Hold Type	40083	Unsigned Integer	1	R/W	Устанавливает, на выходы каких сенсоров влияет время включения таймера (0 = нет; 2 = выбранный сенсор; 13 = все сенсоры)
Setup/Relay 1/Timer	Sensor Select	40084	Unsigned Integer	1	R/W	Выбирает, выходы каких сенсоров удерживаются/передаются во время включения таймеров (это используется, когда в Hold type установлен один сенсор)
Setup/Relay 1/Timer	Hold Mode	40085	Unsigned Integer	1	R/W	Выбирает удержание выхода или устанавливаемое передаваемое значение во время включения таймера
Setup/Relay 1/Timer	Duration Time	40086	Unsigned Integer	1	R/W	Устанавливает длительность времени включения таймера (секунды)
Setup/Relay 1/Timer	Period Time	40087	Unsigned Integer	1	R/W	Устанавливает период между событиями включения таймера (минуты)
Setup/Relay 1/Timer	Off Delay	40088	Unsigned Integer	1	R/W	Устанавливает время, в течение которого выходы затрагиваемых сенсоров удерживаются/предаются после выключения таймера (сек)
Setup/Relay 1/Status	Level	40089	Unsigned Integer	1	R/W	Устанавливает уровень статуса, по которому будет срабатывать реле
Setup/Relay 2	Source	40090	Unsigned Integer	1	R/W	Выбирает источник данных для этого реле (0 = нет; 1 = часы реального времени; 2 = сенсор; 4 = вычисление)
Setup/Relay 2	Sensor Select	40091	Unsigned Integer	1	R/W	Выбирает сенсор-источник, когда Source = Sensor (0 = sensor1; 1 = sensor2)
Setup/Relay 2	Measurement Select	40092	Unsigned Integer	1	R/W	Выбирает измерение для сенсора (0 = Meas1 3 = Meas4)

Таблица 16 Регистры ModBUS контроллера (продолжение)

Название группы	Название тэга	Регистр #	Тип данных	Длина	R/W	Описание
Setup/Relay 2	Туре	40093	Unsigned Integer	1	R/W	Выбирает тип реле (0 = сигнализация; 1 = управление; 2 = статус; 3 = таймер; 4 = событие)
Setup/Relay 2	Transfer Setting	40094	Unsigned Integer	1	R/W	Выбирает передаваемое значение для реле (0 = энергия отключается; 1 = энергия подается)
Setup/Relay 2/Alarm	High Alarm	40095	Float	2	R/W	Задает верхнюю уставку сигнализации
Setup/Relay 2/Alarm	Low Alarm	40097	Float	2	R/W	Задает нижнюю уставку сигнализации
Setup/Relay 2/Alarm	High Deadband	40099	Float	2	R/W	Задает полосу нечувствительности верхней сигнализации
Setup/Relay 2/Alarm	Low Deadband	40101	Float	2	R/W	Задает полосу нечувствительности нижней сигнализации
Setup/Relay 2/Alarm	On Delay	40103	Unsigned Integer	1	R/W	Задает время задержки включения
Setup/Relay 2/Alarm	Off Delay	40104	Unsigned Integer	1	R/W	Задает время задержки выключения
Setup/Relay 2/Control	Setpoint	40105	Float	2	R/W	Задает уставку контроллера
Setup/Relay 2/Control	Phase	40107	Unsigned Integer	1	R/W	Устанавливает фазу контроллера (0 = низкая; 1 = высокая)
Setup/Relay 2/Control	Deadband	40108	Float	2	R/W	Задает полосу нечувствительности контроллера
Setup/Relay 2/Control	Overfeed Timer	40110	Unsigned Integer	1	R/W	Устанавливает значения таймера превышения подачи (мин)
Setup/Relay 2/Control	On Delay	40111	Unsigned Integer	1	R/W	Устанавливает задержку включения (сек)
Setup/Relay 2/Control	Off Delay	40112	Unsigned Integer	1	R/W	Устанавливает задержку выключения (сек)
Setup/Relay 2/Control	Reset Overfeed Timer	40113	Unsigned Integer	1	R/W	Сбрасывает таймер превышения подачи
Setup/Relay 2/Event	Setpoint	40114	Float	2	R/W	Задает уставку события
Setup/Relay 2/Event	Phase	40116	Unsigned Integer	1	R/W	Задает фазу события (0 = низкая; 1 = высокая)
Setup/Relay 2/Event	Deadband	40117	Float	2	R/W	Задает полосу нечувствительности события
Setup/Relay 2/Event	On Max Time	40119	Unsigned Integer	1	R/W	Задает максимальное время включения (минуты)
Setup/Relay 2/Event	On Min Time	40120	Unsigned Integer	1	R/W	Задает минимальное время включения (минуты)
Setup/Relay 2/Event	Off Max Time	40121	Unsigned Integer	1	R/W	Задает максимальное время выключения (минуты)
Setup/Relay 2/Event	Off Min Time	40122	Unsigned Integer	1	R/W	Задает минимальное время выключения (минуты)
Setup/Relay 2/Timer	Hold Type	40123	Unsigned Integer	1	R/W	Устанавливает, на выходы каких сенсоров влияет время включения таймера (0 = нет; 2 = выбранный сенсор; 13 = все сенсоры)
Setup/Relay 2/Timer	Sensor Select	40124	Unsigned Integer	1	R/W	Выбирает, выходы каких сенсоров удерживаются/передаются во время включения таймеров (это используется, когда в Hold type установлен один сенсор)
Setup/Relay 2/Timer	Hold Mode	40125	Unsigned Integer	1	R/W	Выбирает удержание выхода или устанавливаемое передаваемое значение во время включения таймера

Название группы	Название тэга	Регистр #	Тип данных	Длина	R/W	Описание
Setup/Relay 2/Timer	Duration Time	40126	Unsigned Integer	1	R/W	Устанавливает длительность времени включения таймера (секунды)
Setup/Relay 2/Timer	Period Time	40127	Unsigned Integer	1	R/W	Устанавливает период между событиями включения таймера (минуты)
Setup/Relay 2/Timer	Off Delay	40128	Unsigned Integer	1	R/W	Устанавливает время, в течение которого выходы затрагиваемых сенсоров удерживаются/предаются после выключения таймера (сек)
Setup/Relay 2/Status	Level	40129	Unsigned Integer	1	R/W	Устанавливает уровень статуса, по которому будет срабатывать реле
Setup/Relay 3	Source	40130	Unsigned Integer	1	R/W	Выбирает источник данных для этого реле (0 = нет; 1 = часы реального времени; 2 = сенсор; 4 = вычисление)
Setup/Relay 3	Sensor Select	40131	Unsigned Integer	1	R/W	Выбирает сенсор-источник, когда Source = Sensor (0 = sensor1; 1 = sensor2)
Setup/Relay 3	Measurement Select	40132	Unsigned Integer	1	R/W	Выбирает измерение для сенсора (0 = Meas1 3 = Meas4)
Setup/Relay 3	Туре	40133	Unsigned Integer	1	R/W	Выбирает тип реле (0 = сигнализация; 1 = управление; 2 = статус: 3 = таймер: 4 = событие)
Setup/Relay 3	Transfer Setting	40134	Unsigned Integer	1	R/W	Выбирает передаваемое значение для реле (0 = энергия отключается; 1 = энергия подается)
Setup/Relay 3/Alarm	High Alarm	40135	Float	2	R/W	Задает верхнюю уставку сигнализации
Setup/Relay 3/Alarm	Low Alarm	40137	Float	2	R/W	Задает нижнюю уставку сигнализации
Setup/Relay 3/Alarm	High Deadband	40139	Float	2	R/W	Задает полосу нечувствительности верхней сигнализации
Setup/Relay 3/Alarm	Low Deadband	40141	Float	2	R/W	Задает полосу нечувствительности нижней сигнализации
Setup/Relay 3/Alarm	On Delay	40143	Unsigned Integer	1	R/W	Задает время задержки включения
Setup/Relay 3/Alarm	Off Delay	40144	Unsigned Integer	1	R/W	Задает время задержки выключения
Setup/Relay 3/Control	Setpoint	40145	Float	2	R/W	Задает уставку контроллера
Setup/Relay 3/Control	Phase	40147	Unsigned Integer	1	R/W	Устанавливает фазу контроллера (0 = низкая; 1 = высокая)
Setup/Relay 3/Control	Deadband	40148	Float	2	R/W	Задает полосу нечувствительности контроллера
Setup/Relay 3/Control	Overfeed Timer	40150	Unsigned Integer	1	R/W	Устанавливает значения таймера превышения подачи (мин)
Setup/Relay 3/Control	On Delay	40151	Unsigned Integer	1	R/W	Устанавливает задержку включения (сек)
Setup/Relay 3/Control	Off Delay	40152	Unsigned Integer	1	R/W	Устанавливает задержку выключения (сек)
Setup/Relay 3/Control	Reset Overfeed Timer	40153	Unsigned Integer	1	R/W	Сбрасывает таймер превышения подачи
Setup/Relay 3/Event	Setpoint	40154	Float	2	R/W	Задает уставку события
Setup/Relay 3/Event	Phase	40156	Unsigned Integer	1	R/W	Задает фазу события (0 = низкая; 1 = высокая)
Setup/Relay 3/Event	Deadband	40157	Float	2	R/W	Задает полосу нечувствительности события
Setup/Relay 3/Event	On Max Time	40159	Unsigned Integer	1	R/W	Задает максимальное время включения (минуты)

Таблица 16 Регистры ModBUS контроллера (продолжение

Название группы	Название тэга	Регистр #	Тип данных	Длина	R/W	Описание
Setup/Relay 3/Event	On Min Time	40160	Unsigned Integer	1	R/W	Задает минимальное время включения (минуты)
Setup/Relay 3/Event	Off Max Time	40161	Unsigned Integer	1	R/W	Задает максимальное время выключения (минуты)
Setup/Relay 3/Event	Off Min Time	40162	Unsigned Integer	1	R/W	Задает минимальное время выключения (минуты)
Setup/Relay 3/Timer	Hold Type	40163	Unsigned Integer	1	R/W	Устанавливает, на выходы каких сенсоров влияет время включения таймера (0 = нет; 2 = выбранный сенсор; 13 = все сенсоры)
Setup/Relay 3/Timer	Sensor Select	40164	Unsigned Integer	1	R/W	Выбирает, выходы каких сенсоров удерживаются/передаются во время включения таймеров (это используется, когда в Hold type установлен один сенсор)
Setup/Relay 3/Timer	Hold Mode	40165	Unsigned Integer	1	R/W	Выбирает удержание выхода или устанавливаемое передаваемое значение во время включения таймера
Setup/Relay 3/Timer	Duration Time	40166	Unsigned Integer	1	R/W	Устанавливает длительность времени включения таймера (секунды)
Setup/Relay 3/Timer	Period Time	40167	Unsigned Integer	1	R/W	Устанавливает период между событиями включения таймера (минуты)
Setup/Relay 3/Timer	Off Delay	40168	Unsigned Integer	1	R/W	Устанавливает время, в течение которого выходы затрагиваемых сенсоров удерживаются/предаются после выключения таймера (сек)
Setup/Relay 3/Status	Level	40169	Unsigned Integer	1	R/W	Устанавливает уровень статуса, по которому будет срабатывать реле
Comm/Net Card	Mode	40170	Unsigned Integer	1	R/W	Устанавливает режим Modbus (0 = RTU; 1 = ASCII)
Comm/Net Card	Baud	40171	Unsigned Integer	1	R/W	Устанавливает скорость передачи для Modbus (0 = 9600; 1 = 19200; 2 = 38400; 3 = 57600; 4 = 115200)
Comm/Net Card	Stop Bits	40172	Unsigned Integer	1	R/W	Устанавливает количество стоповых битов (1, 2)
Comm/Net Card	Data Order	40173	Unsigned Integer	1	R/W	Устанавливает порядок данных в регистрах для типа данных float (0 = нормальный; 1 = реверсный)
Comm/Net Card	Min Response Time	40174	Unsigned Integer	1	R/W	Устанавливает минимальное время ответа (0 до 30 сек)
Comm/Net Card	Max Response Time	40175	Unsigned Integer	1	R/W	Устанавливает максимальное время ответа (100 до 1000 сек)
Comm/Net Card/Addresses	sc100	40176	Unsigned Integer	1	R/W	Устанавливает адрес Modbus sc100
Comm/Net Card/Addresses	Sensor 1	40177	Unsigned Integer	1	R/W	Устанавливает адрес Modbus сенсора 1
Comm/Net Card/Addresses	Sensor 2	40178	Unsigned Integer	1	R/W	Устанавливает адрес Modbus сенсора 2
Comm/Net Card/Stats	Good Messages	40179	Unsigned Integer	2	R/W	Кол-во «хороших» сообщений
Comm/Net Card/Stats	Bad Messages	40181	Unsigned Integer	2	R/W	Кол-во неудачных сообщений
Comm/Net Card/Stats	% Good Mesg	40183	Float	2	R/W	% хороших сообщений

Название группы	Название тэга	Регистр #	Тип данных	Длина	R/W	Описание
Comm/Service Port	Mode	40185	Unsigned Integer	1	R/W	Устанавливает режим Modbus (0 = RTU; 1 = ASCII)
Comm/Service Port	Baud	40186	Unsigned Integer	1	R/W	Устанавливает скорость передачи Modbus (0 = 9600; 1 = 19200; 2 = 38400; 3 = 57600; 4 = 115200)
Comm/Service Port	Stop Bits	40187	Unsigned Integer	1	R/W	Устанавливает количество стоповых бит (1,2)
Comm/Service Port	Data Order	40188	Unsigned Integer	1	R/W	Устанавливает порядок данных в регистрах для типа данных float (0 = нормальный; 1 = реверсный)
Comm/Service Port	Min Response Time	40189	Unsigned Integer	1	R/W	Устанавливает минимальное время ответа (0 до 30 сек)
Comm/Service Port	Max Response Time	40190	Unsigned Integer	1	R/W	Устанавливает максимальное время ответа (100 до 1000 сек)
Comm/Service Port/Addresses	sc100	40191	Unsigned Integer	1	R/W	Устанавливает Modbus адрес sc100
Comm/Service Port/Addresses	Sensor 1	40192	Unsigned Integer	1	R/W	Устанавливает адрес Modbus сенсора 1
Comm/Service Port/Addresses	Sensor 2	40193	Unsigned Integer	1	R/W	Устанавливает адрес Modbus сенсора 2
Comm/Service Port/Stats	Good Messages	40194	Unsigned Integer	2	R/W	Кол-во «хороших» сообщений
Comm/Service Port/Stats	Bad Messages	40196	Unsigned Integer	2	R/W	Кол-во неудачных сообщений
Comm/Service Port/Stats	% Good Mesg	40198	Float	2	R/W	% хороших сообщений
Comm/Sensor/ Sensor1 Stats	Good Messages	40200	Unsigned Integer	2	R/W	Кол-во «хороших» сообщений
Comm/Sensor/ Sensor1 Stats	Bad Messages	40202	Unsigned Integer	2	R/W	Кол-во неудачных сообщений
Comm/Sensor/ Sensor1 Stats	% Good Mesg	40204	Float	2	R/W	% хороших сообщений
Comm/Sensor/ Sensor2 Stats	Good Messages	40206	Unsigned Integer	2	R/W	Кол-во «хороших» сообщений
Comm/Sensor/ Sensor2 Stats	Bad Messages	40208	Unsigned Integer	2	R/W	Кол-во неудачных сообщений
Comm/Sensor/ Sensor2 Stats	% Good Mesg	40210	Float	2	R/W	% хороших сообщений
Calibration	Output1 4 mA count	40212	Unsigned Integer	1	R/W	Подсчет калибровок 4мА для выхода 1
Calibration	Output1 20 mA count	40213	Unsigned Integer	1	R/W	Подсчет калибровок 20мА для выхода 1
Calibration	Output2 4 mA count	40214	Unsigned Integer	1	R/W	Подсчет калибровок 4мА для выхода 2
Calibration	Output2 20 mA count	40215	Unsigned Integer	1	R/W	Подсчет калибровок 20мА для выхода 2

Название группы	Название тэга	Регистр #	Тип данных	Длина	R/W	Описание
Tags	Conductivity	40001	Unsigned Integer	1	R/W	Индекс тэга измерений сенсора
Tags	Temperature	40002	Unsigned Integer	1	R/W	Индекс тэга температуры
Measurements	Conductivity	40003	Float	2	R	Измерения сенсора
Measurements	Temperature	40005	Float	2	R	Измерения температуры
Settings	MeasMin	40007	Float	2	R	Минимальное значение измерений
Settings	MeasMax	40009	Float	2	R	Максимальное значение измерений
Settings	MeasFormat	40011	Unsigned Integer	2	R	Формат отображения
Settings	MeasUnitsCond	40013	Unsigned Integer	1	R/W	Единицы измерения Сименс
Settings	MeasUnitsResist	40014	Unsigned Integer	1	R/W	Единицы измерения Ом
Settings	MeasUnitsTDS	40015	Unsigned Integer	1	R/W	Единицы измерения TDS
Settings	MeasUnitsSalinity	40016	Unsigned Integer	1	R/W	Единицы измерения солености
Settings	TempUnits	40017	Unsigned Integer	1	R/W	Единицы измерения температуры
Settings	Parameter	40018	Unsigned Integer	1	R/W	Выбранный первичный параметр
Settings	DisplayFormat	40019	Unsigned Integer	1	R/W	Выбранный пользователем формат отображения
Settings	Filter	40020	Unsigned Integer	1	R/W	Количество отсчетов для усреднения
Settings	TDSConfig	40021	Unsigned Integer	1	R/W	Конфигурация TDS
Settings	TDS Factor	40022	Float	2	R/W	Множитель TDS
Settings	Cell Constant	40024	Float	2	R/W	Значение константы ячейки
Settings	Cell Constant Min	40026	Float	2	R/W	Мин. значение константы ячейки
Settings	Cell Constant Max	40028	Float	2	R/W	Макс. значение константы ячейки
Settings	CellConstSel	40030	Unsigned Integer	1	R/W	Выбор константы ячейки: 0.01, 0.05, 0.1, 0.5, 1.0, 5.0, 10.0
Settings	TCompSlope	40033	Float	2	R/W	Крутизна темп. компенсации
Settings	TCompRefTemp	40035	Float	2	R/W	Этал. темп. температурной компенсации
Settings	TElementType	40041	Unsigned Integer	1	R/W	Температурный элемент: Ручной, Pt100, Pt1000 = 0/1/2
Settings	TElementFactor	40042	Float	2	R/W	Смещение темп. элемента
Settings	TElementManual	40048	Float	2	R/W	Температура, задаваемая вручную
Settings	OutPutMode	40050	Unsigned Integer	1	R/W	Режим выхода во время калибровки: Активн./Удерж./Передача= 0/1/2
Calibration	Cal Value	40052	Float	2	R	Калиб. значение
Settings	Sensor Name	40054	String	6	R/W	Название сенсора
Diagnostics	Driver Version	40060	String	8	R/W	Версия драйвера
Diagnostics	Serial Number	40068	String	6	R/W	Серийный номер сенсора

Таблица 17 Регистры ModBUS сенсора

Название группы	Название тэга	Регистр #	Тип данных	Длина	R/W	Описание
Tags	Function Code	40074	Unsigned Integer	1	R/W	Тэг кода функции
Tags	Next State	40075	Unsigned Integer	1	R/W	Тэг следующего состояния
Diagnostics	FactoryCalValue	40076	Float	2	R/W	Заводская диагностика
Diagnostics	FactoryCalCmd	40078	Unsigned Integer	1	R/W	Заводская диагностика
Diagnostics	Sensor Log Interval	40079	Unsigned Integer	1	R/W	Вкл/выкл интервал журнализации сенсора
Diagnostics	Tempr Log Interval	40080	Unsigned Integer	1	R/W	Вкл/выкл интервал журнализации температуры
Diagnostics	Temp Counts	40081	Float	2	R	Отсчеты АЦП для температуры
Diagnostics	Cond Counts	40083	Float	2	R	Отсчеты АЦП для сенсора
Diagnostics	Tohms	40085	Float	2	R	Вычисленные Омы сенсора температуры
Diagnostics	AutoRange	40087	Unsigned Integer	1	R/W	Autorange (автодиапазон) установлен в 0
Diagnostics	Range	40088	Unsigned Integer	1	R/W	Текущая настройка усиления сенсора - 0/1/2
Diagnostics	Zero Counts 0	40089	Float	2	R	Отсчеты АЦП для уровня усиления 0
Diagnostics	Zero Counts 1	40091	Float	2	R	Отсчеты АЦП для уровня усиления 1
Diagnostics	Zero Counts 2	40093	Float	2	R	Отсчеты АЦП для уровня усиления 2
Settings	Freq Reject	40146	Unsigned Integer	1	R/W	Установить подавление 50/60 Гц на АЦП
Diagnostics	Driver Version	40147	Unsigned Integer	6	R	Версия драйвера устройства
Diagnostics	Edit Temp	40153	Float	2	R/W	Редактирование температуры +/- 5 градусов Цельсия

Таблица 17 Регистры ModBUS сенсора

Приложение В Дополнительная информация по сенсорам серий 34xx

В.1 Дополнительная информация по сенсорам серий 3410 ... 3412

Эта дополнительная информация применима только к сенсорам типов

- 3410,
- 3411 и
- 3412.

Всю остальную информацию, необходимую для работы с сенсорами, см. в руководстве по эксплуатации установленной системы анализа.

В.1.1 Технические данные сенсоров 43410 ... 3412

Серия	3410/3411	3412				
Макс. температура пробы	125 °С при 10 барах					
Макс. давление пробы	10 бар при 125 °С					
Константа ячейки К *						
0.01 см_'	0 мкСі	и/см 20 мкСм/см				
0.1 см ⁻¹	0 мкСм	/см 200 мкСм/см				
1 см ⁻¹	0 мкСм/см 2000 мкСм/см					
* Константа ячейки имеет точност	ь±2%.					
Материалы						
Верхняя часть корпуса	Черный полиэстер	Черный полиэстер				
Внутренний электрод	SST316L, нерж.	Графит				
Внешний электрод	SST316L, нерж.	Графит				
Изолятор	PES (полиэфирсульфон)	PES (полиэфирсульфон)				
Коннектор	Полиэстер, армирован-	Полиэстер, армирован-				
	ный стекловолокном	ный стекловолокном				
	/ IP 65	/ IP 65				
Соединительная резьба	Внешняя резьба 3/4" NPT					

В.1.2 Установка сенсоров

Для получения необходимой информации обратитесь к руководству по эксплуатации шлюза.

В.1.3 Установка сенсоров в поток пробы

Для получения необходимой информации обратитесь к руководству по эксплуатации шлюза.

Рисунок 36 Размеры сенсоров 8310 ... 8312

8310 К=0,01 см⁻¹ 8311 К=0,1 см⁻¹ 8312 К=1 см⁻¹

В.2 Дополнительная информация по сенсорам серий 3415 ... 3417

Эта дополнительная информация применима только к сенсорам типов

- 3415,
- 3416 и
- 3417.

Всю остальную информацию, необходимую для работы с сенсорами, см. в руководстве по эксплуатации установленной системы анализа.

В.2.1 Технические данные сенсоров 3415 ... 3417

Серия	3	3415/3416	3417	
Макс. температура пробы	150 °С (при 25 барах)			
Макс. давление пробы		25 баров	(при 150 °C)	
Константа ячейки К * 0.01 см ^{–1} 0.1 см ^{–1} 1 см ^{–1}	0 мкСм/см 20 мкСм/см 0 мкСм/см 200 мкСм/см 0 мкСм/см 2000 мкСм/см			
* Константа ячейки имеет точность ± 2 %.				
Материалы				
Верхняя часть корпуса Внутренний электрод * Внешний электрод * Изолятор * О-кольца * Коннектор	Нерж. сталь 316 L Нерж. сталь 316 L Нерж. сталь 316 L PES(полиэфирсульфон) VITON Полиэстер, армирован- ный стекловолокном / IP 65		Нерж. сталь 316 L Графит Графит PES (полиэфирсульфон) VITON Полиэстер, армированный стекловолокном / IP 65	
* Контактируют с жидкой средой VITON является зарегистрированной торговой маркой DUPONT DE NEMOURS				
Соединительная резьба		Внешняя резьба 3/4" NPT		

В.2.2 Установка сенсоров

Для получения необходимой информации обратитесь к руководству по эксплуатации шлюза.

В.2.3 Установка сенсоров в поток пробы

Для получения необходимой информации обратитесь к руководству по эксплуатации шлюза.

Рисунок 37 Размеры 8315 ... 8317

8315 K = 0,01 cm ^{₋1}

8316 K = 0,1 cm ^{₋1} 8317 K = 1 cm ⁻¹

В.3 Дополнительная информация по сенсорам серии 3494

Эта дополнительная информация применима только к сенсорам типа 3494.

Всю остальную информацию, необходимую для работы с сенсорами, см. в руководстве по эксплуатации установленной системы анализа.

В.3.1 Технические данные сенсоров 3494

Серия	3494			
Макс. температура пробы	150 °С (при 10 барах)			
Макс. давление пробы	25 баров (при100 °C)			
Константа ячейки К Сенсор температуры	0.01 см ⁻¹ , ± 2 % 0 мкСм/см20 мкСм/см, ±1 % ± 0.15 °С			
Материалы				
Корпус (верхняя часть) Внутренний электрод Внешний электрод Изолятор Уплотняющее кольцо Коннектор	Нерж. сталь 316 L, (Ra < 0.4 мкм) Нерж. сталь 316 L, (Ra < 0.4 мкм) Нерж. сталь I 316 L, (Ra < 0.4 мкм) РЕЕК * (с одобрением FDA) ЕРDM *(с одобрением FDA) Полиэстер, армированный стекловолокном / IP 65			
* Контактирует с жидкой средой				

В.3.2 Установка сенсоров

Для получения необходимой информации обратитесь к руководству по эксплуатации шлюза.

В.3.3 Установка сенсоров в поток пробы

Для получения необходимой информации обратитесь к руководству по эксплуатации шлюза.

Рисунок 38 Размеры сенсоров 8394

1,5" Version

2" Version

В.4 Цифровой шлюз (Digital gateway)

Рисунок 39 Подключение цифрового шлюза / 83хх

1.	Передняя часть корпуса	7. Соединительная гайка
2.	О-кольцо	8. От сенсора
3.	Соединения проводов сенсора	 Назначение кабеля согласно Таблице 18 "Назначение кабеля, цифровой шлюз/ 83хх" на стр. 77.
4.	Задняя часть корпуса	10. Скрутите вместе корпус цифрового шлюза.
5.	Кабельная муфта	11. Надвиньте обратно кабельный рукав и шайбу.
6.	Шайба	12. Затяните соединительную гайку.

В.5 Принадлежности

В.5.1 Технические данные камер байпаса

Камера байпаса	для сенсоров серий 831х	для сенсоров серий 8394
Макс. температура пробы	150 °С при 25 барах	150 °С при10 барах
Макс. давление пробы	10 баров при 125 °С	25 баров при 100 °С
Соединительная резьба	Байпас: внутренняя резьба 1/4" NPT Сенсор: внутренняя резьба 3/4" NPT	Байпас: внутренняя резьба 1/4" NPT
Материал	SST316L	, нерж.

Рисунок 40 Камеры байпаса для сенсоров серии 8394

	Таблица	18	Назначение	кабеля,	цифр	овой Ц	илюз /	83xx
--	---------	----	------------	---------	------	--------	--------	------

Сенсор (цвет провода)	Сигнал сенсора	Соединение контроллера sc100 для цифрового шлюза
_	_	J1-1
Розовый	Внешний электрод	J1-2
Белый	Температура –	J1-3
Серый	Температура +	J1-4
Коричневый	Внутренний электрод	J1-5

В.6 Запасные части и принадлежности

Сенсор 8310	Z08310=A=0000
Сенсор 8311	Z08311 =A=0000
Сенсор 8312	Z08312=A=0000
Сенсор 8315	Z08315=A=0000
Сенсор 8316	Z08316=A=0000
Сенсор 8317	Z08317=A=0000
Сенсор 8394, 1.5 " зажим	Z08394=A=1500
Сенсор 8394, 1.5 " зажим, с сертификатами на материал и покрытие поверхности	Z08394=A=1511
Сенсор 8394, 2 " зажим	Z08394=A=2000
Сенсор 8394, 2 " зажим, с сертификатами на материал и покрытие поверхности	Z08394=A=2011
Соединительный кабель сенсор-шлюз, 5 м/16 футов	Z08319=A=1115
Камера байпаса, нерж. сталь, для сенсора 8310 8317	Z08318=A=0001
Камера байпаса, нерж. сталь, для сенсора 8394, 1.5 "	Z08394=A=8150
Камера байпаса, нерж. сталь, для сенсора 8394, 2 "	Z08394=A=8200
Приварной фитинг, нерж. сталь, для сенсора 8394, 1.5 "	Z08394=A=0380
Приварной фитинг, нерж. сталь, для сенсора 8394, 2"	Z08394=A=0510