

PROFIBUS Guideline – Order No. 2.152

®

PROCESS FIELD BUS

PROFIBUS Guideline

Specification for PROFIBUS Device
Description and Device Integration

Volume 1: GSD V 3.1

Volume 2: EDDL V 1.1

Volume 3: FDT V 1.1

January 2001

EDDL Specification for PROFIBUS Version 1.1, January 2001

© Copyright by PNO 2001 - All rights reserved Page: 2

PROFIBUS Guideline, Order No. 2.152

Specification for PROFIBUS Device
Description and Device Integration

Volume 1: GSD V 3.1

Volume 2: EDDL V 1.1

Volume 3: FDT V 1.1

January 2001

Prepared by the PROFIBUS Working Groups „GSD Specification“,
„Device Description Language“ and „Engineering“ in the Technical
Committee „System Integration“.

Publisher:
PROFIBUS Nutzerorganisation e.V.
Haid-und-Neu-Str. 7
D-76131 Karlsruhe

Phone: ++ 721 / 96 58 590
Fax: ++ 721 / 96 58 589
PROFIBUS_International@compuserve.com
www.profibus.com

No part of this publication may be reproduced or uitilized in any form or
by any means, electronic or mechanical, including photocopying and
microfilm, without permission in writing from the publisher.

EDDL Specification for PROFIBUS Version 1.1, January 2001

© Copyright by PNO 2001 - All rights reserved Page: 3

Preface

Synopsis:
This paper comprises the specifications for GSD (Basic Profibus Device Description), EDDL (Electronic
Device Description Language) and FDT (Field Device Tool Interface). They are artefacts of working groups
within Technical Commitee 4 of the PROFIBUS Trade Organization.

Trademarks:

Most computer and software brand names have trademarks or registered trademarks. The individual
trademarks have not been listed here.

Abstract:

GSD, EDDL and FDT are representing the means to configure network devices and to parametrize and/or
manipulate their operational modes. While GSD and EDD are based on human readable descriptions, FDT
defines a set of interface to integrate device specific software components into engineering tools or other
frameworks. GSD and EDDL are using device description languages and FDT defines a client/server
relationship.

In order to meet the market requirements and the customer's needs this set of specifications is covering all
the different aspects of complexity and usage, thus protecting the members’ investments and providing
scalable and compatible solutions.

EDDL Specification for PROFIBUS Version 1.1, January 2001

© Copyright by PNO 2001 - All rights reserved Page: 4

Motivation

In process and manufacturing automation, a control system often comprises more than 10,000 binary and
analog input/output signals. When a fieldbus is used, these signals are transmitted via the bus. To this end,
the field devices are connected directly to the bus or measured via remote I/O. More than 100 different field
device types from various device manufacturers are frequently in use.

The devices are configured and parameterized for each task. The device-specific properties and settings
must be taken into consideration when configuring the fieldbus coupler and the bus communication, and
the devices must be made known to the control system. Input and output signals provided by devices must
be created and integrated into the function planning of the control system.

The large number of different device types and suppliers within a control system project makes the
configuration task difficult and time-consuming today. Different tools must be mastered and data must be
exchanged between these tools and hosting system environments. The electronic data exchange format is
now standardized and the interfaces between those tools are defined.

Approach

GSD

EDDFDT

Discrete
Manufacturing

Continuous
Manufacturing

• Controls
• Binary Remote I/O
• Fixed Configuration
• Parametrization at Start-up
• Simplest Handling

• Drives
• Functional Safety

Program
• Device Specific Handling
• Application driven
• Middle to high Complexity

• In-process
Measurement

Interpreter
• Uniform Device Handling

• Device Description Language
• Low to middle Complexity

• Closed-loop Control
• Tool-based Parametrization & Diagnostic
• Device-Tuning at Run-time

Fig. 1 GSD, EDD, FDT: A Scalable Solution for a Wide Set of Applications

EDDL Specification for PROFIBUS Version 1.1, January 2001

© Copyright by PNO 2001 - All rights reserved Page: 5

GSD

PROFIBUS devices may have different behavior and performance characteristics. Features differ in regard
to available functionality (i.e., number of I/O signals and diagnostic messages) or possible bus parameters
such as baud rate and time monitoring. These parameters may vary individually for each device type and
vendor and are usually documented in the technical manual. In order to achieve a simple Plug and Play
configuration for PROFIBUS, electronic device data sheets (GSD files) are defined for the communication
features of the devices. These GSD files allow easy configuration of PROFIBUS networks with devices
from different manufacturers.
GSD is a human readable ASCII text file. Keywords are specified as mandatory or optional with the
corresponding data type and their border values to support the configuration of PROFIBUS devices.
Based on the defined file format it is possible to realize vendor independent configuration tools for
PROFIBUS systems. The configuration tool uses GSD files for testing the data. These were entered
regarding limits and validity related to the performance of the individual device. New developments of
PROFIBUS products will extend the functional range.

The manufacturer of a device is responsible for the functionality and the quality of its GSD file. The device
certification procedure is requesting either a standard GSD file based on a PROFIBUS profile or a device
specific GSD file.

EDDL

Up to now most of the devices have been configured by its own configuration tool. As a consequence the
customer had to deal with as many tools as he was using device types. The Electronic Device Description
Language has been designed to implement a vendor independent data set called EDD describing device
configuration, maintenance and functionality. The EDDL defines the syntax (form) and the semantics
(meaning) of the data and the behavior of a PROFIBUS device or component and the structure of the
corresponding user interface. In its most basic form, the EDD source is human readable text written by
device developers. The device manufacturer is responsible for completeness and correctness of his EDD
source.
The EDD source can be easily incorporated into configuration tools just by reading it into an EDD
interpreter (EDDI).
Configuration tool developers no longer need to be responsible for validation testing of all devices
supported by their products. Device Description technology is state of the art for describing devices not
only in the PROFIBUS arena but also in the environment of other fieldbus systems. Device Description
Languages guarantee a uniform handling of all devices independent of the supplier and the type of the
device. This means a user handles a temperature transmitter from a supplier A and a remote I/O system
from a supplier B in the same way.
The EDDL specification provides a detailed description of the Electronic Device Description Language
required for the development of an Electronic Device Description source file. The architecture of the EDD
application and its usage during design and operational phases of a device are defined.

EDDL Specification for PROFIBUS Version 1.1, January 2001

© Copyright by PNO 2001 - All rights reserved Page: 6

FDT

With the integration of fieldbusses into control systems, there are some more tasks that have to be
performed. This applies to fieldbusses in general. Up to now there was no unified way to integrate device
specific tools into engineering environments, console applications and diagnostic software. Especially
within extensive and heterogeneous control systems, the unambiguous definition of interfaces with ease of
use is getting growing importance.
As simple as a new printer is added to a PC just by installing a driver, as simple should be the integration of
a new device into an automation environment.

With the help of the FDT specification and its interface technology the user will be able to handle devices
and their integration into engineering tools and other frameworks in a consistent manner. Due to the well-
defined independance of system and device manufacturers the latter are enabled to support any innovative
feature of their device without limitations.

This is done via a device-specific software component, called DTM (Device Type Manager). The device
manufacturer is responsible for the functionality and the quality of a DTM. The DTM is integrated into
engineering tools or other "frame applications" like stand-alone commissioning tools or web browsers that
are providing the FDT interfaces. Even EDDI-Tools with the appropriate interfaces may be integrated this
way. The approach to integration is in general open for all kind of fieldbusses (different protocols) and thus
meets the requirements for integrating different kinds of devices into heterogeneous control systems.

An additional style guide is available for the development of DTMs in order to counteract the risk of
proliferation of user interfaces.

EDDL Specification for PROFIBUS Version 1.1, January 2001

© Copyright by PNO 2001 - All rights reserved Page: 7

Scalability via GSD, EDD and FDT

Fig. 2 Potential Integration Structures

Reflecting the current situation, there are a lot of different field devices ranging from simple I/O sensors to
complex, modular Remote-I/Os or drives. According to this complexity, the devices can be divided into four
categories:

A: Simple devices that communicate only cyclically, for example a light barrier

B: Adjustable devices with fixed hardware and software, for example a pressure
transducer

C: Adjustable devices with modular hardware but fixed software blocks, for example a
remote I/O or with fixed hardware but modular software blocks, e. g. a radar sensor

D: Adjustable devices with modular hardware and programmable software blocks,
for example a complex servo-drive

GSD, EDD and FDT are supporting all ranges of device complexity and integration levels into system
environments

Tool / System Environment
GSD Interpreter EDD Interpreter FDT Interface

GSD EDD DTM

proprietary

Tool

EDDL Specification for PROFIBUS Version 1.1, January 2001

© Copyright by PNO 2001 - All rights reserved Page: 9

1 Preface ...14
2 Introduction ..15

2.1 Scope ..15
2.2 References ..17
2.3 Abbreviations...18
2.4 Definitions ...18
2.5 Conventions ..19

2.5.1 UML-Notations ...19
1.1.2 Explanation of the Syntax- and Built-in-Description19

1.6 EDD Background ...20
3 EDD Concept ..24

3.1 Overview ...24
3.2 EDD Architecture ...24
3.3 Electronic Device Description Source and Profiles ...25

4 EDD Language - Basic Elements ..26
4.1 Introduction ...26
4.2 Preprocessor ...26
4.3 Overview ...26
4.4 Avoidance of Ambiguities in the EDD...27

4.4.1 Top Level Objects of equal Types and equal Identifiers27
4.4.2 Top Level Objects of different Types and equal Identifiers27
4.4.3 Top Level Object containing equal Attributes ...27

4.5 Blocks ...29
4.5.1 Type Block Attribute...29
4.5.2 Number Block Attribute ..30

4.6 Connection ..31
4.6.1 Appinstance Connection Attribute ..31

4.7 Variables ...32
4.7.1 Class Variable Attribute ...32
4.7.2 Type Variable Attribute ..33
4.7.3 Constant Unit Variable Attribute ...40
4.7.4 Handling Variable Attribute ..40
4.7.5 Help Variable Attribute ...40
4.7.6 Label Variable Attribute ...41
4.7.7 Pre/Post Edit Actions Variable Attributes ...41
4.7.8 Pre/Post Read Actions Variable Attributes ...41
4.7.9 Pre/Post Write Actions Variable Attributes ...42
4.7.10 Read/Write Timeout Variable Attributes ...42
4.7.11 Validity Variable Attribute...43
4.7.12 Response Codes Variable Attribute..43
4.7.13 Application Context ..43

4.8 Menus ...45
4.8.1 Label-Menu Attribute..45

EDDL Specification for PROFIBUS Version 1.1, January 2001

© Copyright by PNO 2001 - All rights reserved Page: 10

4.8.2 Items-Menu Attribute..45
4.8.3 Style-Menu Attribute ..46
4.8.4 Access-Menu Attribute ...46
4.8.5 Validity-Menu Attribute...46
4.8.6 Recommendation for the menu structure ..48

4.9 Methods ..49
4.9.1 Class-Method Attribute ..49
4.9.2 Access-Method Attribute ..49
4.9.3 Definition-Method Attribute ..50
4.9.4 Label-Method Attribute...51
4.9.5 Help-Method Attribute ..51
4.9.6 Validity-Method Attribute..51
4.9.7 Methods with Arguments ..52

4.10 Relations ...53
4.10.1 Refresh Relation ..53
4.10.2 Unit Relation ..53
4.10.3 Write-As-One Relation ...54

4.11 Item Arrays ..55
4.11.1 Elements-Item Array Attribute ..56
4.11.2 Help-Item Array Attribute ...56
4.11.3 Label-Item Array Attribute ..56

4.12 Collections...57
4.12.1 Members-Collection Attribute ...58
4.12.2 Help-Collection Attribute ..58
4.12.3 Label-Collection Attribute...58

4.13 Records ...59
4.13.1 Members-Record Attribute ...59
4.13.2 Help-Record Attribute ..60
4.13.3 Label-Record Attribute ...60
4.13.4 Response Codes-Record Attribute ...60

4.14 Arrays..61
4.14.1 Type-Array Attribute...61
4.14.2 Number of Elements-Array Attribute...61
4.14.3 Help-Array Attribute ...62
4.14.4 Label-Array Attribute ..62
4.14.5 Response Codes-Array Attribute ..62

4.15 Variable Lists...63
4.15.1 Members-Variable List Attribute ...63
4.15.2 Help-Variable List Attribute ..64
4.15.3 Label-Variable List Attribute...64
4.15.4 Response Codes-Variable List Attribute ...64

4.16 Command ..65
4.16.1 Block Command Attribute...65
4.16.2 Slot Command Attribute ...65
4.16.3 Index Command Attribute...66

EDDL Specification for PROFIBUS Version 1.1, January 2001

© Copyright by PNO 2001 - All rights reserved Page: 11

4.16.4 Operation Command Attribute ..66
4.16.5 Connection Command Attribute..66
4.16.6 Module Command Attribute ..67
4.16.7 Response Code Command Attribute ..67
4.16.8 Transaction Command Attribute ...67
4.16.9 Upload-/Download-Menu..69

4.17 Programs...71
4.17.1 Arguments-Program Attribute...71
4.17.2 Response Codes-Program Attribute ...72

4.18 Domains ..73
4.18.1 Handling-Domain Attribute ...73
4.18.2 Response Codes-Domain Attribute ..73

4.19 Response Codes ...75
4.20 Device Description Information ..76
4.21 Output Redirection (OPEN and CLOSE Keywords) ..77
4.22 Creating Similar Items (LIKE Keyword) ..78
4.23 Importing Device Descriptions ...79

4.23.1 Import Keywords ..79
4.23.2 Item Redefinitions ..81

4.24 Preprocessor Directives...97
4.24.1 Header Files ..97
4.24.2 Macros...97

4.25 Conditional Expressions ..98
4.25.1 If Conditional ...98
4.25.2 Select Conditional..98

4.26 References ..99
4.26.1 Referencing Items..99
4.26.2 Referencing Elements of a Record...99
4.26.3 Referencing Elements Of An Array...99
4.26.4 Referencing Members of a Collection...99
4.26.5 Referencing Elements of an Item Array ..100
4.26.6 Referencing Members of a Variable List ...100

4.27 Expressions ...100
4.27.1 Primary Expressions ..101
4.27.2 Unary Expressions ...101
4.27.3 Binary Expressions ..101

4.28 Strings ...103
4.28.1 Specifying a String as a String Literal ..104
4.28.2 Specifying a String as a String Variable ...104
4.28.3 Specifying a String as a Enumeration Value...104
4.28.4 Specifying a String as a Dictionary Reference..104

4.29 Lexical Conventions...105
4.29.1 Integer Constants ..105
4.29.2 Floating Point Constants ..105
4.29.3 String Literals ..105

EDDL Specification for PROFIBUS Version 1.1, January 2001

© Copyright by PNO 2001 - All rights reserved Page: 12

4.29.4 Using Language Codes in String Constants ...106
4.30 Standard Text Dictionary ...106

5 EDDL Method Built-ins Library ..108
5.1 ABORT_ON_ALL_COMM_STATUS ...108
5.2 ABORT_ON_ALL_RESPONSE_CODES ..108
5.3 ABORT_ON_COMM_STATUS ...108
5.4 ABORT_ON_NO_DEVICE ...109
5.5 ABORT_ON_RESPONSE_CODE...109
5.6 DELAY ..109
5.7 DELAY_TIME ..109
5.8 IGNORE_ALL_COMM_STATUS ..110
5.9 IGNORE_ALL_RESPONSE_CODES..110
5.10 IGNORE_COMM_STATUS ..110
5.11 IGNORE_NO_DEVICE...111
5.12 IGNORE_RESPONSE_CODE..111
5.13 METHODID..111
5.14 PROGID ..111
5.15 RETRY_ON_ALL_COMM _STATUS ..112
5.16 RETRY_ON_ALL_RESPONSE_CODES ..112
5.17 RETRY_ON_COMM_STATUS ...112
5.18 RETRY_ON_NO_DEVICE..113
5.19 RETRY_ON_RESPONSE_CODE...113
5.20 VARID ...113
5.21 abort ..113
5.22 acknowledge..114
5.23 add_abort_method...114
5.24 assign_str ..114
5.25 delay ...114
5.26 display...115
5.27 display_comm_status ..115
5.28 display_response_status ...115
5.29 fassign...115
5.30 fvar_value..116
5.31 get_dev_var_value ..116
5.32 get_dictionary_string ...116
5.33 get_local_var_value...116
5.34 get_status_code_string..117
5.35 GET_TICK_COUNT ...117
5.36 ivar_value ..117
5.37 lvar_value ..117
5.38 process_abort..118
5.39 put_message ...118
5.40 ReadCommand ..118
5.41 remove_abort_method ...118

EDDL Specification for PROFIBUS Version 1.1, January 2001

© Copyright by PNO 2001 - All rights reserved Page: 13

5.42 remove_all_abort_methods..119
5.43 rspcode_string ...119
5.44 sassign ..119
5.45 select_from_list ...119
5.46 ShellExecute ...120
5.47 vassign ..120
5.48 WriteCommand ..120
A Example File..121
B Lexic-Formal Definition ..128

B.1 Operators ..128
B.2 Keywords...128
B.3 Terminals...129

C Syntax-Formal Definition ...130
C.1 Device Description Information ..130
C.2 Array..131
C.3 Block ...131
C.4 C-Grammer..132
C.5 Collection ..135
C.6 Command ..136
C.7 Connection ..139
C.8 Domain ..139
C.9 Expression...140
C.10 Imported EDD ..142
C.11 Item array ..143
C.12 Like ...145
C.13 Menu ...145
C.14 Method ..147
C.15 Open-Close ...147
C.16 Program...148
C.17 Records ...149
C.18 Redefinition ...149
C.19 References ..158
C.20 Relation ...159
C.21 Response Code ...159
C.22 Variable ...160
C.23 Variable List...170

D List of Manufacturers ...171
E Description of the EDDL-Syntax using Unified Modeling Language175

EDDL Specification for PROFIBUS Version 1.1, January 2001

© Copyright by PNO 2001 - All rights reserved Page: 14

1 Preface

Synopsis
This paper comprises the specifications for GSD (Basic Profibus Device Description), EDDL
(Electronic Device Description Language) and FDT (Field Device Tool Interface). They are
artefacts of working groups within Technical Commitee 4 of the PROFIBUS Trade Organization.

Trademarks
Most computer and software brand names have trademarks or registered trademarks. The
individual trademarks have not been listed here.

Abstract
GSD, EDDL and FDT are representing the means to configure network devices and to
parametrize and/or manipulate their operational modes. While GSD and EDD are based on human
readable descriptions, FDT defines a set of interface to integrate device specific software
components into engineering tools or other frameworks. GSD and EDDL are using device
description languages and FDT defines a client/server relationship.

In order to meet the market requirements and the customer's needs this set of specifications is
covering all the different aspects of complexity and usage, thus protecting the members’
investments and providing scalable and compatible solutions.

EDDL Specification for PROFIBUS Version 1.1, January 2001

© Copyright by PNO 2001 - All rights reserved Page: 15

2 Introduction

2.1 Scope

The scope of this document is to provide the methodology for the electronic and computable description of
device parameters for automation system components. For this description the so called Electronic Device
Description (EDDL) is specified.
The Electronic Device Description is used for the configuration and the operational behaviour of a device.
It may also be used generally for the description of product properties in other domains. The EDD
methodology covers the following aspects:
• Description of the device parameters
• Support of parameter dependencies
• Logical grouping of the device parameters
• Selection and execution of supported device functions
• Description of the device parameter access method

Up to now most of the devices have been configured by its own configuration tool. As a consequence as
many devices come up as many configuration tools occur. Each configuration related device change
needs also a change in the configuration tool, which results in high software maintenance costs for the
configuration tools on vendor side, and the user has to manage every new software version. In addition
the configuration tools for the different devices very often come from different sources with different
quality. This may result in stability problems of the configuration system. Software bugs in the large
number of different configuration tool products may even impact the quality of the complete runtime
system of an engineering console after any update of a software product and may potentially result in a
system crash. These problems occurs independently which operating system has been installed.

EDD-Methodology
(n devices need 1 tool)

n device descriptions

System/Device
dependent operation tools

(n devices need n tools)

Transition to the
EDD-Methodology

Figure 1: Transition to the EDD-Methodology reduces costs for development and support

EDDL Specification for PROFIBUS Version 1.1, January 2001

© Copyright by PNO 2001 - All rights reserved Page: 16

An efficient way to avoid such problems is to reduce the number of configuration software packages. This
can be achieved by moving device properties from the runtime code of a configuration tool into a data set
called "Electronic Device Description''. This device properties specified by the "Electronic Device
Description Language'' has to be delivered with each device and is interpreted by an EDD interpreter of a
configuration tool. The EDDI generates the input/output screens by interpreting the EDD data set and
allows setting single parameter values, starting sequences of parameters, settings and computing values.
Figure 1 shows the transition from a software tool for each devices to their device descriptions handled by
an EDDL-Tool.
The "C-based'' EDDL is not a programming language. It describes product data in a declarative way. In
the case of this document it describes the device properties related to the configuration process. This
comprises the identification of the device, the setting of single parameters, sequences of parameters and
computation of values.
In this context the term "configuration'' comprises the parameter settings of a field device (scaling factors,
upper and lower limits, etc.) and the determine of functionality supported by the field device (diagnosis,
calibration, etc.).
A prerequisite for setting of parameters is the communication interface of the device. In this context the
communication system is not subject of this document. It is assumed to be existent. The EDD is part of
the device application and has nothing to do with the communication system. The EDD complemented by
the GSD can be considered to be a configuration related electronic data sheet for PROFIBUS devices. It
can be delivered either on disc bundled with the device or via internet. It can even reside in every device.
The EDD can be accessed either from the configuration tool repository representing the collection of
EDDs or directly from the device, if the EDD resides in this device. Thus the consistency of the device
version and its associated EDD can easily be checked.
The advantages of this methodology are:

• Only one configuration tool for all devices in the engineering system is needed instead of a bundle
of different configuration tools.

• The configuration behaviour is stored in the EDD data set instead of binary software code.

• The EDD can easily be specified in EDDL by the device manufacturer; for the configuration
software the manufacturer of the Engineering System is in charge.

• After configuration related device changes, only the EDD update is necessary.

• Only one configuration software edition per operating system is needed.

• The device manufacturer develops the EDD only, the system manufacturer provides the
integration of the EDD tools in the engineering system.

• The EDD tools can be easily updated in the engineering system.

• Due to the ASCII format of the EDD, it is suitable for long-term archivation.

• The EDD may be used to derive other information such as HTML pages etc.

The EDD generation process is shown in Figure 2.

EDDL Specification for PROFIBUS Version 1.1, January 2001

© Copyright by PNO 2001 - All rights reserved Page: 17

Write an EDD
describing the

device properties

Deliver the EDD
with the device

Fieldbus

EDD-Interpreter

Development
(Vendor)

Operation
(Customer)

Figure 2: The EDD generation process

2.2 References

• PROFIBUS Specification (FMS, DP, PA) All normative Parts of the PROFIBUS Specification
according to European Standard EN 50 170 Vol. 2. (version 1.0)

• GSD Specification for PROFIBUS-FMS Definition of the GSD-File formats for FMS (version 1.0)

• GSD Specification for PROFIBUS-DP Definition of the GSD-File formats for DP (version 3.0)

• Profile for Communication between Controllers FMS-Communication profile, specification of
required services (version 1.4)

• Profile for Process Control Devices PA-Branch profile for Process Control devices (version 3.0)

• Profile for NC/RC Controllers DP profile for NC/RC Controllers (version 1.0)

• Profile for Encoders DP profile for rotary, angle and linear encoders (version 1.1)

• Profile for Variable Speed Drives FMS-/DP-Profile for electric drive technique (version 2.0)

• Profile for HMI Devices (Draft) DP-Profile for Human Machine Interface devices (version 1.0)

• Profile for Failsafe with PROFIBUS (Draft) DP-Profile for Safety Applications (version 1.0)

• KERNIGHAN, BRIAN W. AND DENNIS M. RITCHIE [1978]. The C Programming
Language, Prentice Hall
Inc., Englewood Cliffs, N.J.

• Unified Modelling Language Version 1.1

EDDL Specification for PROFIBUS Version 1.1, January 2001

© Copyright by PNO 2001 - All rights reserved Page: 18

2.3 Abbreviations

ADU Analog Digital Unit

DAU Digital Analog Unit

EDD Electronic Device Description

EDDI Electronic Device Description Interpreter

EDDL Electronic Device Description Language

GSD Gerätestammdatendatei

HMI Human Machine Interface

HTML Hypertext Markup Language

PLC Programmable Logic Controller

UML Unified Modelling Language

Table 1: Abbreviations

2.4 Definitions
The following naming conventions of EDD components are defined:
Electronic Device Description Technology names the all over technology which starts with the

development of EDD sources and ends with the necessary tool chain.

Electronic Device Description (EDD) names a data set describing the configuration behaviour of a

device.

EDD source (no abbreviation of source) names the ASCII representation of the device description using

the EDD language.

EDD language (EDDL) is the PROFIBUS device descriptive language.

Device Descriptive Language is a language to describe the device objects including their dependencies

and their representation.
There exist several device descriptive languages. In general the differences are only found in the
communication part of the description.

EDD server provides the device information via a specified interface to an application on a specific

software platform. The server is able to load one or more EDD sources.

EDD editor is a software tool supporting the development of the EDD sources.

EDD checker is a test tool which checks the syntax and partly the semantic of EDD sources to guarantee

compliance of EDD sources with the EDD language.

EDD compiler translates the EDD source into an EDD server internal format which can be used by the

EDD interpreter.

EDD interpreter uses the EDD source to provide the EDD information to the EDD server interface.

EDDL Specification for PROFIBUS Version 1.1, January 2001

© Copyright by PNO 2001 - All rights reserved Page: 19

2.5 Conventions

2.5.1 UML-Notations
In the appendix of this document, all important EDD language constructs are illustrated using class
diagrams. The UML class diagram shows the classes and their relationships.
These illustrations are informal and do not have normative character. The class diagrams are taken from
an UML specification, containing both, an abstract device model and the EDD language specification.
Figure 3 shows the UML constructs which are used in the EDDL diagrams.

Aggregation describes the whole-part relation. This relation is asymmetric, this means "A is a part of B"

but not "B is a part of A".

Navigation presents an action which is executed by A and concerns B. The description of this action is

specified by the text near to the arrow.

Class describes a set of objects with similar behaviour, attributes and relations to other objects.

2.5.2 Explanation of the Syntax- and Built-in-Description
The explanation of the syntax follows always the same scheme:

• name of the EDDL construct
• purpose of the EDDL construct
• syntax of the EDDL construct

Class

Aggregation

Source

Navigation

Target

Class Name

Class Diagram

attribute
attribute : date_type
attribute : date_type = init_value
...

operation
operation (arg_list) : result_type
...

Figure 3: UML notation used for the description of the EDDL syntax

In the chapter "EDDL Method Built-ins Library'' all built-ins are presented by the scheme:

• syntax

• description

Language fragments are used to demonstrate the syntax. The syntax uses the following notation
conventions:

• Text in
typewriter
are language fragments described elsewhere in this document. All other text is literal.

• The dots in brackets (...) are a replacement for EDDL- or C-Code

EDDL Specification for PROFIBUS Version 1.1, January 2001

©Copyright by PNO 2001 - All rights reserved Page: 20

2.6 EDD Background

The model of the EDD language is derived directly from the structure of smart field devices. Historically
the smart devices are coming from 4−20 mA devices. The example in Figure 4 of a transmitter shows the
way from an analog 4−20 mA device to a smart fieldbus device. Other types of field devices were or are
going a similar way.

Figure 4: Structure of analog transmitter

The transmitter in Figure 4 is composed of electronics, which detects the specific measurement value
(e.g. mV, mA) and which transforms the detected signal into the standardised 4−20 mA. The adjustment to
the specific sensor and wiring is done by trim resistors set by a screw driver and checked by a multimeter.
Each transmitter is connected to the Programmable Logic Controller (PLC) by its own wires.
Digital signal computation provides a higher accuracy. Therefore, the signal processing is carried out by
micro processors (Figure 5). An analog/digital and a digital/analog unit transform the signals two times.
The signal processing may be influenced by several variables and parameters, which make the
transmitter more flexible. These parameters have to be accessed by the operator. The manufacturer
provides a local operator panel with the transmitter consisting of a display and very few buttons. PC tools
provide more ergonomic solutions for the commissioning of field devices, if those are more complex. The
user gets a higher accuracy and reliability of the field device, but has to deal with many different tools from
different manufacturers. The commissioning of the devices turns from the mechanical and electrical
adjustment by screw drivers and multimeters to a parameterisation of digital data sets with the according
user interface.

Signal
detection Scaling

TransmitterSensor

Trimm
screws

4-20 mA

PLC

EDDL Specification for PROFIBUS Version 1.1, January 2001

© Copyright by PNO 2001 - All rights reserved Page: 21

In principle, fieldbus devices replace the analog 4−20 mA converter by fieldbus controllers. That increases
the accuracy of the devices again. These devices according to Figure 6 need additional communication
parametrisation. The commissioning tools interact with the field devices via the fieldbus. The
commissioning tool have to replace the local display and keyboard and have to provide all adjustment
parameterisation of the device features. The used EDD language have to offer language elements to
describe all mentioned device components, i.e. (Figure 7):

• Communication configuration parameters
• Device variables and functions
• Visualisation of device variables and user guidance for commissioning, diagnosis and maintenance

TransmitterSensor

4-20 mA

PLC

Local display /
local keyboard

Variables, functions for
adjustment, operation, diagnosis and maintenance

Signal
detection ADU Signal

processing DAU

Processor control transmitter

RS 232

Figure 5: Structure of smart 4−20 mA transmitters

EDDL Specification for PROFIBUS Version 1.1, January 2001

© Copyright by PNO 2001 - All rights reserved Page: 22

TransmitterSensor PLC

Local display /
local keyboard

Variables, functions for
adjustment, operation,

diagnosis and maintenance

Signal conditioning,
ADU

Processor control
transmitter

Comm.
Param.

Comm.
Control

ler

Commissioning Tool

Figure 6: Structure of smart fieldbus transmitter

The EDDL is a language used to describe the information and procedures available through the fieldbus
interface in a general and extensible way. It is a human readable structured text language designed to
express how a field device can interact with a host device and other field devices. The basic constructs of
the language are:

• Arrays • Programs

• Blocks • Records

• Collections • Refresh Relations

• Commands • Response Codes

• Connections • Unit Relations

• Domains • Variable Lists

• Item Arrays • Variables

• Menues • Write As One Relations

• Methods

Each of these constructs have a set of attributes associated with them. These attributes are used to define
each construct. For example, a menu has three attributes: items, label and style. A specific menu is
defined by defining each of these attributes. Attributes can also have sub-attributes, which refine the
definition of the attribute and hence the definition of the construct itself. An Electronic Device Description
(EDD) source file is developed using the EDDL syntax.

EDDL Specification for PROFIBUS Version 1.1, January 2001

©Copyright by PNO 2001 - All rights reserved Page: 23

VisualisationVisualisation

TransmitterSensor PLC

Local display /
local keyboard

Variables, functions for
adjustment, operation,

diagnosis and maintenance

Signal conditioning,
ADU

Processor control
transmitter

Comm.
Param.

Comm.
Control

ler

Commissioning Tool

Technology dependent

Visualisation
VisualisationVisualisation

Technology independent

Variables &
Functions

VisualisationVisualisation

Technology dependent

Communication

ab
st

ra
ct

io
n

Figure 7: The components of an EDD

Examples of the information specified in a EDD source file are:

Parameter definitions These definitions identify all available device variables used for communication

with other devices. For instance, a process variable and operation mode variable can be described.
Relationships Relationships among parameters are common in devices described by EDDL include

refresh relationships, write-as-one relationships and unit relationships.

Human interface support Menues, help text, and display formats are available as hints to the interface

developer. These facilities provide the device developer with a degree of control over the
presentation of the device to the end user. Enough information is provided to implement a menu
driven interface for a small display device, or a simple full screen display.

Variable Lists These constructs describe messages that contain groups of parameters for transmission

and reception, along with application specific response codes and help. Variable lists allow write-as-
one behavior as well as providing communication efficiencies.

Blocks These describe the parameters, parameter lists, and associated menues, relations etc. of a block.

Programs These constructs contain groups of variables that may be transmitted to a program

object in a field device. The returned value, along with application specific response codes
are available from the program object.

EDDL Specification for PROFIBUS Version 1.1, January 2001

© Copyright by PNO 2001 - All rights reserved Page: 24

3 EDD Concept

3.1 Overview
The Electronic Device Description Language has been designed to implement a data vendor independent
set called EDD describing device configuration, maintenance and functionality.
The EDDL describes the meaning or semantics, of the data sets. In its most basic form, the EDD source,
it is human readable text written by device developers to specify all the information to configure the device
using the communication interface.
The tightly coupled relationship that currently exists between the release of new field devices and the host
device configuration tool will not existing any longer. Field device development schedules are not tied to
host development or revision schedules. Field device developers will no longer be involved in verifying the
operation of the configuration tool. They will only have to verify their EDD source file. The EDD source can
be easily incorporated into a configuration tool just by reading by the EDD interpreter (EDDI).
Configuration tool developers no longer need to be responsible for validation testing of all devices
supported in their products. They just have to ensure that they interpret the Electronic Device Descriptions
correctly.
This document give a detailed description of the Electronic Device Description Language used to develop
an Electronic Device Description source file. The other sections in this chapter briefly describe the
architecture of the EDD application and its usage during both the design and operational phases of a
device.

3.2 EDD Architecture
The EDD system architecture consists of a collection of specifications of EDDs together with a set of tools
which are implemented following these specifications. Specifically the EDD Architecture consists of the
following components:

• Specifications

− A specification of a structured text language, called EDDL, used to specify the meaning and
relationships between device properties available via the fieldbus. This specifies the syntax
of the language used to create EDDL source files.

• Tools

− A tool for converting the EDD source into a binary format. This tool, referred to as the

compiler/interpreter, also validates for proper syntax and conformance to interoperability
rules. Not all EDDL-constructs may be available in the tool because for specific application
only a subset is needed. Therefore refer to the respective tool manual.

− A tool for extracting information from the binary source and providing the information at an

interface when needed by the applications, referred to as the Device Description Server.

EDDL Specification for PROFIBUS Version 1.1, January 2001

© Copyright by PNO 2001 - All rights reserved Page: 25

Fieldbus

Tool
manufacturer

Communication

Device
manufacturer

System
integrator, User

EDD-Server
EDD-Interface

Com-Interface

Application

EDD-
Interpreter/
Compiler

Electronic Device
Descriptions according
to EDDL-Specification

Figure 8: The integration of the EDD in the whole system

3.3 Electronic Device Description Source and Profiles
An EDD source file contains all necessary information needed to describe a field device. An EDD source
file consists of two parts, standard and device specific. Standard descriptions are imported from the
standard device descriptions maintained by the profile groups. The device implementor must write the
device specific part. A detailed description of the syntax is found in the following chapter "Electronic
Device Description Language''.

EDDL Specification for PROFIBUS Version 1.1, January 2001

© Copyright by PNO 2001 - All rights reserved Page: 26

4 EDD Language - Basic Elements

4.1 Introduction
The Electronic Device Description Language is a simple structured English language for
describing field devices. The EDDL brings together in one place all the information a host device
needs to operate with field devices. It presents this information as a clear, unambiguous,
consistent description of a field device.

4.2 Preprocessor
Before processing by the Compiler, the source file is filtered through the standard C
preprocessor. This filtering allows the EDD developer to use the standard C preprocessor
directives such as #if, #ifdef, #endif, #define, and #include. Comments in a EDD source file are
delimited with /* and */ or \\ .
The rest of this section refers to a source file that has already been processed. Experienced C
programmers, however, should be very comfortable with this syntax.

4.3 Overview
There are sixteen basic constructs of the language: arrays, blocks, collections, commands,
domains, item arrays, menus, methods, programs, records, refresh relations, response codes,
unit relations, variable lists, variables, write as one relations.

Blocks describe the relative adressing of the parameter sets.

Connection defines multiple applications in a device.

Variables, records, and arrays describe the data contained in the device.

Menus describe how the data will be presented to a user by a host.

Methods describe the execution of complex sequence of event interactions that must take place

between host devices and field devices.

Relations describe relationships between variables, records and arrays.

Item Arrays and Collections describe logical groupings of data.

Variable Lists describe logical groupings of data contained in the device that may be

communicated as a group.

Commands describe the structure and the adressing of the variables in the device.

Programs specify how device executable code can be initiated by a host.

Domains can be used to download or upload moderately large amounts of data to or from a

device.

Response codes specify the application specific response codes for a variable, record,

array,variable list, program, or domain.

EDDL Specification for PROFIBUS Version 1.1, January 2001

© Copyright by PNO 2001 - All rights reserved Page: 27

For example, some of the variables in a device are the process value, the upper and lower range values,
and the upper and lower sensor limits. These variables would be described by the variable construct.
Menus would describe what the users would see when they use the host to communicate with the device.
The procedure used to trim the sensor as well as the procedure for reconfiguring the device would be
specified by methods. Unit Relations are used to specify which variables are units codes and which
variables have the units indicated by the units code. Refresh relations indicate variables that affect each
other. Write-as-one relations indicate variables that are logically related and must be edited by the user
simultaneously.
Each of the top level constructs, except relations and response codes, has a set of attributes associated
with it. These attributes are used to define each construct. For example, a menu has the attributes: items
and label. A menu is defined by specifying a definition for each of these attributes. Attributes may also
have sub attributes, which refine the definition of the attribute and hence the definition of the top level
construct.
The definition of an attribute may be static or dynamic. A static attribute definition never changes, while a
dynamic attribute definition may change due to parameter value changes in the device. For example, an
attribute that is defined one way when the device is in a certain mode and another way when it is not in
that mode is a dynamic attribute definition. An attribute definition that is the same regardless of the
situation is a static attribute definition.
The rest of this section describes the syntax and semantics of the Electronic Device Description
Language.

4.4 Avoidance of Ambiguities in the EDD

4.4.1 Top Level Objects of equal Types and equal Identifiers
Top level objects of equal type and equal identifiers are not allowed.

4.4.2 Top Level Objects of different Types and equal Identifiers
Top level objects of different types and equal identifiers are not allowed. Example:
VARIABLE x
{ ... }

MENU x // NOT ALLOWED!
{ ... }

4.4.3 Top Level Object containing equal Attributes
Top Level Object containing equal attributes are not allowed. Example:

VARIABLE x
{

LABEL "x";
TYPE INTEGER;
CLASS CONTAINED;
CLASS CONTAINED & DYNAMIC; \\ NOT ALLOWED!

}

Also subattributes may not appear more than once:

VARIABLE y
{

LABEL "y";
TYPE INTEGER
{

MIN_VALUE 1;
MAX_VALUE 2;

EDDL Specification for PROFIBUS Version 1.1, January 2001

©Copyright by PNO 2001 - All rights reserved Page: 28

MIN_VALUE 3; \\ NOT ALLOWED!
}
CLASS CONTAINED;
CLASS CONTAINED & DYNAMIC; \\ NOT ALLOWED!

}

EDDL Specification for PROFIBUS Version 1.1, January 2001

© Copyright by PNO 2001 - All rights reserved Page: 29

4.5 Blocks
Purpose
A block construct defines the addressing scheme of a PROFIBUS device, which is organized in
blocks.

Syntax

BLOCK name
{

attribute, attribute, ...
}
where:

name is the name of the block. This name is used in the command for referencing.

attribute is one of the following block attributes:

• Required Attributes
 − Type
 − Number

4.5.1 Type Block Attribute
Purpose
A logical processing unit of software comprising an individual, named copy of the block and
associated parameters specified by a block type, which persists from one invocation of the block
to the next.

Syntax

TYPE type-definition;
where:
type-definition is one of the following types:

• PHYSICAL
Hardware specific characteristics of a field device, which are associated with a resource, are
made visible through the physical block. Similar to transducer blocks, they insulate function blocks
from the physical hardware by containing a set of implementation independent hardware
parameters.

• TRANSDUCER

A named block consisting of one or more input, output and contained parameters. Function blocks
represent the basic automation functions performed by an application which is as independent as
possible of the specifics of I/O devices and the network. Each function block processes input
parameters according to a specified algorithm and an internal set of contained parameters. They
produce output parameters that are available for use within the same function block application or
by other function block applications.

• FUNCTION

Transducer blocks insulate function blocks from the specifics of I/O devices, such as sensors,
actuators, and switches. Transducer blocks control access to I/O devices through a device
independent interface defined for use by function blocks. Transducer blocks also perform
functions, such as calibration and linearization, on I/O data to convert it to a device independent
representation. Their interface to function blocks is defined as one or more implementation
independent I/O channels.

EDDL Specification for PROFIBUS Version 1.1, January 2001

© Copyright by PNO 2001 - All rights reserved Page: 30

4.5.2 Number Block Attribute
Purpose

A field device may contain several blocks which are described with the number attribute. The
number attribute counts the blocks of the same type in the device management.

Syntax

NUMBER integer;
NUMBER name;
where:

integer order number of the block instance in the directory (Composite_Directory_Entries) of the

same block type.

name is the value of the variable name.

EDDL Specification for PROFIBUS Version 1.1, January 2001

© Copyright by PNO 2001 - All rights reserved Page: 31

4.6 Connection
Purpose

The connection command attribute specifies the name of the connection which is a reference to
the connection type.

Syntax

CONNECTION name
{

attribute, attribute, ...
}
where:

name is the name of the connection. This name is used in the command for referencing.

attribute is the following connection attribute:

• Required Attributes
− Appinstance

4.6.1 Appinstance Connection Attribute
Purpose

Using this address model it is possible to define multiple applications in a device. Each
application represents an Application Process Instance. Within an Application Process Instance it
is possible to define different access levels. Further information about the addressing model can
be found in the Profibus specification.

Syntax

APPINSTANCE integer;
where:

integer is the number of the application process instance. Further information about the

addressing model can be found in the Profibus specification.

EDDL Specification for PROFIBUS Version 1.1, January 2001

© Copyright by PNO 2001 - All rights reserved Page: 32

4.7 Variables
Purpose

VARIABLE is an EDDL construct which describes the data contained in a device.

Syntax

VARIABLE name
{

attribute attribute ...
}
where:
name is the name of the variable. Every variable must have a name which may be used in the

device description to refer to the variable.

attribute is one of the following variable attributes:

• Required Attributes
− Class
− Type
− Label

• Optional Attributes
− Constant unit
− Handling
− Help
− Pre-/post-edit actions
− Pre-/post-read actions
− Pre-/post-write actions
− Read timeout
− Write timeout
− Validity
− Response codes

4.7.1 Class Variable Attribute
Purpose

The class attribute of a variable specifies how the variable is used by the host devices for
organization and display.

Syntax

CLASS class-name & class-name & ... ;
here:
class-name identifies the variable class, and can be one of the following keywords:

INPUT Block parameters whose values can be determined by the output of another block.

OUTPUT Block parameters whose values may be accessed by another block input.

EDDL Specification for PROFIBUS Version 1.1, January 2001

©Copyright by PNO 2001 - All rights reserved Page: 33

CONTAINED Block parameters that cannot be referenced by another block input or set by a
block output.

DYNAMIC Variables modified by a field device without stimulus from the fieldbus network.

DIAGNOSTIC Variables that contain the device status.

SERVICE Variables in service or maintenance routines. For example, limit values that are

defined for a deviation of reference measurement.

OPERATE Block parameters manipulated to control a block's operation (for instance, set

point).

ALARM Variables of a block that represent the triggering limit for an alarm

TUNE Block parameters used to tune the algorithm of a block.

LOCAL Variables used locally by host devices. Local variables are not stored in a field

device, but they can be sent to a field device. For example, a local variable may be
used to guide the menu structure, that is, the user edits a variable and based on that
value a new menu is presented. In this case, the local variable is never sent to a field
device.

4.7.2 Type Variable Attribute
Purpose

A type describes the format of the variable's value.

Syntax

TYPE type-definition;
where:

type-definition is one of the following types (detailed descriptions of each type follow):

• Arithmetic Types
− INTEGER
− UNSIGNED_INTEGER
− FLOAT
− DOUBLE

• Enumeration Types
− ENUMERATED
− BIT_ENUMERATED

• Index Type
− INDEX

• String Types
− ASCII
− PASSWORD
− BITSTRING

• Date/Time Types
− DATE_AND_TIME
− TIME

EDDL Specification for PROFIBUS Version 1.1, January 2001

©Copyright by PNO 2001 - All rights reserved Page: 34

4.7.2.1 Arithmetic Types
Purpose

Arithmetic variable types include the following:

 • Float

 • Double

 • Integer

 • Unsigned Integer

Variables of type float and double are single precision basic format and double precision basic
format floating point numbers, as defined in ANSI/IEEE Std. 754.
Variables of type integer and unsigned integer are signed and unsigned integer numbers,
respectively.

Syntax

FLOAT { option option ...

{value, description, help} ,
{value, description, help} ,
{value, description, help} }

DOUBLE { option option ...
{value, description, help} ,
{value, description, help} ,
{value, description, help} }

INTEGER (size)
{ option option ...
{value, description, help} ,
{value, description, help} ,
{value, description, help} }

UNSIGNED_INTEGER (size)
{ option option ... }
{value, description, help} ,
{value, description, help} ,
{value, description, help} }

where:

size specifies the size of the variable in octets. Size is an integer constant greater than zero and

has no upper bound. This value is optional. The default is 1.

option specifies additional information about the variable related to its type. There are six

arithmetic options:

 • DISPLAY_FORMAT / EDIT_FORMAT
A display format specifies how a host device will display the value of the variable.
An edit format specifies how a host device will allow the variable to be edited by
the user.

DISPLAY_FORMAT string;
EDIT_FORMAT string;

string contains conversion specifiers for the ANSI C print function (for the
display format) and ANSI C scan function (for the edit format).

EDDL Specification for PROFIBUS Version 1.1, January 2001

©Copyright by PNO 2001 - All rights reserved Page: 35

 • MIN_VALUE / MAX_VALUE
Minimum and maximum values specify the range of values to which the user may
set the variable. If the variable is a dynamic variable (see variable CLASS
attribute), a field device can set the value of the variable outside the range
specified by its minimum and maximum values.
An arithmetic variable can have more than one minimum and maximum value. As
an example, the variable can have a range just above zero and just below zero,
but not exactly at zero.

MIN_VALUE expression;
MAX_VALUE expression;

When there are multiple minimum and maximum values, an integer is appended to
the keywords MIN_VALUE and MAX_VALUE. The integer must be in the range of
0 through 31. The minimum and maximum values with the same suffix form a
range for the variable.
For example, the following syntax specifies two ranges: one from -10 to -5 and
another from 5 to 10:

MIN_VALUE1 -10 ; MAX_VALUE1 -5;
MIN_VALUE2 5 ; MAX_VALUE2 10;

 • SCALING_FACTOR
Scaling factor indicates that the actual value of the variable is not the value
returned by a field device. The actual value is the value returned by a field device
multiplied by a factor. Therefore, a host device must multiply the value of the
variable returned by a field device with its scaling factor before it is displayed (or
before it is used in any other way). This is useful for field devices that need to
represent very large or very small values and for field devices that need to
represent floating point values but do not have enough power for floating point
arithmetic.

SCALING_FACTOR expression;

 • DEFAULT_VALUE
Available for all types. A variable can be preset to a constant value but can also
depend on other variables. For this purpose DEFAULT_VALUE allows conditional
expressions.

DEFAULT_VALUE expression;

 • INITIAL_VALUE
Available for all types. Overwrites variable values set by DEFAULT_VALUE. A
variable can be preset to a constant value. This constant value is defined with
INITIAL_VALUE. The value defined with INITIAL_VALUE has a higher degree of
priority as the DEFAULT_VALUE.

value (Optional) is an integer constant that specifies the value. The enumeration list is optional

but if defined a value and a description is required. Equal values are not allowed.

description (Optional) is the text displayed when the variable takes on that value.

help (Optional) is text that provides a moderately extensive description of the value. The help

text is intended to be used by host devices as on-line help.
There can be only one display format, one edit format, and one scaling factor. However, there
can be multiple minimum and maximum values. All arithmetic options are optional.

EDDL Specification for PROFIBUS Version 1.1, January 2001

©Copyright by PNO 2001 - All rights reserved Page: 36

4.7.2.2 Enumeration Types
Purpose

Enumeration type variables include the following:

Enumerated

This variable type is an unsigned integer that has a text string associated with some or all of its
values. One use for enumerated variables is to define tables.

Bit enumerated

This variable type is an unsigned integer value that has a text string associated with some
or all of its bits. One use for bit enumerated variables is defining status octets.

Syntax

ENUMERATED (size)

{ option option ...
{value, description, help} ,
{value, description, help} ,
{value, description, help} }

where:

size (Optional) specifies the size of the variable in octets. This value is an integer constant

greater than zero and has no upper bound. The default is 1.
option (Optional) specifies additional information about the variable related to its type. There are

two enumerated options:

• DEFAULT_VALUE
A variable can be preset to a constant value but can also depend on other
variables. For this purpose DEFAULT_VALUE allows conditional expressions.

• INITIAL_VALUE

Overwrites variable values set by DEFAULT_VALUE. A variable can be preset to
a constant value. This constant value is defined with INITIAL_VALUE. The value
defined with INITIAL_VALUE has a higher degree of priority as the
DEFAULT_VALUE.

value (Required) is an integer constant that specifies the value. Equal values are not allowed.

description (Required) is the text displayed when the variable takes on that value.

help (Optional) is text that provides a moderately extensive description of the value. The help

text is intended to be used by host devices as on-line help.

BIT_ENUMERATED (size)
{ option option ...
{value, description, help, function, status-class, actions} ,
{value, description, help, function, status-class, actions} ,
{value, description, help, function, status-class, actions} }

where:

size (Optional) specifies the size of the variable in octets. This value is an integer constant

greater than zero and has no upper bound. The default is 1.

option (Optional) specifies additional information about the variable related to its type. There are

two bit enumerated options:

EDDL Specification for PROFIBUS Version 1.1, January 2001

©Copyright by PNO 2001 - All rights reserved Page: 37

• DEFAULT_VALUE
A variable can be preset to a constant value but can also depend on other
variables. For this purpose DEFAULT_VALUE allows conditional expressions.

• INITIAL_VALUE

Overwrites variable values set by DEFAULT_VALUE. A variable can be preset to
a constant value. This constant value is defined with INITIAL_VALUE. The value
defined with INITIAL_VALUE has a higher degree of priority as the
DEFAULT_VALUE.

value (Required) is an integer constant that specifies a bit position, that is, only one bit is set in
the binary representation of the value. Equal values are not allowed.

description (Required) is the text that will be displayed when that bit of the variable is set.

help (Optional) is text that provides a moderately extensive description of the bit. The help text is

intended to be used by host devices as on-line help.
function (Optional) specifies the functional class of the bit. The functional class of a bit is the

same as the class of a variable (see the "Class'' subsection earlier in this section). If no
function is specified, the value of the function class defaults to the class of the variable.
Therefore if all the bits have the same function you need only specify the class of the
variable.

status class (Optional) specifies what the meaning of the bit is if it is a status bit. A status bit
may belong to more than one status class. If the variable is not a status octet, the bits do
not have status classes.
There are several types of status classes:

 Cause
 Duration
 Correctability
 Scope
 Output
 Miscellaneous

actions (Optional) specifies actions that will be performed by the host device when the bit is set.
Each bit defined must specify a bit position and description. All other components are
optional.

Table 2 shows the status class and the bit settings.

Cause
HARDWARE Hardware failure
SOFTWARE Software failure
PROCESS Problem with process connected to field

device
MODE Device is in a particular mode
DATA Invalid data configuration
MISC Miscellaneous condition
Duration
EVENT A one-time event
STATE Field device is in a particular state.
Correctability
SELF_CORRECTING The bit will clear without further intervention

EDDL Specification for PROFIBUS Version 1.1, January 2001

©Copyright by PNO 2001 - All rights reserved Page: 38

CORRECTABLE The bit can be cleared by either a host device
or the connected process

UNCORRECTABLE The bit is neither self-correcting nor
correctable

Scope
SUMMARY The bit is the logical combination of other bits

of class detail. Each summary bit indicates a
detail class

DETAIL The bit is summarized elsewhere in a bit of
class summary. Each detail bit indicates a
specific status class

Miscellaneous
MORE There is more status available from the field

device
COMM Communications failure in the other device
IGNORE_IN_TEMPORARY_MASTER Bit should be ignored in temporary master

devices
Output Status
BAD Output is unreliable and should not be used

for control.

Table 2: Status Classes and Bit Settings for Bit Enumerated Variables

4.7.2.3 String Types
Purpose

String variable types include the following:

ASCII

This string type is for specifying a sequence of characters from the ISO Latin-1 character set.

Password

This string type is intended for specifying password strings. Except for how the variable is presented
to the user, password and ASCII string types are identical.

Bit String

This string type is an ordered sequence of bits. The interpretation of the bits is unspecified.

Syntax

ASCII (size) { option option ... };

{

{value, description, help} ,

{value, description, help} ,

{value, description, help}

}

PASSWORD (size) { option option ... };

BITSTRING (length) { option option ... };

{

EDDL Specification for PROFIBUS Version 1.1, January 2001

©Copyright by PNO 2001 - All rights reserved Page: 39

{value, description, help} ,

{value, description, help} ,

{value, description, help}

}

where:

size is an integer constant greater than zero and specifies the number of characters from the

appropriate character set. The size has no upper bound. It is important to note this
specifies the number of characters in a string and not the size of the variable.

option (Optional) specifies additional information about the variable related to its type. There are

two string options:

• DEFAULT_VALUE
A variable can be preset to a constant value but can also depend on other variables.
For this purpose DEFAULT_VALUE allows conditional expressions.

• INITIAL_VALUE

Overwrites variable values set by DEFAULT_VALUE. A variable can be preset to a
constant value. This constant value is defined with INITIAL_VALUE. The value defined
with INITIAL_VALUE has a higher degree of priority as the DEFAULT_VALUE.

length is an integer constant greater than zero and specifies the number of bits.

value (Optional) is an integer constant that specifies the value. The enumeration list is optional

but if defined a value and a description is required. Equal values are not allowed.

description (Optional) is the text displayed when the variable takes on that value.

help (Optional) is text that provides a moderately extensive description of the value. The help

text is intended to be used by host devices as on-line help.

4.7.2.4 Index Type
Purpose

An index type variable is an unsigned integer which is interpreted as an index into an item array
(see “Item Arrays” later in this section). An index variable may only take on the values defined by
the item array, that is, the indices of the item array define the allowable values of the variable.
When an index variable is presented to the user, the description of each of the indices of the item
array should be displayed, not the numeric values of the indices.

Syntax

INDEX (size) item-array;

where:
size (Optional) specifies the size of the index type variable in octets. This value is an integer

constant greater than zero and has no upper bound. The default is 1. The item array may
not contain an index which exceeds the index size of the variable.

item-array specifies the item array into which the variable is an index.

4.7.2.5 Date / Time Types
Purpose

Date/Time variable types include the following:

EDDL Specification for PROFIBUS Version 1.1, January 2001

©Copyright by PNO 2001 - All rights reserved Page: 40

• Date/Time

This type is a sequence of octets representing the calendar date in both time and
date. The octet representation is defined in the Profibus DPV1 specification.

• Time
This type is sequence of octets representing time of day. The octet representation is
defined in the Profibus DPV1 specification.

Syntax

DATE_AND_TIME;
TIME;

4.7.3 Constant Unit Variable Attribute
Purpose

If a variable has a units code associated with it and the units code never changes, the units code
is specified by a constant unit. The constant units code is specified as the text that will be
displayed along with the variable’s value. A variable without a constant unit either has no units
associated with it or the units are not constant.
Damping is an example of a variable whose units never change – it is always in seconds.

Syntax

CONSTANT_UNIT string;

4.7.4 Handling Variable Attribute
Purpose

Handling specifies the operations host devices may perform on the variable. There are two
operations described by EDDL:

• The read operation indicates host devices can read the value of the variable from
the device.

• The write operation indicates host devices can write the value of the variable to

the device.

A variable without a handling attribute may be read and written by host devices.
These operations are independent of each other. Therefore, a variable may be read but not
written, written but not read, both read and written, or neither read nor written.

Syntax

HANDLING handling & handling;

where:

handling is one of the following keywords:

• READ
• WRITE

4.7.5 Help Variable Attribute
Purpose

EDDL Specification for PROFIBUS Version 1.1, January 2001

©Copyright by PNO 2001 - All rights reserved Page: 41

Help specifies text which provides a moderately extensive description of the variable. This text is
intended to be used by host devices as on-line help.

Syntax

HELP string;

4.7.6 Label Variable Attribute
Purpose

A variable’s label specifies text that host devices will display along with the variable’s value.
Every variable displayed by a host device needs a label.

Syntax

LABEL string;

4.7.7 Pre/Post Edit Actions Variable Attributes
Purpose

The pre/post edit actions of a variable specify actions host devices must execute when the user
edits the variable.

• Pre-edit actions are executed before the variable is edited.
• Post-edit actions are executed after the variable is edited.

Syntax

PRE_EDIT_ACTIONS
{

method, method, ...
}

POST_EDIT_ACTIONS
{

method, method, ...
}

where:

method specifies an action the host device must execute before or after the user edits the

variable.
The specified methods are executed in the order they appear at the appropriate time. If a method
exits abnormally, the methods following it are not executed. If a pre-edit method aborts, the variable
may not be edited.

4.7.8 Pre/Post Read Actions Variable Attributes
Purpose

The pre/post read actions of a variable specify actions host devices must execute when reading
the variable from a field device.

• Pre-read actions are executed before initiating a read service request.
• Post-read actions are executed after receiving a read service confirmation.

EDDL Specification for PROFIBUS Version 1.1, January 2001

©Copyright by PNO 2001 - All rights reserved Page: 42

Syntax

PRE_READ_ACTIONS
{

method, method, ...
}

POST_READ_ACTIONS
{

method, method, ...
}

where:

method specifies an action the host device must perform before or after reading the variable

from a field device.
The specified methods are executed in the order they appear at the appropriate time. If a method
exits abnormally, the methods following it are not executed. If a pre-read method aborts, the
variable is not read from a field device.

4.7.9 Pre/Post Write Actions Variable Attributes
Purpose

The pre/post write actions of a variable specify actions host devices must execute when writing
the variable to a field device.

 Pre-write actions are executed before initiating a write service request.

 Post-write actions are executed after receiving a write service confirmation.

Syntax

PRE_WRITE_ACTIONS
{

method, method, ...
}

POST_WRITE_ACTIONS
{

method, method, ...
}

where:

method specifies an action the host device must execute before or after writing the variable to a

field device.
The specified methods are executed in the order they appear at the appropriate time. If a method
exits abnormally, the methods following it are not executed. If a pre-write method aborts, the
variable is not written to a field device.

4.7.10 Read/Write Timeout Variable Attributes
Purpose

A read timeout specifies the length of time, in milliseconds, host device must wait for the variable
to be read from a field device.

EDDL Specification for PROFIBUS Version 1.1, January 2001

©Copyright by PNO 2001 - All rights reserved Page: 43

Similarly, a write timeout specifies the length of time, in milliseconds, a host device must wait for
the variable to be written to a field device.
For example, a write timeout may indicate the length of time it takes a field device to store the
value of a variable. Then as long as host devices wait for the timeout to expire before reading the
variable, the proper value will always be returned.

Syntax

READ_TIMEOUT expression;
WRITE_TIMEOUT expression;

An expression specified for the read or write timeout must evaluate to an integral value.

4.7.11 Validity Variable Attribute
Purpose

Although the parameter list of a function block is static, it is possible to indicate that some
variables become logically nonexistent in some modes. A variable with the validity attribute
defined as FALSE will be treated by a host device as though it didn’t exist. This is a much
different from variables with invalid values. A variable may be valid with respect to validity
attribute, but have an invalid value. A variable without a validity is always considered valid.
For example, when a single sensor is connected to a temperature transmitter there is one sensor
serial number, but when there are two sensors connected there are two sensor serial numbers.
All the parameters associated with a missing sensor must be defined as invalid.

Syntax

VALIDITY boolean;

where:

boolean is either TRUE or FALSE.

Validity is almost always expressed using a conditional (IF, IF-ELSE, SELECT). If the validity of a
variable is simply TRUE the variable is always valid; however, since this is the default it need not be
specified as such. If the validity of a variable is simply FALSE the variable is never valid and should
not be defined at all. Therefore, a conditional is usually used to specify that the variable is valid
under certain conditions and invalid under other conditions.

4.7.12 Response Codes Variable Attribute
Purpose

Response codes specify the values that are returned from the FMS read and write services (see
“Response Code Types” later in this section.).
Each variable can have its own set of response codes, because each variable is eligible for
reading and writing.

Syntax

RESPONSE_CODES response-code-name;

4.7.13 Application Context
To ensure the integration of field devices into engineering environments it is useful to adapt the
device (i.e. its description and therefore its appearance within host software tools) according to

EDDL Specification for PROFIBUS Version 1.1, January 2001

©Copyright by PNO 2001 - All rights reserved Page: 44

specific contexts. This is done using a special variable called ApplicationContext, defined as
follows:

VARIABLE ApplicationContext
{

LABEL "ApplicationContext";
CLASS LOCAL;
TYPE BIT_ENUMERATED (4)
{

{0, "reserved"},
{1, "FDT_CONFIGURATION"},
{2, "FDT_PARAMETERIZE"},
{3, "FDT_DIAGNOSIS"},
{4, "FDT_MANAGEMENT"},
{5, "FDT_OBSERVE"},
{6, "FDT_DOCUMENTATION"},
{7, "FDT_FORCE"},
{8, "FDT_ASSET_MANAGEMENT"},
{9, "reserved"},
{10, "reserved"},
{11, "reserved"},
{12, "reserved"},
{13, "reserved"},
{14, "FDT_GMA_MAINTENANCE"},
{15, "FDT_GMA_SPECIALIST"},
{16, "DTM and / or vendor specific"},
{17, "DTM and / or vendor specific"},
{18, "DTM and / or vendor specific"},
{19, "DTM and / or vendor specific"},
{20, "DTM and / or vendor specific"},
{21, "DTM and / or vendor specific"},
{22, "DTM and / or vendor specific"},
{23, "DTM and / or vendor specific"},
{24, "DTM and / or vendor specific"},
{25, "DTM and / or vendor specific"},
{26, "DTM and / or vendor specific"},
{27, "DTM and / or vendor specific"},
{28, "DTM and / or vendor specific"},
{29, "DTM and / or vendor specific"},
{30, "DTM and / or vendor specific"},
{31, "DTM and / or vendor specific"}

}
}

More than one context can be provided, so a field of bits is used. Every EDD which is used in
such engineering environments should contain this variable ApplicationContext.
The Variable ApplicationContext is set by the host environment (the engineering tool) and
influences the device appearance according to pre-defined constraints and methods. E.g., the
structure and the contents of menu definitions can be changed.

EDDL Specification for PROFIBUS Version 1.1, January 2001

©Copyright by PNO 2001 - All rights reserved Page: 45

4.8 Menus
Purpose

A menu construct organizes parameters, methods, and other items specified in the EDDL into a
hierarchical structure. A host application may use the menu items to display information to the user in an
organized and consistent fashion.

Syntax

MENU name
{

attribute attribute ...
}

where:

name is the name of the menu. Every menu must have a name which may be

used in the device description to refer to the menu.

attribute is one of the following:

• Required Attributes
− Label
− Items

• Optional Attributes
− Style
− Access
− Validity

4.8.1 Label-Menu Attribute
Purpose

The label of a menu is the text that is displayed when the menu appears as a menu item of another menu.

Syntax

LABEL string;

4.8.2 Items-Menu Attribute
Purpose

The items of a menu specify the items associated with this menus plus an optional qualifier.

Syntax

ITEMS
{

menu-item , menu-item , ...
}

If a Menu-item occurs more than once the menu displays the item as often as it occurs. The Menu-item
field may be any one of the following:

EDDL Specification for PROFIBUS Version 1.1, January 2001

©Copyright by PNO 2001 - All rights reserved Page: 46

• variables
• methods
• other menus

Variables may be qualified with the following:

• (DISPLAY_VALUE)
• (READ_ONLY)
• (DISPLAY_VALUE, READ_ONLY)
• (HIDDEN)

Menus may be qualified with

• (REVIEW)

4.8.3 Style-Menu Attribute
Purpose

The style attribute specifies the type of the window. This attribute gives the manufacturer the possibility to
supply special objects. For example a dialog contains a bargraph or a XY-Diagram for representing the
measuring data.

Syntax

STYLE string

where:

string is one of the following items:

 DIALOG for modal dialogboxes.
 WINDOW for non-modal dialogboxes.
 user-defined for embedding user-defined objects.

4.8.4 Access-Menu Attribute
Purpose

The access attribute defines whether the dialog communicates with the device during its lifecycle.

Syntax

ACCESS access-style

where:

access-style has the both possibilities:

• ONLINE
• OFFLINE

4.8.5 Validity-Menu Attribute
Purpose

EDDL Specification for PROFIBUS Version 1.1, January 2001

©Copyright by PNO 2001 - All rights reserved Page: 47

A menu without a validity is always considered valid. A menu can be complete hidden, setting the validity
to false.

Syntax

VALIDITY boolean;

where:

boolean is either TRUE or FALSE.

Validity is almost always expressed using a conditional (IF, IF-ELSE, SELECT). If the validity of a
menu is simply TRUE the menu is always valid; however, since this is the default it need not be
specified as such. If the validity of a menu is simply FALSE the menu is never valid and should not
be defined at all. Therefore, a conditional is usually used to specify that the menu is valid under
certain conditions and invalid under other conditions.

Application Handling

The menu items are presented to the user in the order they appear. For vertical menus, the first
item appears on top and the last item appears on the bottom; for horizontal menus, the first item
appears on the left and the last item appears on the right.
The following table specifies how the various menu-items are processed by a host application
when displaying a menu item on a menu and when that menu items is selected by a user.

menu-item type Host Application Handling
variable Display The variable's label appears on the menu. If the variable is

qualified with DISPLAY_VALUE, the value of the variable is displayed
along with its label.
Selection The value of the variable is presented to the user. If the
variable may be modified (determined by variable's handling), the user is
allowed to modify the variable. If the variable is qualified with
READ_ONLY, the variable may not be modified via this menu, regardless
of its handling. And if the variable is qualified with HIDDEN, it does not
appear the user.

method Display The method's label appears on the menu.
Selection The method is executed.

menu
Display The menu's label appears on the menu.
Selection The new menu is presented to the user. If the menu is
qualified with REVIEW, the menu is presented in a manner consistent
with reviewing an extensive set of data.

Table 3: Processing of menu-items

Data Access

To avoid unintentional access on the parameter of the field device, all menus are derived from these four
entries.

• Horicontal menus
- MENU Menu_Main_Specialist

- MENU Menu_Main_Maintenance

EDDL Specification for PROFIBUS Version 1.1, January 2001

©Copyright by PNO 2001 - All rights reserved Page: 48

• Vertical menus
- MENU Table_Main_Specialist

- MENU Table_Main_Maintenance

Starting the EDD-Interpreter, the user has to choose between specialist or maintenance and get the
belonging menu-items and access rights.

4.8.6 Recommendation for the menu structure
Despite the unrestricted possibilities for the menu layout, it is useful to keep to a certain sequence. This
ensures an almost completely standard user guidance for different devices.
DIN 19259 describes technical data and a classification scheme for measurement equipment in the
industrial process. All EDDs should follow the structure according to this scheme. On the basis of DIN
19259, the following list provides help with the arrangement of variables for individual menus. The names
used in this list must be adhered to strictly.

1. Identification

2. Application

3. Method of operation and structure

4. Input

5. Output

6. Characteristic values

(a) Conditions of operation

(b) Mounting conditions

(c) Ambient conditions

7. Process conditions

8. Design

9. Display and operator interface

10. Auxiliary power

11. Certificates and approval documents

12. Ordering information

13. External standards and guidelines

For the menu arrangement, the following scheme was recommended:

• File, including save, properties, print or exit methods

• Device, including upload, download, self test or calibrate methods

• View, including measured-value display, alarm status or device status

• Tools, including configuration menus for the EDD-Tool

• Help, including help menus for the device or the EDD-Tool

The menu item “Device” contains dialogs that permit bi-directional communication with the
device. That means that data are not only read but also loaded into the device. Unlike the menu
item “Device”, the menu item “View” contains only passive elements such as status displays or
measured value displays.

EDDL Specification for PROFIBUS Version 1.1, January 2001

© Copyright by PNO 2001 - All rights reserved Page: 49

4.9 Methods
Purpose

A method describes the execution of interactions that must occur between host devices and a
field device.

Syntax

METHOD name
{
attribute attribute ...
}
where:
name is the name of the method. Every method must have a name which may be used in the

device description to refer to it.

attribute is one of the following method attributes

• Required Attributes
− Class
− Access
− Definition
− Label

• Optional Attributes
− Help
− Validity

4.9.1 Class-Method Attribute
Purpose

The class of a method specifies the affect of the method on a field device. This attribute is
intended to be used by host devices to implement permission levels and organize how methods
are presented.
Method classes are identical to variable classes. For more information, see the "Class''
subsection earlier in this chapter.

4.9.2 Access-Method Attribute
Purpose

The access of a method specifies wether the method implemention is using the variable values
stored the device or the offline parameterset.

Syntax

ACCESS option;
where:

option can be one of the following keywords:

ONLINE specifies that the values of the variables used within the method definition are
actually read from the device.

EDDL Specification for PROFIBUS Version 1.1, January 2001

©Copyright by PNO 2001 - All rights reserved Page: 50

OFFLINE specifies that the values of the variables used within the method definition are
read from the offline parameterset.

4.9.3 Definition-Method Attribute
Purpose

A method's definition specifies the actions to be performed by a host device. This requires a
simple yet flexible means of specifying the computation of values and flow of control. The ANSI C
programming language provides these features. Unfortunately, it also provides a lot of
functionality that is unnecessary for most methods. To ease the burden on host device
developers, the definition of a method is specified using only a subset of ANSI C.
The ANSI C subset used to specify the actions of host devices consists of simple declarations,
expressions, and statements. This ANSI C subset includes the following items:

 • Basic types (char, short, int, long, ...)
 • Arrays (int [], long [], ...)
 • Arithmetic operators (+, -, *, /, %, ...)
• Statements (if, for, switch, while, ...)

but does not include these items:
 • Pointers (int *, long *, ...)
 • Initializers (int x = 43;)
 • Enumerations (enum {red, white, blue})
 • Structures (struct { int day; int month; int year; })
• Unions (union { short sval; int ival; long lval; })

For the formal specification of the ANSI C subset allowed when specifying a method definition
see "Methods'' in Appendix C.11.

Syntax

DEFINITION c-compound-statement
where:

c-compound-statement is as defined in ANSI C. Beyond it, it is possible to call user defined

methods within a method.

Using Built-In Functions to Specify Method Actions

The actions specified by a method generally fall into two classes:

 • User interaction. Typical user interaction actions include getting values from the user and

getting acknowledgment from the user before continuing.

 • Device interaction. Typical device interaction actions include sending read and write

requests commands and interpreting response codes and status.

There is a library of built-in functions that can be used to specify actions taken by host devices.
See chapter 4 for descriptions of the built-in functions.

EDDL Specification for PROFIBUS Version 1.1, January 2001

© Copyright by PNO 2001 - All rights reserved Page: 51

Access to the attributes of a variable

Purpose

Within a method definition the attribute values can be read as follows.

Syntax

variable_name.attribute;
where:

variable_name is the name of the variable.

attribute is one of the following keywords:

• LABEL
• CONSTANT_UNIT
• HELP
• MIN_VALUE
• MAX_VALUE
• SCALING_FACTOR
• DEFAULT_VALUE
• INITIAL_VALUE

For example, runtime DEFAULT_VALUE supplies the default value of the varibale runtime.

4.9.4 Label-Method Attribute
Purpose

A method's label specifies text that host devices will display as the name of the method.

Syntax

LABEL string;

4.9.5 Help-Method Attribute
Purpose

Help specifies text which provides a moderately extensive description of the method. This text is
intended to be used by host devices as on-line help.

Syntax

HELP string;

4.9.6 Validity-Method Attribute
Purpose

Validity specifies when the method is valid, that is, when it may be executed. Some field devices
have methods that are only meaningful when the device is in a particular configuration. A method
without a validity is always valid.

EDDL Specification for PROFIBUS Version 1.1, January 2001

©Copyright by PNO 2001 - All rights reserved Page: 52

Syntax

VALIDITY boolean;
where:

boolean is either TRUE or FALSE.

Validity is almost always expressed using a conditional.
If the validity of a method is simply TRUE the method is always valid; however, since this is
the default it need not be specified as such.
If the validity of a method is simply FALSE the method is never valid and should not be
defined at all.
Therefore, a conditional is usually used to specify that the method is valid under certain
conditions and invalid under other conditions.

4.9.7 Methods with Arguments
Purpose

Methods with arguments are used to save code, e.g. if the same method is needed but with
different variables. In this case the EDDL supply function calls with arguments as specified in
ANSI C. For parameter passing the mechanisms call-by-value and call-by-reference are possible.

Syntax

method_name(variable, variable, ...)

METHOD method_name(type var, type var, ...)
{

DEFINITION
{

...
}

}
where:

method_name is the name of the method.

variable is the name of the variable defined in the EDD. All input variables in the argument list

are coinstantaneous to the output variables.

type is the type (int, float, long) of the variables used in the method. The type is identical with the

type of the device variable. If the EDDL type and the ANSI C type has different length (e.g.
INTEGER(1) → int), the EDDL variable is casted to the ANSI C type. After the execution of
the method the ANSI C type is casted back to the EDDL type. The application has to care
for that after the method execution the value of the variable is within the defined min and
max values.

var is the name of the variable used in the method.

EDDL Specification for PROFIBUS Version 1.1, January 2001

© Copyright by PNO 2001 - All rights reserved Page: 53

4.10 Relations
Purpose

Relations specify relationships between variables. The EDDL defines the following types of
relations:

• Refresh
• Unit
• Write-as-one

4.10.1 Refresh Relation
Purpose

A refresh relation allows the host device to make decisions regarding parameter value
consistency when a parameter value changes. It specifies a set of block parameters which may
need to be refreshed (reread from the device) whenever a block parameter from another set is
modified. A block parameter can have a refresh relationship with itself, implying that the block
parameter must be read after writing.
Occasionally writing a block parameter to a field device causes the field device to update the
values of other block parameters. If the additional updated block parameters are dynamic, there
is no conflict, because the host device should reread the parameter values from a field device
each time the values are needed. However, host devices may cache the values of static block
parameters. Therefore, for host devices to maintain the correct values of all static block
parameters, they need to know when the field device is changing its values.

Syntax

REFRESH name
{

parameter, parameter, ...
: parameter, parameter, ..

}
where:

name is the name of the refresh relation. Every refresh relation must have a name which can be

used in the device description to refer to it.

parameter is a block parameter. The block parameters following the colon should be reread from

the device whenever one of the block parameters preceding the colon is modified.

4.10.2 Unit Relation
Purpose

A unit relation specifies a units code parameter and the block parameters with those units. When
a units code parameter is modified, the block parameters with that units code should be
refreshed. In this respect, a unit relation is exactly like a refresh relation. In addition, when a
block parameter with a units code is displayed, the value of its units code will also be displayed.

Syntax

UNIT name
{

unit-code: parameter, parameter, ...
}

EDDL Specification for PROFIBUS Version 1.1, January 2001

©Copyright by PNO 2001 - All rights reserved Page: 54

where:

name is the name of the unit relation. Every unit relation must have a name which can be used in

the device description to refer to it.

unit-code is the units code of each of the block parameters following the colon.

parameter is a block parameter associated with the units code. This value can be a variable or

an array.

4.10.3 Write-As-One Relation
Purpose

A write-as-one relation informs the host device that a group of block parameters needs to be
modified as a group. This relation does not necessarily mean the block parameters are written to
the field device at the same time. Not all block parameters sent to the field device at the same
time are necessarily part of a write-as-one relation.
If a field device requires specific block parameters to be examined and modified at the same time
for proper operation, a write-as-one relation is required.

Syntax

WRITE_AS_ONE name
{

parameter, parameter, ...
}
where:

name is the name of the write-as-one relation. Every write-as-one relation must have a name

which can be used in the device description to refer to it.

parameter is a block parameter that must be modified with other members of the write-as-one

relation by an application in a host device. A parameter may occur only once.

EDDL Specification for PROFIBUS Version 1.1, January 2001

© Copyright by PNO 2001 - All rights reserved Page: 55

4.11 Item Arrays
Purpose

An item array is a logical group of items, such as variables or menus. Each item in the group is
assigned a number, called an index. The items can be referenced from elsewhere in the device
description via the item array name and the item number. Item arrays are merely groups of EDDL
items and are unrelated to communication arrays (item type "ARRAY''). Communication arrays
are arrays of values.

Syntax

ITEM_ARRAY OF item-type name
{

attribute ...
}
where:

item-type specifies the type of elements in the item array. All the item array elements must be of

the specified type. Following types are allowed:
• VARIABLE
• MENU
• METHOD
• REFRESH
• UNIT
• WRITE_AS_ONE
• ITEM_ARRAY OF item_type
• COLLECTION OF item_type
• RECORD
• ARRAY
• VARIABLE_LIST
• PROGRAM
• DOMAIN
• BLOCK
• COMMAND
• CONNECTION
• RESPONSE_CODES

name is the name of the item array. Every item array must have a name which may be used in
the device description to refer to it.

attribute is one of the following item array attributes:

• Required Attributes
− Elements

• Optional Attributes
− Help
− Label

EDDL Specification for PROFIBUS Version 1.1, January 2001

© Copyright by PNO 2001 - All rights reserved Page: 56

4.11.1 Elements-Item Array Attribute
Purpose

The elements item array attribute identifies elements of an item array. Each item array element
specifies one item (such as a variable or menu) in the group, and is defined by a group of four
parameters (index, item, description, help).
Syntax

ELEMENTS
{

index, item, description, help;
index, item, description, help;

}
where:

index (Required) specifies the number by which the item may be referenced. The item array may

not contain an index which exceeds the size of a variable. An index which refers to the
same item-type may not occur more than once.

item (Required) is the name of the EDDL item associated with the index value.

description (Optional) provides a short description of the item.

help (Optional) specifies help text for the item.

4.11.2 Help-Item Array Attribute
Purpose

Help specifies text which provides a moderately extensive description of the item array. This text
is intended to be used by host devices as on-line help.

Syntax

HELP string;
where:

string specifies the help string.

4.11.3 Label-Item Array Attribute
Purpose

An item array's label specifies text that host devices will display as the name of the item array.

Syntax

LABEL string;
where:

string specifies the help string.

EDDL Specification for PROFIBUS Version 1.1, January 2001

© Copyright by PNO 2001 - All rights reserved Page: 57

4.12 Collections
Purpose

A collection is a logical group of items, such as variables or menus. Each item in the group is
assigned a name. The items may be referenced from in the device description by using the
collection name and the item name.

Syntax

COLLECTION OF item-type name
{

attribute attribute ...
}
where:

item-type specifies the type of members in the collection. All the collection members must be of

the specified type. The following types are allowed:

• VARIABLE
• MENU
• METHOD
• REFRESH
• UNIT
• WRITE_AS_ONE
• ITEM_ARRAY OF item_type
• COLLECTION OF item_type
• RECORD
• ARRAY
• VARIABLE_LIST
• PROGRAM
• DOMAIN
• BLOCK
• COMMAND
• CONNECTION
• RESPONSE_CODES

name is the name of the collection. Every collection must have a name which may be used in the
device description to refer to it.

attribute is one of the following collection attributes (descriptions of each attribute follow):

• Required Attributes
− Members

• Optional Attributes
− Help
− Label

Remark:
Item types must be completeley specified. For example, if the members of a collection contains
item arrays of variables, then it must be specified as COLLECTION OF ITEM_ARRAY OF
VARIABLE.

EDDL Specification for PROFIBUS Version 1.1, January 2001

© Copyright by PNO 2001 - All rights reserved Page: 58

4.12.1 Members-Collection Attribute
Purpose

The members collection attribute defines members of a collection. Each collection member
specifies one item (such as a variable or menu) in the group, and is defined by a group of four
parameters (name, item, description, help).

Syntax

MEMBERS
{

name, item, description, help;
name, item, description, help;

}
where:

name (Required) specifies the name by which the item may be referenced.

item (Required) is the name of the EDDL item associated with the name value. It is not allowed

to define an item more than once.

description (Optional) is a short description of the item.

help (Optional) specifies help text for the item.

4.12.2 Help-Collection Attribute
Purpose

Help specifies text which provides a moderately extensive description of the collection. This text
is intended to be used by host devices as on-line help.

Syntax

HELP string;
where:

string specifies the help string.

4.12.3 Label-Collection Attribute
Purpose

A collection's label specifies text that host devices will display as the name of the collection.

Syntax

LABEL string;
string specifies the help string.

EDDL Specification for PROFIBUS Version 1.1, January 2001

© Copyright by PNO 2001 - All rights reserved Page: 59

4.13 Records
Purpose

A record is a logical group of variables. Each variable in the record is assigned a EDDL variable
name. Each variable may have a different data type. The variables may be referenced from
elsewhere in the device description via the record name and the member name. EDDL records
describe communication record objects. Therefore, from a communication perspective, the
individual members of the record are not treated as individual variables, but simply as a group of
variable values.

Syntax

RECORD name
{

attribute attribute ...
}
where:

name is the name of the record. Every record must have a name which may be used in the

device description to refer to it.

attribute is one of the following record attributes (descriptions of each attribute follow):

• Required Attributes
− Members
− Label

• Optional Attributes
− Help
− Response Codes

4.13.1 Members-Record Attribute
Purpose

The members record attribute defines the members of a record. Each record member specifies
one EDDL variable, and is defined by a group of four parameters (name, item, description, help).

Syntax

MEMBERS
{

name, item, description, help;
name, item, description, help;

}
where:
name (Required) specifies the name by which the variable may be referenced through the record.

Item (Required) is the name of the EDDL item associated with the name value. It is not allowed

to define an item more than once.

description (Optional) is a short description of the variable.

help (Optional) specifies help text for the variable.

EDDL Specification for PROFIBUS Version 1.1, January 2001

©Copyright by PNO 2001 - All rights reserved Page: 60

4.13.2 Help-Record Attribute
Purpose

Help specifies text which provides a moderately extensive description of the record. This text is
intended to be used by host devices as on-line help.

Syntax

HELP string;

4.13.3 Label-Record Attribute
Purpose

A record's label specifies text that host devices will display as the name of the record.

Syntax

LABEL string;

4.13.4 Response Codes-Record Attribute
Purpose

Response codes specify the error values that are returned from the FMS read and write services
(see "Response Code Types'' later in this section). Each record can have its own set of response
codes, because each record is eligible for reading and writing.

Syntax

RESPONSE_CODES response-code-name;

EDDL Specification for PROFIBUS Version 1.1, January 2001

© Copyright by PNO 2001 - All rights reserved Page: 61

4.14 Arrays
Purpose

An array is a logical group of values. Each value, or element, is of the data type of an EDDL
variable. An element may be referenced from elsewhere in the device description via the array
name and the element index. EDDL arrays describe communication array objects. Therefore,
from a communication perspective, the individual elements of the array are not treated as
individual variables, but simply as individual values.

Syntax

ARRAY name
{

attribute attribute ...
}
where:

name is the name of the array. Every array must have a name which may be used in the device

description to refer to it.
attribute is one of the following array attributes (descriptions of each attribute follow):

• Required Attributes
− Type
− Number of Elements
− Label

• Optional Attributes
− Help
− Response Codes

4.14.1 Type-Array Attribute
Purpose

The type array attribute specifies the data type and attributes of each of the elements. Therefore,
the type is a reference to an EDDL variable.

Syntax

TYPE variable-name;

4.14.2 Number of Elements-Array Attribute
Purpose

The number of elements array attribute specifies the number of elements in the array as an
integer constant greater than zero.

Syntax

NUMBER_OF_ELEMENTS integer-constant;

EDDL Specification for PROFIBUS Version 1.1, January 2001

©Copyright by PNO 2001 - All rights reserved Page: 62

4.14.3 Help-Array Attribute
Purpose

Help specifies text which provides a moderately extensive description of the array. This text is
intended to be used by host devices as on-line help.

Syntax

HELP string;

4.14.4 Label-Array Attribute
Purpose

An array's label specifies text that host devices will display as the name of the array.

Syntax

LABEL string;

4.14.5 Response Codes-Array Attribute
Purpose

Response codes specify the error values that are returned from the FMS read and write services
(see "Response Code Types'' later in this section). Each array may have it's own set of response
codes because each array is eligible for reading and writing.

Syntax

RESPONSE_CODES response-code-name;

EDDL Specification for PROFIBUS Version 1.1, January 2001

© Copyright by PNO 2001 - All rights reserved Page: 63

4.15 Variable Lists
Purpose

A variable list is a logical group of EDDL communication objects (variables, arrays, or records).
Each item in the group is assigned a name. The items may be referenced from elsewhere in the
device description via the variable list name and the item name. EDDL variable lists describe
predefined communication variable lists.

Syntax

VARIABLE_LIST name
{

attribute attribute ...
}
where:

name is the name of the variable list. Every variable list must have a name which may be used in

the device description to refer to it.

attribute is one of the following variable list attributes (descriptions of each attribute follow):

• Required Attributes
− Members

• Optional Attributes
− Help
− Label
− Response Codes

Variable lists can contain only variables, arrays, or records that appear as block parameters.

4.15.1 Members-Variable List Attribute
Purpose

The members variable list attribute defines the members of a variable list. Each variable list
member specifies one item (variable or record) in the group, and is defined by a group of four
parameters (name, item, description, help).

Syntax

MEMBERS
{

name, item, description, help;
name, item, description, help;

}
where:
name (Required) specifies the name by which the item may be referenced.

item (Required) is the name of the EDDL item associated with the name value. It is possible to

define items of different item-types. It is not allowed to define an item more than once.
Using conditional expressions in the Members-list, you have to pay attention that the name
may refer to different item-types during the execution.

description (Optional) is a short description of the item.

help (Optional) specifies help text for the item.

EDDL Specification for PROFIBUS Version 1.1, January 2001

©Copyright by PNO 2001 - All rights reserved Page: 64

4.15.2 Help-Variable List Attribute
Purpose

Help specifies text which provides a moderately extensive description of the variable list. This
text is intended to be used by host devices as on-line help.

Syntax

HELP string;

4.15.3 Label-Variable List Attribute
Purpose

A variable list's label specifies text that host devices will display as the name of the variable list.

Syntax

LABEL string;

4.15.4 Response Codes-Variable List Attribute
Purpose

Response codes specify the error values that are returned from the FMS read and write services
(see "Response Code Types" later in this section). Each variable list may have it's own set of
response codes because each variable list is eligible for reading and writing.

Syntax

RESPONSE_CODES response-code-name;

EDDL Specification for PROFIBUS Version 1.1, January 2001

© Copyright by PNO 2001 - All rights reserved Page: 65

4.16 Command
Purpose

Each device variable has to be adressed within a command structure. The operation of a
command determines wether a variable is read or written from host to device. Furthermore the
absolute or relative adressing scheme is specified by the command structure.

Syntax

COMMAND Name
{

attribute; attribute; ...
}
where:

name is the name of the command. Every command must have a name.

attribute is one of the following variable attributes:

• Block
• Slot
• Index
• Operation
• Connection
• Module
• Response Codes
• Transaction

4.16.1 Block Command Attribute
Purpose

The block command attribute specifies the name of the block which is a reference to the block
type (see also the chapter Block). Adressing variables using the block attribute is designated as
relative adressing.

Syntax

BLOCK name;

4.16.2 Slot Command Attribute
Purpose

The slot command attribute specifies the number of the slot. The variables of a PROFIBUS-
Device are allocated to different slots. Adressing variables using the slot attribute is designated
as absolute adressing.

Syntax

SLOT number
SLOT name
where:

number is the number of the slot.

EDDL Specification for PROFIBUS Version 1.1, January 2001

©Copyright by PNO 2001 - All rights reserved Page: 66

name is the value of the variable name.

4.16.3 Index Command Attribute
Purpose

A block or a slot are devided in groups. These groups are referenced with the index attribute.

Syntax

INDEX number;
INDEX name
where:

number is the number of the slot.

name is the value of the variable name.

4.16.4 Operation Command Attribute
Purpose

The operation command specifies the action the host initiate to the field device. There are three
possible operations: read, write and command.

Syntax

OPERATION attribute;
where:

attribute can be one of the following:

READ Receiving the read command, the field device sends back the values of the variables
listed in the transaction attribute.

WRITE Receiving the write command, the field device sets the values of the variables to

the values coming from the host device.

DATA_EXCHANGE declares cyclic communication as defined in the Profibus specification.

Using this type of operation you have to list the input parameter in the reply attribut
and the output parameter in the request attribut of the transaction. In this operation
mode the definition of slot and index are not necessary but the module reference has
to be specified.

COMMAND Upon receiving a command command, the field device performs a device-

specific set of actions. In methods the description are specified how these commands
are to be used by host devices.

4.16.5 Connection Command Attribute
Purpose

The connection command attribute specifies the name of the connection object which is a
reference to the connection type (see also the chapter Connection).

Syntax

CONNECTION name;

EDDL Specification for PROFIBUS Version 1.1, January 2001

©Copyright by PNO 2001 - All rights reserved Page: 67

4.16.6 Module Command Attribute
Purpose

The module command attribute specifies the name of the module which is a reference to the
module type specified in the GSD. The module contains the set of parameters which may be
communicated within a cyclic channel.

Syntax

MODULE name;

4.16.7 Response Code Command Attribute
Purpose

The Response code may return values from the field device which represents status messages.

Syntax

RESPONSE_CODES
{

value, type, description, help ;
value, type, description, help ;

}
where:

value is an integer type and specifies the respond code value. Equal values are not allowed.

type can be one of the following:

SUCCESS The action, initiated by the command was accepted.

MISC_WARNING The action was accepted and processed by the field device but there are

additional information, disconnected to the command action.
DATA_ENTRY_WARNING The action was accepted but with a slightly modified version of

the data sent.

DATA_ENTRY_ERROR The action was denied because of invalid data.

MODE_ERROR The action was denied because the field device was in a mode in which the

action cannot executed.

PROCESS_ERROR The action was denied because the field device was an invalid type.

MISC_ERROR The action was denied.

description is a string that specifies the displayed message when the response code is returned

from the field device.
help is a text which can be used by the host device as an online help.

4.16.8 Transaction Command Attribute
Purpose

The transactions define the data set in the request and reply directive. It is possible to define
more than one transaction by appending an integer to the keyword TRANSACTION (e.g.
TRANSACTION2). But it is not allowed to define transactions with equal numbers or more than
one transaction without a number.

EDDL Specification for PROFIBUS Version 1.1, January 2001

©Copyright by PNO 2001 - All rights reserved Page: 68

Syntax

...
OPERATION WRITE
TRANSACTION
{

REQUEST
{

data-item , data-item , ...
}
REPLY
{
}

}
...
OPERATION READ;
TRANSACTION
{

REQUEST
{
}
REPLY
{

data-item , data-item , ...
}

}
where:

data-item is either a variable or the name of a variable. The download variables are found under

REQUEST, the upload variables are found under REPLY.

4.16.8.1 Data Item Mask
Purpose

An integer variable in a request or replay may also contain a bit mask. The mask defines in which
way the bits of the integer are assigned to the corresponding variables.

Syntax

...
OPERATION WRITE
TRANSACTION
{

REQUEST
{

data-item <integer>,
data-item <integer>,
...

}
REPLY
{
}

}
...
OPERATION READ;
TRANSACTION
{

REQUEST
{

EDDL Specification for PROFIBUS Version 1.1, January 2001

©Copyright by PNO 2001 - All rights reserved Page: 69

}
REPLY
{

data-item <integer>,
data-item <integer>,
...

}
}
where:

integer presents the bit mask. When the LSB is set in the bit mask, the pointer shows to the next

byte of the data set. The masks may contain gaps. Furthermore the data-item list may be
conditioned.

4.16.8.2 Data Item Qualifier
Purpose

Variables listed in a request or reply may be qualified with the INDEX and INFO. INDEX specifies
that the variable is used in the request or reply as an index into an array. INFO specifies that the
variable is not actually stored in the device. The variable has an informal meaning. A variable
may be qualified with INDEX and INFO. It is called a local index variable.

Syntax

TRANSACTION
{

REQUEST
{

data-item (INFO)
}
REPLY
{
}

}

TRANSACTION
{

REQUEST
{

data-item (INDEX)
}
REPLY
{
}

}

TRANSACTION
{

REQUEST
{

data-item (INDEX,INFO)
}
REPLY
{
}

}

4.16.9 Upload-/Download-Menu
Purpose

EDDL Specification for PROFIBUS Version 1.1, January 2001

©Copyright by PNO 2001 - All rights reserved Page: 70

The Upload-/Download-Menu is an EDDL construct to specify which parameters are read or
written from the host to the device. These menu definitions are always top level objects.

Syntax

MENU download_variables
{

LABEL name;
ITEMS
{

variable, variable, ...
}

}

MENU upload_variables
{

LABEL name;
ITEMS
{

variable, variable, ...
}

}
where:

download_variables is the name of the download menu. The item list specifies the variables

which are sent from the field device to the host. If this menu does not exist, all variables
defined in the EDD are sent from the field device to the host.

upload_variables is the name of the upload menu. The item list specifies the variables which are

sent from the host to the field device. If this menu does not exist, all variables defined in
the EDD are sent from the host to the field device.

EDDL Specification for PROFIBUS Version 1.1, January 2001

© Copyright by PNO 2001 - All rights reserved Page: 71

4.17 Programs
Purpose

Programs can be used to specify device actions that can be initiated by a host. Examples of
programs include "perform self test," "Go to save state," and "go to initialized state." The program
description describes a program invocation object created in the device.

Syntax

PROGRAM name
{

attribute attribute ...
}
where:

name is the name of the program. Every program must have a name which may be used in the

device description to refer to it.

attribute is one of the following program attributes (descriptions of each attribute follow):

• Optional Attributes
− Arguments
− Response Codes

4.17.1 Arguments-Program Attribute
Purpose

Arguments can be sent to the program during start and resume operations. The program
arguments are described by the ARGUMENT attribute. An octet string containing the values of all
of the arguments will be sent to the program invocation object when it is started or resumed by
the application.

Syntax

ARGUMENT
{

data-item, data-item ...
}
where:

data-item is either an unsigned integer constant or a variable.

• If a data item is an unsigned integer constant, the value of the constant appears at
that position in the data field. Constant data items occupy two octets of the data field
and therefore must be in the range 0 through 65535 inclusive.

• If a data item is a variable, the value of the variable appears at that position in the
data field.

• If the data field of the program service is empty, the arguments can be omitted, or

specified as follows:

ARGUMENT { }

EDDL Specification for PROFIBUS Version 1.1, January 2001

©Copyright by PNO 2001 - All rights reserved Page: 72

4.17.2 Response Codes-Program Attribute
Purpose

Response codes specify the values a field device may return as program errors (see "Response
Code Types'' later in this section).

Syntax

RESPONSE_CODES response-code-name

EDDL Specification for PROFIBUS Version 1.1, January 2001

© Copyright by PNO 2001 - All rights reserved Page: 73

4.18 Domains
Purpose

Domains can be used to download and upload moderately large amounts of data to and from a
device. The domain description describes a domain object created in the device.

Syntax

DOMAIN name
{

attribute attribute ...
}
where:
name is the name of the domain. Every domain must have a name which may be used in the

device description to refer to it.

attribute is one of the following domain attributes (descriptions of each attribute follow):

• Optional Attributes
− Handling
− Response Codes

4.18.1 Handling-Domain Attribute
Purpose

Handling specifies the operations host devices may perform on the domain. There are two
operations:

• The read operation indicates host devices may upload the domain chunk of memory from
the device.

• The write operation indicates host devices may download the domain chunk of memory

to the device. A domain without a handling attribute may be read and written by host
devices.

Syntax

HANDLING handling & handling;
where:

handling is one of the following keywords:

• READ
• WRITE

The read and write operations are orthogonal, that is, each operation is independent of the other.
Therefore, a variable may be read but not written, written but not read, both read and written, or
neither read nor written. If both keywords are used then they are linked with the ampersand &.

4.18.2 Response Codes-Domain Attribute
Purpose

Response codes specify the values a field device may return as domain download/upload errors
(see "Response Code Types'' later in this section).

EDDL Specification for PROFIBUS Version 1.1, January 2001

©Copyright by PNO 2001 - All rights reserved Page: 74

Syntax

RESPONSE_CODES response-code-name;

EDDL Specification for PROFIBUS Version 1.1, January 2001

© Copyright by PNO 2001 - All rights reserved Page: 75

4.19 Response Codes
Purpose

Response codes specify the values a field device may return as application specific errors. Each
variable, record, array, variable list, program, or domain can have its own set of response codes,
because each one is eligible for FMS services.

Syntax

RESPONSE_CODES response-code-name
{

value, type, description, help;
value, type, description, help;

}
where:

value (Required) specifies response code value. Equal values are not allowed.

type (Required) specifies the type of the response code. Response code types specify the

reasons response codes are returned. See the following table (response) for allowed
response code types.

description (Required) is a short description of the response code.

help (Optional) specifies help text for the response code.

Type Description
SUCCESS The application layer service was accepted and processed as

specified.
DATA ENTRY
WARNING

The application layer service was accepted and processed with a
slightly modified version of the data sent.

MISC WARNING The application layer service was accepted and processed as
specified and there is additional information, unrelated to the
application layer service, in which the user might be interested.

DATA ENTRY
ERROR

The application layer service was rejected because the data sent
was invalid.

MODE ERROR The application layer service was rejected because the field device
was in a mode in which the application layer service could not be
executed.

PROCESS ERROR The application layer service was rejected because a process
applied to the field device was invalid.

MISC ERROR The application layer service was rejected.

Table 4: Response Code Types

EDDL Specification for PROFIBUS Version 1.1, January 2001

© Copyright by PNO 2001 - All rights reserved Page: 76

4.20 Device Description Information
Purpose

The device description information attributes identify a specific device description. Electronic
device description information attributes include the following:

 • Manufacturer
 • Device Type
 • Device Revision
 • EDD Revisions

Syntax

MANUFACTURER integer,
DEVICE_TYPE integer,
DEVICE_REVISION integer,
EDD_REVISION integer

EDDL Specification for PROFIBUS Version 1.1, January 2001

© Copyright by PNO 2001 - All rights reserved Page: 77

4.21 Output Redirection (OPEN and CLOSE Keywords)
Purpose

The output of the EDDL-Compiler is a set of objects. The OPEN and CLOSE keywords allow the
developer to create various subsets of object files.

• The OPEN keyword opens an output file. Each time an OPEN keyword is processed, a
new output file is opened (and created if necessary). All objects generated are written to
all open files.

• The CLOSE keyword prevents further output to an open file. If a file is reopened after

closing, then any following objects are appended to the file (rather than overwriting the
file).

Syntax

OPEN filename;

construct construct ...
CLOSE filename;
where:

filename is a string of letters or digits which provides the file system name.

EDDL Specification for PROFIBUS Version 1.1, January 2001

© Copyright by PNO 2001 - All rights reserved Page: 78

4.22 Creating Similar Items (LIKE Keyword)
Purpose

When a new EDD item resembles an existing item, (possibly from an imported file), then the new
item may be defined as "like" the first. Selected attributes of the first item may be redefined in the
second.

Syntax

item-1 LIKE item-type item-2
{

attribute attribute ...
}
where:

item-1 is the new item being defined.

item-2 is the name of a previously defined item. The location of item-2 in the EDD does not

matter.

item_type is one of the following types:

• VARIABLE
• MENU
• METHOD
• ITEM_ARRAY
• ARRAY
• COLLECTION
• RECORD
• VARIABLE_LIST
• COMMAND
• CONNECTION
• PROGRAM
• DOMAIN
• RESPONSE_CODES
• BLOCK

attribute is an attribute of the newly defined item. Attributes that differ from those of the

previously defined item are described using the appropriate syntax for redefining or deleting
item attributes. To redefine an attribute of the item_type the keyword REDEFINE is used as
shown in the following example:

REDEFINE LABEL "new label";
REDEFINE DEFAULT_VALUE 0;

Redefined attributes which are not present in the original definition, are merged. It is
possible to redefine all specified attributes for the item_type. See "Item Redefinitions" later
in this section.

EDDL Specification for PROFIBUS Version 1.1, January 2001

©Copyright by PNO 2001 - All rights reserved Page: 79

4.23 Importing Device Descriptions
Purpose

The Electronic Device Description Language constructs previously described in this section are
sufficient for describing any single field device. However, additional mechanisms are required to
describe multiple revisions of a field device or standard field devices which may be used by
various manufacturers to develop compatible field devices.
To provide this type of functionality, one device description must be referenced by another. That
is, the developer must be able to import into one device description the items (such as variables
and blocks) from another device description. However, simply importing items is not sufficient.
The developer must also be able to alter the definitions of the items once they are imported.
With these mechanisms the description of a new revision of a field device can often be specified
by simply importing the device description of the old revision of the device, and specifying
changes to a few items. This type of device description is sometimes called a delta description,
because the entire device description is specified as changes to an existing device description.

Syntax

IMPORT MANUFACTURER integer,
DEVICE_TYPE integer,
DEVICE_REVISION integer,
EDD_REVISION integer
{

import-keywords
item-redefinitions

}
where:
MANUFACTURER integer
DEVICE_TYPE integer
DEVICE_REVISION integer
EDD_REVISION integer specify the device description from which items will be imported. There

can be multiple device descriptions for a particular revision of a particular device, in which
case the EDD revision distinguishes them.

import-keywords specify which items of the device description are to be imported. Only those

items specified by the import keywords are actually imported. The values for the import
keywords are described in the following subsection.

item-redefinitions specify how, if at all, the imported items are to be altered. An imported item
may be deleted or redefined, or the attributes of an imported item may be deleted or
redefined.

4.23.1 Import Keywords
Purpose

An import keyword is specified in the syntax for importing device description, and takes one of
three forms, depending on what is imported. Only types and items can be imported which are
defined in the imported device description.

• Importing all items, where all items of the external device description are imported. If this
form is used, no other import keywords are allowed, that is, if this keyword is used, it is the
one and only keyword.

EDDL Specification for PROFIBUS Version 1.1, January 2001

©Copyright by PNO 2001 - All rights reserved Page: 80

• Importing items of a specified type, where only the items of the specified types are
imported. If a specified type is imported, further imports of specific items of the same type
are not allowed.

• Importing a specific item.

Syntax

The syntax for the import keywords is as follows:

Importing All Items

EVERYTHING;

Importing Items of a Specified Type

item-type & item-type & ... ;
where:

item-type is one of the following keywords:

• VARIABLES
• MENUS
• METHODS
• ITEM_ARRAYS
• ARRAYS
• COLLECTIONS
• RECORDS
• VARIABLE_LISTS
• COMMANDS
• PROGRAMS
• DOMAINS
• RESPONSE_CODES
• BLOCKS
• RELATIONS
• CONNECTIONS

Example

The following import keyword specifies that all the variables, commands, and methods are to be
imported. Every item-type may be defined only once:

VARIABLES&COMMANDS&METHODS;

Importing a Specific Item

item-type item-name;
where:

item-type is one the keywords listed in the syntax for importing items of a specific type.

item-name is the name assigned to the item when it was defined.

Example

EDDL Specification for PROFIBUS Version 1.1, January 2001

©Copyright by PNO 2001 - All rights reserved Page: 81

The following import keyword specifies that variable pv_units is imported:

VARIABLE pv_units;

4.23.2 Item Redefinitions
This subsection describes how imported items can be redefined. Only items and their attributes
which are imported may be redefined or deleted. Only items which are deleted or not defined in
the imported EDD may be added. Only if the imported device description contains redefined
items, it is possible to redefine these items in the EDD.

4.23.2.1 Redefining Imported Blocks
This subsection describes how imported blocks may be redefined.

Deleting Blocks

An imported block may be deleted with:
DELETE BLOCK name;

Redefining Blocks

An imported block may be redefined with:

REDEFINE BLOCK name
{

attribute attribute ...
}
All attributes of the imported block are discarded and replaced with those specified.

Deleting/Redefining Block Attributes

The attributes of an imported block may be deleted or redefined with:
BLOCK name
{

DELETE keyword;
REDEFINE keyword definition;

}
where:

keyword is one of the keywords that introduces a block attribute.

definition is the new definition of the block attribute. The format of the definition depends on the

attribute being redefined.

4.23.2.2 Redefining Imported Variables
This subsection describes how imported variables may be redefined.

Deleting Variables

An imported variable may be deleted with:

DELETE VARIABLE name;

Redefining Variables

An imported variable may be redefined with:

REDEFINE VARIABLE name
{

attribute attribute ...

EDDL Specification for PROFIBUS Version 1.1, January 2001

©Copyright by PNO 2001 - All rights reserved Page: 82

}
All attributes of the imported variable are discarded and replaced with those specified.

Deleting/Redefining Attributes of Imported Variables

The attributes of an imported variable may be deleted or redefined with:

VARIABLE name
{

DELETE keyword;
REDEFINE keyword definition

}
where:

keyword is one of the keywords that introduces a variable attribute.

definition is the new definition for the variable attribute. The format of the definition depends on

the attribute being redefined.

The following syntax specifications show how attributes of imported variables can be altered.

Class Variable Attribute

The class of an imported variable may be redefined with:

REDEFINE CLASS class-name & class-name & ... ;

Constant Unit Variable Attribute

The constant unit of an imported variable may be deleted with:

DELETE CONSTANT_UNIT;
The constant unit of an imported variable may be redefined with:

REDEFINE CONSTANT_UNIT string;

Handling Variable Attribute

The handling of an imported variable may be deleted with:

DELETE HANDLING;
The handling of an imported variable may be redefined with:

REDEFINE HANDLING handling&handling& ...

Help Variable Attribute

The help of an imported variable may be deleted with:

DELETE HELP;
The help of an imported variable may be redefined with:

REDEFINE HELP string;

Label Variable Attribute

The label of an imported variable may be deleted with:

DELETE LABEL;
The label of an imported variable may be redefined with:

REDEFINE LABEL string;

Pre/Post Edit Actions Variable Attributes

EDDL Specification for PROFIBUS Version 1.1, January 2001

©Copyright by PNO 2001 - All rights reserved Page: 83

The pre/post edit actions of an imported variable may be deleted with:

DELETE PRE_EDIT_ACTIONS;
DELETE POST_EDIT_ACTIONS;
The pre/post edit actions of an imported variable may be redefined with:

REDEFINE PRE_EDIT_ACTIONS
{

method,method, ...
}

REDEFINE POST_EDIT_ACTIONS
{

method,method, ...
}

Pre/Post Read Actions Variable Attributes

The pre/post read actions of an imported variable may be deleted with:

DELETE PRE_READ_ACTIONS;
DELETE POST_READ_ACTIONS;
The pre/post read actions of an imported variable may be redefined with:

REDEFINE PRE_READ_ACTIONS
{

method,method, ...
}

REDEFINE POST_READ_ACTIONS
{

method,method, ...
}

Pre/Post Write Actions Variable Attributes

The pre/post write actions of an imported variable may be deleted with:

DELETE PRE_WRITE_ACTIONS;
The pre/post write actions of an imported variable may be redefined with:

DELETE POST_WRITE_ACTIONS;
REDEFINE POST_WRITE_ACTIONS
{

method,method, ...
}

Read/Write Time-outs Variable Attributes

The time-outs of an imported variable may be deleted with:

DELETE READ_TIMEOUT;
DELETE WRITE_TIMEOUT;
The time-outs of an imported variable may be redefined with:

REDEFINE READ_TIMEOUT expression;

REDEFINE WRITE_TIMEOUT expression;

Deleting/Redefining Arithmetic Options

If the type of an imported variable is arithmetic (integer, unsigned integer, float, or double), the
arithmetic options (display/edit formats, scaling factor, min/max values) of the type can be
deleted and redefined with:

EDDL Specification for PROFIBUS Version 1.1, January 2001

©Copyright by PNO 2001 - All rights reserved Page: 84

TYPE type
{

DELETE keyword;

REDEFINE keyword definition;
}
where:
keyword is one of the keywords introducing an arithmetic option.

definition is the new definition for the arithmetic option. The format of the definition depends on

the option being redefined.

Deleting/Redefining/Adding Enumeration Values

If the type of an imported variable is enumerated (enumerated or bit enumerated), the
enumeration values of the type can be deleted, redefined, and extended. Only values which are
defined in the imported EDD may be deleted or redefined. Furthermore only values may be added
which are not yet defined in the imported EDD. The type of the added value and the imported
variable must be the same.
TYPE type
{

DELETE value;

REDEFINE value-definition;

ADD value-definition;
}
where:

value is one of the values of the imported variable.

value-definition is a definition of an enumeration or bit-enumeration, (see the discussion of

"Enumeration Types'' in "Variables'' earlier in this section).

Validity Variable Attribute

The validity of an imported variable may be deleted with:
DELETE VALIDITY;
The validity of an imported variable may be redefined with:
REDEFINE VALIDITY boolean;

Response Codes Variable Attribute

The response codes of an imported variable may be deleted with:

DELETE RESPONSE_CODES;
The response codes of an imported variable may be redefined with:

REDEFINE RESPONSE_CODES response-code-name;

4.23.2.3 Redefining Imported Records
This subsection describes how to redefine imported records.

Deleting Records

An imported record may be deleted with:

DELETE RECORD name;

EDDL Specification for PROFIBUS Version 1.1, January 2001

©Copyright by PNO 2001 - All rights reserved Page: 85

Redefining Records

An imported record may be redefined with:

REDEFINE RECORD name
{

attribute attribute ...
}
All attributes of the imported record are discarded and replaced with those specified.

Deleting/Redefining Record Attributes

The attributes of an imported record may be deleted or redefined with:

RECORD name
{

DELETE keyword;
REDEFINE keyword definition;

}
where:

keyword is one of the keywords that introduces a record attribute.

definition is the new definition of the record attribute. The format of the definition depends on the

attribute being redefined.

The following syntax specifications show how attributes of imported records can be altered.

Members Record Attribute

There are several ways to alter the members of an imported record.

Redefining Members

The record members may be redefined with:

REDEFINE MEMBERS
{

record-member,record-member, ...
}
All members of the imported record are discarded and replaced with those specified.

Deleting/Redefining/Adding Members

The members of an imported record can be deleted, redefined, and extended with:

MEMBERS
{

DELETE name;

REDEFINE record-member;

ADD record-member;
}

Help Record Attribute

The help of an imported record may be deleted with:

DELETE HELP;
The help of an imported record may be redefined with:

REDEFINE HELP string;

EDDL Specification for PROFIBUS Version 1.1, January 2001

©Copyright by PNO 2001 - All rights reserved Page: 86

Label Record Attribute

The label of an imported record may be deleted with:
DELETE LABEL;
The label of an imported record may be redefined with:
REDEFINE LABEL string;

Response Codes Record Attribute

The response codes of an imported record may be deleted with:

DELETE RESPONSE_CODES ;
The response codes of an imported record may be redefined with:

REDEFINE RESPONSE_CODES response-code-name;

4.23.2.4 Redefining Imported Item Arrays
This subsection describes how to redefine imported item arrays. The item-types of the imported
EDD and

Deleting Item Arrays

An imported item array may be deleted with:

DELETE ITEM_ARRAY name;

Redefining Item Arrays

An imported item array may be redefined with:

REDEFINE ITEM_ARRAY name
{

attribute attribute ...
}
All the attributes of the imported item array are discarded and are replaced with those specified.

Deleting/Redefining Item Array Attributes

The attributes of an imported item array may be deleted or redefined with:

ITEM_ARRAY name
{

DELETE keyword;

REDEFINE keyword definition;
}
where:

keyword is one of the keywords that introduces an item array attribute.

definition is the new definition of the item array attribute. The format of the definition depends on

the attribute being redefined.

The following syntax diagrams show how attributes of imported item arrays can be altered.

Elements Item Array Attribute

There are several ways to alter the elements of an imported item array.

Redefining the Elements

The item array elements may be redefined with:

EDDL Specification for PROFIBUS Version 1.1, January 2001

©Copyright by PNO 2001 - All rights reserved Page: 87

REDEFINE ELEMENTS
{

item-array-element,item-array-element, ...
}
All elements of the imported item array are discarded and replaced with those specified.

Restriction

The type of the elements cannot be changed when redefining an item array. That is, an item
array of variables cannot be redefined as an item array of collections.

Deleting/Redefining/Adding Elements

The elements of an imported item array can be deleted, redefined, and extended with:
ELEMENTS
{

DELETE index;
REDEFINE item-array-element
ADD item-array-element

}

Help Item Array Attribute

The help of an imported item array may be deleted with:

DELETE HELP;
The help of an imported item array may be redefined with

REDEFINE HELP string;

Label Item Array Attribute

The label of an imported item array may be deleted with:
DELETE LABEL;
The label of an imported item array may be redefined with:

REDEFINE LABEL string;

4.23.2.5 Redefining Imported Menus
This subsection describes how imported menus may be redefined.

Deleting Menus

An imported menu may be deleted with:

DELETE MENU name;

Redefining Menus

An imported menu may be redefined with:
REDEFINE MENU name
{

attribute attribute ...
}
All the attributes of the imported menu are discarded and are replaced with those specified.

Deleting/Redefining Menu Attributes

The attributes of an imported menu may be deleted or redefined with:

EDDL Specification for PROFIBUS Version 1.1, January 2001

©Copyright by PNO 2001 - All rights reserved Page: 88

MENU name
{

DELETE keyword;
REDEFINE keyword definition;

}
where:

keyword is one of the keywords introducing a menu attribute.

definition is the new definition for the menu attribute. The format of the definition depends on the

attribute being redefined.

The following syntax specifications show how to alter the attributes of imported menus.

Label Menu Attribute

The label of an imported menu may be redefined with:

REDEFINE LABEL string;

Items Menu Attribute

The items of an imported menu may be redefined with:

REDEFINE ITEMS
{

menu-item,menu-item, ...
}

4.23.2.6 Redefining Imported Methods
This subsection describes how imported methods may be redefined.

Deleting Imported Methods

An imported method may be deleted with:

DELETE METHOD name;

Redefining Imported Methods

An imported method may be redefined with:
REDEFINE METHOD name
{

attribute attribute ...
}
All the attributes of the imported method are discarded and are replaced with those specified.

Deleting/Redefining Attributes of an Imported Method

The attributes of an imported method may be deleted or redefined with:

METHOD name
{

DELETE keyword;

REDEFINE keyword definition;
}
where:
keyword is one of the keywords that introduces a method attribute.

definition is the new definition for the method attribute. The format of the definition depends on

the attribute being redefined.

EDDL Specification for PROFIBUS Version 1.1, January 2001

©Copyright by PNO 2001 - All rights reserved Page: 89

The following syntax specifications show how attributes of imported methods can be altered.

Class Method Attribute

The class of an imported method may be redefined with:

REDEFINE CLASS class-name&class-name& ... ;

Definition Method Attribute

The definition of an imported method may be redefined with:

REDEFINE DEFINITION c-compound-statement

Help Method Attribute

The help of an imported method may be deleted with:

DELETE HELP;
The help of an imported method may be redefined with:

REDEFINE HELP string;

Label Method Attribute

The label of an imported method may be redefined with:

REDEFINE LABEL string;

Validity Method Attribute

The validity of an imported method may be deleted with:
DELETE VALIDITY;
The validity of an imported method may be redefined with:
REDEFINE VALIDITY boolean;

4.23.2.7 Redefining Imported Relations
This subsection describes how to redefine imported refresh, unit, and write-as-one relations.

Deleting Relations

An imported refresh relation may be deleted with:

DELETE REFRESH name;
An imported unit relation may be deleted with:

DELETE UNIT name;
An imported write-as-one relation may be deleted with:

DELETE WRITE_AS_ONE name;

Redefining Relations

An imported refresh relation may be redefined with:

REDEFINE REFRESH name
{

variable,variable, ...
: variable, variable, ...

}
An imported unit relation may be redefined with:

EDDL Specification for PROFIBUS Version 1.1, January 2001

©Copyright by PNO 2001 - All rights reserved Page: 90

REDEFINE UNIT name
{

variable:variable,variable, ...
}
An imported write-as-one relation may be redefined with:

REDEFINE WRITE_AS_ONE name
{

variable,variable, ...
}

4.23.2.8 Redefining Imported Arrays
This subsection describes how imported arrays may be redefined.

Deleting Arrays

An imported array may be deleted with:
DELETE ARRAY name;

Redefining Arrays

An imported array may be redefined with:

REDEFINE ARRAY name
{

attribute attribute ...
}
All the attributes of the imported array are discarded and are replaced with those specified.

Deleting / Redefining Array Attributes

The attributes of an imported array may be deleted or redefined with:
ARRAY name
{

DELETE keyword;
REDEFINE keyword definition;

}
where:

keyword is one of the keywords that introduces an array attribute.

definition is the new definition of the array attribute. The format of the definition depends on the

attribute being redefined.

The following syntax specifications show how attributes of imported arrays can be altered.

Help Array Attribute

The help of an imported array may be deleted with:

DELETE HELP;
The help of an imported array may be redefined with:

REDEFINE HELP string;

Label Array Attribute

The label of an imported array may be deleted with:

DELETE LABEL;
The label of an imported array may be redefined with:

EDDL Specification for PROFIBUS Version 1.1, January 2001

©Copyright by PNO 2001 - All rights reserved Page: 91

REDEFINE LABEL string;

Type Array Attribute

The type of an imported array may be redefined with:
REDEFINE TYPE variable-name;

Number of Elements Array Attribute

The number of elements of an imported array may be redefined with:

REDEFINE NUMBER_OF_ELEMENTS integer-constant;

Response Codes Array Attribute

The response codes of an imported array may be deleted with:

DELETE RESPONSE_CODES;
The response codes of an imported array may be redefined with:

REDEFINE RESPONSE_CODES response-code-name;

4.23.2.9 Redefining Imported Collections
This subsection describes how to redefine imported collections.

Deleting Collections

An imported collection may be deleted with:

DELETE COLLECTION name;

Redefining Collections

An imported collection may be redefined with:

REDEFINE COLLECTION name
{

attribute attribute ...
}
All attributes of the imported collection are discarded and are replaced with those specified.

Deleting/Redefining Collection Attributes

The attributes of an imported collection may be deleted or redefined with:

COLLECTION name
{

DELETE keyword;
REDEFINE keyword definition;

}
where:
keyword is one of the keywords that introduces a collection attribute.

definition is the new definition of the collection attribute. The format of the definition depends on

the attribute being redefined.

The following syntax specification show how attributes of imported collections can be altered.

Members Collection Attribute

There are several ways to alter the members of an imported collection.

EDDL Specification for PROFIBUS Version 1.1, January 2001

©Copyright by PNO 2001 - All rights reserved Page: 92

Redefining Members

The collection members may be redefined with:
REDEFINE MEMBERS
{

collection-member,collection-member, ...
}
All members of the imported collection are discarded and replaced with those specified.

Restriction

The type of the members cannot be changed when redefining a collection, that is, a collection of
variables cannot be redefined as a collection of item arrays.

Deleting/Redefining/Adding Members

The members of an imported collection can be deleted, redefined, and extended with:

MEMBERS
{

DELETE name;

REDEFINE collection-member;

ADD collection-member
}

Help Collection Attribute

The help of an imported collection may be deleted with:

DELETE HELP;
The help of an imported collection may be redefined with:

REDEFINE HELP string;

Label Collection Attribute

The label of an imported collection may be deleted with:

DELETE LABEL;
The label of an imported collection may be redefined with:

REDEFINE LABEL string;

4.23.2.10 Redefining Imported Variable Lists
This subsection describes how imported variable lists may be redefined.

Deleting Variable Lists

An imported variable list may be deleted with:

DELETE VARIABLE_LIST name;

Redefining Variable Lists

An imported variable list may be redefined with:

REDEFINE VARIABLE_LIST name
{

attribute attribute ...
}

EDDL Specification for PROFIBUS Version 1.1, January 2001

©Copyright by PNO 2001 - All rights reserved Page: 93

All the attributes of the imported variable list are discarded and are replaced with those specified.

Deleting/Redefining Variable List Attributes

The attributes of an imported variable list may be deleted or redefined with:

VARIABLE_LIST name
{

DELETE keyword;
REDEFINE keyword definition

}
where:
keyword is one of the keywords that introduces an variable list attribute.

definition is the new definition of the variable list attribute. The format of the definition depends

on the attribute being redefined.

The following syntax specifications show how the attributes of imported variable lists can be
altered.

Members Variable List Attribute

There are several ways to alter the members of an imported variable list.

Redefining Members

The variable list members may be redefined with:

REDEFINE MEMBERS
{

variable-list-member,record-member ,...
}
All members of the imported variable list are discarded and replaced with those specified.

Deleting/Redefining/Adding Members

The members of an imported variable list can be deleted, redefined, and extended with:
MEMBERS
{

DELETE name ;

REDEFINE variable-list-member

ADD variable-list-member
}

Help Variable List Attribute

The help of an imported variable list may be deleted with:
DELETE HELP;
The help of an imported variable list may be redefined with:
REDEFINE HELP string ;

Label Variable List Attribute

The label of an imported variable list may be deleted with:

DELETE LABEL;
The label of an imported variable list may be redefined with:

REDEFINE LABEL string;

EDDL Specification for PROFIBUS Version 1.1, January 2001

©Copyright by PNO 2001 - All rights reserved Page: 94

Response Codes Variable List Attribute

The response codes of an imported variable list may be deleted with:

DELETE RESPONSE_CODES;
The response codes of an imported variable list may be redefined with:

REDEFINE RESPONSE_CODES response-code-name;

4.23.2.11 Redefining Imported Programs
This subsection describes how to redefine an imported program.

Deleting Programs

An imported program may be deleted with:

DELETE PROGRAM name;

Redefining Programs

An imported program may be redefined with:

REDEFINE PROGRAM name
{

attribute attribute ...
}
All the attributes of the imported program are discarded and are replaced with those specified.

Deleting/Redefining Program Attributes

The attributes of an imported program may be deleted or redefined with:

PROGRAM name
{

DELETE keyword;

REDEFINE keyword definition;
}
where:

keyword is one of the keywords that introduces a program attribute.

definition is the new definition of the program attribute. The format of the definition depends on

the attribute being redefined.

Arguments Program Attribute

There are several ways to alter the arguments of an imported program. The program arguments
may be redefined with:

REDEFINE ARGUMENTS
{

data-item,data-item,...
}
All arguments of the imported program are discarded and replaced with those specified. The
arguments of an imported program can be deleted, redefined, and extended with:

ARGUMENTS
{

DELETE data-item;

REDEFINE data-item;

EDDL Specification for PROFIBUS Version 1.1, January 2001

©Copyright by PNO 2001 - All rights reserved Page: 95

ADD data-item;
}

Response Codes Program Attribute

The response codes of an imported program may be deleted with:

DELETE RESPONSE_CODES;
The response codes of an imported program may be redefined with:

REDEFINE RESPONSE_CODES response-code-name;

4.23.2.12 Redefining Imported Domains
This subsection describes how to redefine an imported domain.

Deleting Domains

An imported domain may be deleted with:

DELETE DOMAIN name;

Redefining Domains

An imported domain may be redefined with:

REDEFINE DOMAIN name
{

attribute attribute ...
}
All attributes of the imported domain are discarded and replaced with those specified.

Deleting/Redefining Domain Attributes

The attributes of an imported domain may be deleted or redefined with:

DOMAIN name
{

DELETE keyword;

REDEFINE keyword definition;
}
where:

keyword is one of the keywords that introduces a domain attribute.

definition is the new definition of the domain attribute. The format of the definition depends on

the attribute being redefined.

Handling Domain Attribute

The handling of an imported domain may be deleted with:

DELETE HANDLING;
The handling of an imported domain may be redefined with:

REDEFINE HANDLING handling&handling& ...;

Response Codes Domain Attribute

The response codes of an imported domain may be deleted with:

DELETE RESPONSE_CODES;

EDDL Specification for PROFIBUS Version 1.1, January 2001

©Copyright by PNO 2001 - All rights reserved Page: 96

The response codes of an imported domain may be redefined with:

REDEFINE RESPONSE_CODES response-code-name;

4.23.2.13 Redefining Imported Response Codes
This subsection describes how to redefine imported response codes.

Deleting Response Codes

Imported response codes may be deleted with:

DELETE RESPONSE_CODES name;

Redefining Response Codes

Imported response codes may be redefined with:

REDEFINE RESPONSE_CODES name
{

value,type,description,help;
value,type,description,help;

}

Deleting/Redefining/Adding Response Codes

The response codes can be deleted, redefined, and extended with:

RESPONSE_CODES name
{

DELETE value;
REDEFINE value,type,description,help;
ADD value,type,description,help;

}

EDDL Specification for PROFIBUS Version 1.1, January 2001

©Copyright by PNO 2001 - All rights reserved Page: 97

4.24 Preprocessor Directives
Purpose

The EDDL has a number of control line commands which initiate the compiler to include files, do macro
substitutions, and do conditional compilations. Preprocessing directives are lines in the EDD which start
with #. The # is followed by an identifier, "the "directive name''. Whitespace is also allowed before and
after the # . If a #define is sufficiently long to warrant continuation on the next line, the backslash \ may be
used to continue the definition.

4.24.1 Header Files
Purpose

A header file is a file containing declarations and macro definitions to be shared between several source
files. Header files serve two kinds of purposes.

• System header files declare the interfaces to parts of the operating system. They are included in
the EDD to supply the definitions and declarations needed to invoke system calls and libraries.

• Own header files contain declarations for interfaces between the source files of the EDD.

Each time having a group of related declarations and macro definitions all or most of which are needed in
several different source files, it is a good possibility to create a header file for them.

Syntax

#include <FILE>
#include "FILE"

where:

<FILE> is the variant used for system header files. You specify directories to search for header files with

the command option.

"FILE" is the variant used for header files of own programs.

Both user and system header files are included in using the preprocessing directive.

4.24.2 Macros
Purpose

A macro is a sort of abbreviation which can be defined once and then be used later for several times.
#define is the directive that defines a macro. There exist several possibilities how to use the #define
preprocessor.

Syntax

#define DefSymb
#define DefSymb NewSymb
##define DefMacro(Var1, Var2

where:

DefSymb defines a symbol. The existence of the symbol is checked with

#ifdef name If the symbolic name is defined (e.g. #define NAME or #define NAME Smith), from this
point the followed code up to #endif is compiled.

#ifndef name If the symbolic name is not defined, the followed code up to #endif is compiled.

EDDL Specification for PROFIBUS Version 1.1, January 2001

©Copyright by PNO 2001 - All rights reserved Page: 98

NewSymb is the substitute for DefSymb wherever it finds DefSymb in the EDD.

DefMacro is the name of the function with the parameters Var1 and Var2. For further information see the

example in the appendix.

4.25 Conditional Expressions
Purpose

Conditional expressions are commands to declare parts of the EDD as valid or invalid during execution
time. These decision depends on the values of a variable.

4.25.1 If Conditional
Purpose

An if conditional is used for specifying an attribute that has two alternative definitions. The expression
specified in the if conditional is evaluated. If the result is non-zero, the attribute is specified by a then
clause; otherwise, it is specified by an else clause.

Syntax

IF (expression)
{

then-clause
}
ELSE
{

else-clause
}

where:

expression is the which is evaluated to determine whether the then-clause or else-clause is used to

define the attribute.

then-clause is the definition for the attribute if the value of expression is non-zero. The clause structure

depends on the attribute being defined. It can also take the form of another conditional.

else-clause is the definition for the attribute if the value of expression is zero. The clause structure

depends on the attribute being defined. It can also take the form of another conditional.

4.25.2 Select Conditional
Purpose

A select conditional is used for specifying an attribute that has several alternative definitions. The
expression in parentheses is evaluated. Then each expression following a CASE is evaluated, in order,
until one evaluates to the same value as the controlling expression. If a match is found, the attribute is
specified by the clause following the matching expression; otherwise, it is specified by the clause following
DEFAULT.

Syntax

SELECT (expression)
{

CASE expression:
clause

EDDL Specification for PROFIBUS Version 1.1, January 2001

©Copyright by PNO 2001 - All rights reserved Page: 99

CASE expression:
clause

DEFAULT:
clause

}

where:

(expression) is the controlling expression against which expressions in the alternative CASE structures

are evaluated.

expression is an expression which is matched against the expression in parentheses.

clause is the definition for the attribute for each case, and the default definition. The structure of each

clause depends on the attribute being defined. Regardless of the attribute, each clause can also
take the form of another conditional.

4.26 References
Purpose

References are used throughout a device description by items to refer to other items. For example, the
pre-edit actions of a variable refers to methods defined elsewhere in the device description.
The following subsections describe conventions and syntax for references in a device description.

4.26.1 Referencing Items
The most common type of reference is simply the name of an item. A simple reference is expressed as
follows:

item-name

4.26.2 Referencing Elements of a Record
The elements of a record may be referenced as:

record-name . member-name

where:
record-name is the name of a record.

member-name is one of the names associated with the elements of the record.

4.26.3 Referencing Elements Of An Array
The elements of an array may be referenced as:

array-name [expression]

where:

array-name is the name of an array.

4.26.4 Referencing Members of a Collection
The member of a collection may be referenced as:

collection-reference . member-name

where:

collection-reference is a reference to a collection. This reference need not be the name of a collection,

only a reference to a collection. That is, collection references can be nested.

EDDL Specification for PROFIBUS Version 1.1, January 2001

©Copyright by PNO 2001 - All rights reserved Page: 100

member-name is one of the names associated with the members of the collection.

4.26.5 Referencing Elements of an Item Array
The elements of an item array may be referenced as:

item-array-reference [expression]

where:

item-array-reference is a reference to an item array. The item-array-reference need not be the name of

an item-array, only a reference to an item array, that is, item array references can be nested.

4.26.6 Referencing Members of a Variable List
The members of a variable list may be referenced as:
variable-list-name . member-name

where:
variable-list-name is the name of a variable list.

member-name is one of the names associated with the members of the variable list.

When a Variable List Member is a Record

If a member of a variable list is a record, the elements of the record may be referenced as:

variable-list-name . member-name . record-member

where:
variable-list-name is the name of a variable list.

member name is one of the names associated with the members of the variable list.

record-member is one of the names associated with the members of the record specified by member-

name.

When a Variable List Member is an Array

If a member of a variable-list is an array, the element of the array may be referenced as:

variable-list-name . member-name [expression]

where:

variable-list-name is the name of a variable list.

member-name is one of the names associated with the members of the variable list.

4.27 Expressions
Purpose

An expression specifies the computation of a numeric value. There are three types of expressions:

 1. Primary Expressions
 2. Unary Expressions

3. Binary Expressions

EDDL Specification for PROFIBUS Version 1.1, January 2001

©Copyright by PNO 2001 - All rights reserved Page: 101

4.27.1 Primary Expressions
Table 4 summarizes the primary expressions in the EDDL.

Primary Expression Description
Constant An expression whose value is identical to the

value of the constant.
Parenthesized expression An expression whose value is identical to the

value of the enclosed expression.
Variable reference An expression whose value is the value of the

referenced variable. Because a variable
reference may require a value read from a
device, use variable references with care.

Minimum and maximum values of device
variables

These primary expressions take the following
form:

variable-name.MIN_VALUE
variable-name.MAX_VALUE

For example, the following expression
specifies the maximum value of the variable
upper_range_value:

upper_range_value.MAX_VALUE

Table 5: Primary Expressions

4.27.2 Unary Expressions
A unary expression consists of an operand, an expression, preceded by a unary operator. Table 5
describes the unary expressions in the EDDL.

 Unary Expression What It Specifies
- The arithmetic negation of its operand.
∼ The bitwise negation of its operand, that is,

each bit of the result is the inverse of the
corresponding bit of the operand. The
operand of the ∼ operator must have an
integral value.

 ! The logical negation of its operand.

Table 6:Unary Expressions

4.27.3 Binary Expressions
A binary expression consists of two operands or expressions, separated by a binary operator. If either
operand has a floating point value, the other operand is converted (promoted) to a floating point value.
This subsection describes the following types of binary expressions:

• Multiplicative
• Additive
• Shift
• Relational

EDDL Specification for PROFIBUS Version 1.1, January 2001

©Copyright by PNO 2001 - All rights reserved Page: 102

• Equality
• Bitwise AND (&)
• Bitwise XOR (∼)
• Bitwise OR (|)
• Logical AND (&&)
• Logical OR (||)

4.27.3.1 Multiplicative Operators
Multiplicative operators specify multiplication and division of operands. Table 6 describes the multiplicative
operators.

Operator What It Does
 * Specifies the multiplication of its operands.
 /and% Specifies the division of the first operand by

the second operand. The result of the /
operator is the quotient of the division. The
result of the % operator is the remainder.

Table 7: Multiplicative Operators

4.27.3.2 Additive Operators
Additive operators specify the addition and subtraction of operands. Table 7 describes additive operators.

Operator What It Does
 + Specifies the addition of its operands.
 - Specifies the subtraction of the second

operand from the first.

Table 8: Additive Operators

4.27.3.3 Shift Operators
The << and >> operators specify a shift of the first operand by the number of bits specified by the second
operand. The operands of the << and >> operators must have integral values. Table 8 describes the shift
operators.

Operator What It Does
<< Shifts the first operand to the left. The bits

shifted off are discarded, and the vacated bits
are zero filled.

>> Shifts the first operand to the right. The bits
shifted off are discarded. If the first operand is
less than 0, the vacated bits are one filled;
otherwise they are zero filled.

Table 9: Shift Operators

4.27.3.4 Relational Operators
Relational operators (<, <=, >, >=) specify a comparison of its operands. The result of this type of an
expression is 1 if the tested relationship is true, otherwise the result is 0. Table 9 describes the relational
operators.

EDDL Specification for PROFIBUS Version 1.1, January 2001

©Copyright by PNO 2001 - All rights reserved Page: 103

Operator What It Does
< Tests for the relationship „less than“.
<= Tests for the relationship „less than or equal“.
> Tests for the relationship „greater than“.
>= Tests for the relationship „greater than or

equal“.

Table 10: Relational Operators

4.27.3.5 Equality Operators
The equality operators are == and !=. The result of this type of an expression is 1 if the tested relationship
is true, otherwise the result is 0. Table 10 describes the equality operators.

Operator What It Does
== Tests for the relationship „equals“.
!= Tests for the relationship „does not equal“.

Table 11: Equality Operators

4.27.3.6 Bitwise AND Operator (&)
The & operator specifies the bitwise AND of its operands, that is, each bit of the result is set if each of the
corresponding bits of the operands is set. The operands of the & operator must have integral values.

4.27.3.7 Bitwise XOR Operator (∼∼∼∼)
The ∼ operator specifies the bitwise exclusive OR of its operands, that is, each bit of the result is set if only
one of the corresponding bits of the operands is set. The operands of the ∼ operator must have integral
values.

4.27.3.8 Bitwise OR Operator (|)
The | operator specifies the bitwise inclusive OR of its operands, that is, each bit of the result is set if
either of the corresponding bits of the operands is set. The operands of the | operator must have integral
values.

4.27.3.9 Logical AND Operator (&&)
The && operator specifies the boolean AND evaluation of its operands. The result of this type of
expression is 1 if both of the operands are not equal to 0, otherwise the result is 0. If the first operand is
equal to 0, the second operand is not evaluated.

4.27.3.10 Logical OR Operator (||)
The || operator specifies the boolean OR evaluation of its operands. The result of this type of expression is
1 if either of the operands is not equal to 0, otherwise the result is 0. If the first operand is not equal to 0,
the second operand is not evaluated.

4.28 Strings
There are several ways to specify a string:

• As a string literal
• As an enumeration value string

EDDL Specification for PROFIBUS Version 1.1, January 2001

©Copyright by PNO 2001 - All rights reserved Page: 104

• As a string variable
• As a dictionary reference

4.28.1 Specifying a String as a String Literal
A text string can be specified as a string literal (see "String Literals'' in "Lexical Conventions'' later in this
section). Adjacent string literals are concatenated to form a single string literal.

4.28.2 Specifying a String as a String Variable
A string specified as a string variable is the value of the string variable.

4.28.3 Specifying a String as a Enumeration Value
Purpose

An enumeration value string is a string associated with one of the values of an enumeration variable.

Syntax

name (value)

where:

name is the name of an enumeration variable and its values.

Example

The following enumeration value string specifies the string associated with the value 4 of the variable
units_code:

units_code (4)

4.28.4 Specifying a String as a Dictionary Reference
Purpose

A dictionary reference specifies a string in the standard text dictionary.

Syntax

[name]

where:

name is the name of a string in the standard text dictionary (see "Standard Dictionary'' later in this

section).

Example

The following dictionary reference specifies the string associated with the name invalid_selection in the
standard text dictionary:

[invalid_selection]

EDDL Specification for PROFIBUS Version 1.1, January 2001

© Copyright by PNO 2001 - All rights reserved Page: 105

4.29 Lexical Conventions
This section describes the lexical conventions of the language.

4.29.1 Integer Constants
An integer constant may be specified in binary, octal, decimal, or hexadecimal notation. Table 11
shows the conventions for each type of notation.

Integer
ConstantType

Conventions

Binary A non-empty sequence of the binary digits 0 and 1 preceded by
either 0b or 0B.

Octal A non-empty sequence of the digits 0 through 7 beginning with a 0.
Decimal A non-empty sequence of the decimal digits 0 through 9, not

beginning with 0.
Hexadecimal A non-empty sequence of hexadecimal digits preceded by either 0x

or 0X. The hexadecimal digits are the digits 0 through 9 and the
letters a through f (or A through F) with the values 10 through 15,
respectively.

Table 12: Lexical Conventions for Integer Constants

4.29.2 Floating Point Constants
Syntax

A floating point constant has four parts:

1. An integer part, a sequence of decimal digits.
2. A decimal point (.).
3. A fraction part, a sequence of decimal digits.
4. An exponent part, a possibly signed sequence of decimal digits preceded by one of the

letters e or E.

Rules The following rules apply to using floating point constants:

• Either the integer part or the fraction part can be omitted, but not both.
• Either the decimal point or the exponent part can be omitted, but not both.

Example Following are examples of floating point constants:

59.
.87
48.93
4.8e12

4.29.3 String Literals
A string literal is a possibly empty sequence of characters enclosed in double quotes ("). The
enclosed characters can be any ISO Latin–1 (ISO 8859–1) character except the following:

• Double quote (")
• Backslash (\)
• New line

Using Escape Sequences in String Literals

EDDL Specification for PROFIBUS Version 1.1, January 2001

©Copyright by PNO 2001 - All rights reserved Page: 106

A string constant can also contain escape sequences that represent an ISO Latin-1 character.
Table 12 shows the escape sequences and their results.

Escape Code Result
 ' Single quote
 " Double quote
 | Vertical bar
 ? Question mark
 \ Backslash
 \a Alert
 \f Form feed
 \n Newline
 \r Carriage return
 \t Horizontal tab
 \v Vertical tab

Table 13: Using Escape Sequences in String Literals

4.29.4 Using Language Codes in String Constants
There is another escape sequence called a language code. A language code consists of a
vertical bar (|) followed by three decimal digits. The three digits are the same as the telephone
country code.
This language code escape sequence specifies the language of the string up to the next
language code. Therefore, a string literal can encapsulate all the translations of a given phrase.
A string literal containing no language code is an English string. If a string literal does not contain
translations for all the languages, English will be used for the unspecified languages. The table
language shows the language codes that can be used in string literals.

Language Code Language
 English
 |de| German
 |fr| French
 |it| Italian
 |sp| Spanish

Table 14: Using Language Codes in String Literals

Example The following string literal specifies the English phrase "Invalid Selection" in English and
German:

"Invalid Selection"
"|de|Unzulässige Auswahl"

4.30 Standard Text Dictionary
The standard text dictionary provides a standard vocabulary for describing field devices. The
dictionary is a collection of standard text strings that can be used in device descriptions.
The standard text dictionary provides the following advantages:

• The standard dictionary specifies each of the standard text strings in each of the
supported languages. This provides motivation for field device developers to use the
text dictionary. If field device developers use the standard text dictionary, they need
not translate their text strings to any foreign languages because the text dictionary
contains definitions of the text strings for all the supported languages.

EDDL Specification for PROFIBUS Version 1.1, January 2001

©Copyright by PNO 2001 - All rights reserved Page: 107

• If field device developers make extensive use of the dictionary, which they will if the
dictionary is complete enough, a degree of consistency across different product lines
will be created. This consistency, due to the common vocabulary, will be especially
apparent across similar types of field devices.
For example, many pressure transmitters, temperature transmitters, and flow meters
will use the same terminology and therefore appear similar to the users. This
consistency is accomplished because a common vocabulary is used by all field device
developers.

Form of the Standard Text Dictionary

The standard text dictionary takes the form of a text file. The text file consists of phrase
definitions and comments. Each phrase definition is made up of three or more fields, separated
by commas. The following example shows an dictionary entry:

[0,0] cb_time

"Check-Back Time"
"|de|Rückmeldezeit"

EDDL Specification for PROFIBUS Version 1.1, January 2001

© Copyright by PNO 2001 - All rights reserved Page: 108

5 EDDL Method Built-ins Library

This appendix describes the library of built-in functions that are available to be used within EDDL
methods.

5.1 ABORT_ON_ALL_COMM_STATUS
Syntax

void ABORT_ON_ALL_COMM_STATUS()

Purpose

ABORT_ON_ALL_COMM_STATUS will set all of the bits in the comm status abort mask. This will
cause the system to abort the current method if the device returns any comm status value.
The retry and abort masks are reset to their default values at the start of each method, so the
new mask value will only be valid during the current method. See
ABORT_ON_RESPONSE_CODE for default values.
See also:
ABORT_ON_COMM_STATUS, RETRY_ON_COMM_STATUS, IGNORE_COMM_STATUS,
RETRY_ON_ALL_COMM_STATUS, IGNORE_ALL_COMM_STATUS.

5.2 ABORT_ON_ALL_RESPONSE_CODES
Syntax

void ABORT_ON_ALL_RESPONSE_CODES()

Purpose

ABORT_ON_ALL_RESPONSE_CODES will set all of the bits in the response code abort mask.
This will cause the system to abort the current method if the device returns any response code
value.
The retry and abort masks are reset to their default values at the start of each method, so the
new mask value will only be valid during the current method. See
ABORT_ON_RESPONSE_CODE for default values.
See also:
ABORT_ON_RESPONSE_CODE, RETRY_ON_RESPONSE_CODE,
IGNORE_RESPONSE_CODE,
RETRY_ON_ALL_RESPONSE_CODES, IGNORE_ALL_RESPONSE_CODES.

5.3 ABORT_ON_COMM_STATUS
Syntax

void ABORT_ON_COMM_STATUS(comm_status)
int comm_status;

Purpose

ABORT_ON_COMM_STATUS will set the correct bit(s) in the comm status abort mask such that
the specified comm status value will cause the method to abort.
The retry and abort masks are reset to their default values at the start of each method, so the
new mask value will only be valid during the current method. See
ABORT_ON_RESPONSE_CODE for default values.
See also:
RETRY_ON_COMM_STATUS, IGNORE_COMM_STATUS, ABORT_ON_ALL_COMM_STATUS,
RETRY_ON_ALL_COMM_STATUS, IGNORE_ALL_COMM_STATUS.

EDDL Specification for PROFIBUS Version 1.1, January 2001

©Copyright by PNO 2001 - All rights reserved Page: 109

5.4 ABORT_ON_NO_DEVICE
Syntax

void ABORT_ON_NO_DEVICE()

Purpose

ABORT_ON_NO_DEVICE will set the no devices mask such that the method will be aborted if no
device is found while sending a transaction.
The retry and abort masks are reset to their default values at the start of each method, so the
new mask value will only be valid during the current method. See
ABORT_ON_RESPONSE_CODE for default values.
See also:
RETRY_ON_NO_DEVICE, IGNORE_NO_DEVICE.

5.5 ABORT_ON_RESPONSE_CODE
Syntax

void ABORT_ON_RESPONSE_CODE(response_code)
int response_code;

Purpose

ABORT_ON_RESPONSE_CODE will set the correct bit(s) in the response code abort mask such
that the specified response code value will cause the method to abort.
The retry and abort masks are reset to their default values at the start of each method, so the
new mask value will only be valid during the current method.
See also:
RETRY_ON_RESPONSE_CODE, IGNORE_RESPONSE_CODE,
ABORT_ON_ALL_RESPONSE_CODES,
RETRY_ON_ALL_RESPONSE_CODES, IGNORE_ALL_RESPONSE_CODES.

5.6 DELAY
Syntax

void DELAY(delay_time, prompt)
int delay_time;
char *prompt;

Purpose

DELAY displays the prompt and pauses for the specified number of seconds. The prompt may
contain local variable values (see put_message for syntax). The delay time must be a positive
number.
See also:
delay, DELAY_TIME.

5.7 DELAY_TIME
Syntax

void DELAY_TIME(delay_time)
int delay_time;

Purpose

DELAY_TIME pauses for the specified number of seconds. The delay time must be a positive
number.

EDDL Specification for PROFIBUS Version 1.1, January 2001

©Copyright by PNO 2001 - All rights reserved Page: 110

See also:
delay, DELAY.

5.8 IGNORE_ALL_COMM_STATUS
Syntax

void IGNORE_ALL_COMM_STATUS()

Purpose

IGNORE_ALL_COMM_STATUS will clear all of the bits in the comm status retry and abort
masks. This will cause the system to ignore all bits in the comm status value.
The retry and abort masks are reset to their default values at the start of each method, so the
new mask value will only be valid during the current method. See
ABORT_ON_RESPONSE_CODE for default values.
See also:
ABORT_ON_COMM_STATUS, RETRY_ON_COMM_STATUS, IGNORE_COMM_STATUS,
ABORT_ON_ALL_COMM_STATUS, RETRY_ON_ALL_COMM_STATUS.

5.9 IGNORE_ALL_RESPONSE_CODES
Syntax

void IGNORE_ALL_RESPONSE_CODES()

Purpose

IGNORE_ALL_RESPONSE_CODES will clear all of the bits in the response code retry and abort
masks. This will cause the system to ignore all response code values returned from the device.
The retry and abort masks are reset to their default values at the start of each method, so the
new mask value will only be valid during the current method. See
ABORT_ON_RESPONSE_CODE for default values.
See also:
ABORT_ON_RESPONSE_CODE, RETRY_ON_RESPONSE_CODE,
IGNORE_RESPONSE_CODE,
ABORT_ON_ALL_RESPONSE_CODES, RETRY_ON_ALL_RESPONSE_CODES.

5.10 IGNORE_COMM_STATUS
Syntax

void IGNORE_COMM_STATUS(comm_status)
int comm_status;

Purpose

IGNORE_COMM_STATUS will clear the correct bit(s) in the comm status abort and retry mask
such that the specified bits in the comm status value will be ignored.
The retry and abort masks are reset to their default values at the start of each method, so the
new mask value will only be valid during the current method. See
ABORT_ON_RESPONSE_CODE for default values.
See also:
ABORT_ON_COMM_STATUS, RETRY_ON_COMM_STATUS,
ABORT_ON_ALL_COMM_STATUS,
RETRY_ON_ALL_COMM_STATUS, IGNORE_ALL_COMM_STATUS.

EDDL Specification for PROFIBUS Version 1.1, January 2001

©Copyright by PNO 2001 - All rights reserved Page: 111

5.11 IGNORE_NO_DEVICE
Syntax

void IGNORE_NO_DEVICE()

Purpose

IGNORE_NO_DEVICE will set the no device mask to show that the no device condition should be
ignored while sending a transaction.
The retry and abort masks are reset to their default values at the start of each method, so the
new mask value will only be valid during the current method. See
ABORT_ON_RESPONSE_CODE for default values.
See also:
ABORT_ON_COMM_STATUS, RETRY_ON_NO_DEVICE.

5.12 IGNORE_RESPONSE_CODE
Syntax

void IGNORE_RESPONSE_CODE(response_code)
int response_code;

Purpose

IGNORE_RESPONSE_CODE will clear the correct bit(s) in the response code masks such that
the specified response code value will be ignored.
The retry and abort masks are reset to their default values at the start of each method, so the
new mask value will only be valid during the current method. See
ABORT_ON_RESPONSE_CODE for default values.
See also:
ABORT_ON_RESPONSE_CODE, RETRY_ON_RESPONSE_CODE,
ABORT_ON_ALL_RESPONSE_CODES,
RETRY_ON_ALL_RESPONSE_CODES, IGNORE_ALL_RESPONSE_CODES.

5.13 METHODID
Syntax

int METHODID(method_name)
char *method_name;

Purpose

METHODID will return the identifier for the method specified. A valid method name must be
provided. Each method in the device description is assigned a unique identifier. This routine is
used when the identifier of a method needs to be passed to the abort processing built-in
functions.
Will return method identifier.

5.14 PROGID
Syntax

int PROGID(progname)
char *progname;

Purpose

PROGID will return the identifier for the program specified. A valid program name must be
provided. The ID needs to be saved in a temporary buffer for use as a parameter to another built-

EDDL Specification for PROFIBUS Version 1.1, January 2001

©Copyright by PNO 2001 - All rights reserved Page: 112

in.
PROGID will return program identifier.

5.15 RETRY_ON_ALL_COMM _STATUS
Syntax

void RETRY_ON_ALL_COMM_STATUS()

Purpose

RETRY_ON_ALL_COMM_STATUS will set all of the bits in the comm status retry mask.This will
cause the system to retry the current transaction if the device returns any comm status value.
The retry and abort masks are reset to their default values at the start of each method, so the
new mask value will only be valid during the current method. See
ABORT_ON_RESPONSE_CODE for default values.
See also:
ABORT_ON_COMM_STATUS, RETRY_ON_COMM_STATUS, IGNORE_COMM_STATUS,
ABORT_ON_ALL_COMM_STATUS, IGNORE_ALL_COMM_STATUS.

5.16 RETRY_ON_ALL_RESPONSE_CODES
Syntax

void RETRY_ON_ALL_RESPONSE_CODES()

Purpose

RETRY_ON_ALL_RESPONSE_CODE will set all of the bits in the response code retry mask. This
will cause the system to retry the current transaction if the device returns any response code
value.
The retry and abort masks are reset to their default values at the start of each method, so the
new mask value will only be valid during the current method. See
ABORT_ON_RESPONSE_CODE for default values.
See also:
ABORT_ON_RESPONSE_CODE, RETRY_ON_RESPONSE_CODE,
IGNORE_RESPONSE_CODE,
ABORT_ON_ALL_RESPONSE_CODES, IGNORE_ALL_RESPONSE_CODES.

5.17 RETRY_ON_COMM_STATUS
Syntax

void RETRY_ON_COMM_STATUS(comm_status)
int comm_status;

Purpose

RETRY_ON_COMM_STATUS will set the correct bit(s) in the comm status retry mask such that
the specified comm status value will cause the current transaction to be retried.
The retry and abort masks are reset to their default values at the start of each method, so the
new mask value will only be valid during the current method. See
ABORT_ON_RESPONSE_CODE for default values.
See also:
ABORT_ON_COMM_STATUS, IGNORE_COMM_STATUS, ABORT_ON_ALL_COMM_STATUS,
RETRY_ON_ALL_COMM_STATUS, IGNORE_ALL_COMM_STATUS.

EDDL Specification for PROFIBUS Version 1.1, January 2001

©Copyright by PNO 2001 - All rights reserved Page: 113

5.18 RETRY_ON_NO_DEVICE
Syntax

void RETRY_ON_NO_DEVICE()

Purpose

RETRY_ON_NO_DEVICE will set the no device mask such that the current transaction will be
retried if no device is found while sending a transaction.
The retry and abort masks are reset to their default values at the start of each method, so the
new mask value will only be valid during the current method. See
ABORT_ON_RESPONSE_CODE for default values.
See also:
ABORT_ON_COMM_STATUS, IGNORE_NO_DEVICE.

5.19 RETRY_ON_RESPONSE_CODE
Syntax

void RETRY_ON_RESPONSE_CODE(response_code)
int response_code;

Purpose

RETRY_ON_RESPONSE_CODE will set the correct bit(s) in the response code retry mask such
that the specified response code value will cause the current transaction to be retried.
The retry and abort masks are reset to their default values at the start of each method, so the
new mask value will only be valid during the current method. See
ABORT_ON_RESPONSE_CODE for default values.
See also:
ABORT_ON_RESPONSE_CODE, IGNORE_RESPONSE_CODE,
ABORT_ON_ALL_RESPONSE_CODES,
RETRY_ON_ALL_RESPONSE_CODES, IGNORE_ALL_RESPONSE_CODES.

5.20 VARID
Syntax

int VARID(variable_name)
char *variable_name;

Purpose

VARID will return the identifier for the variable specified. A valid variable name must be provided.
Each variable in the device description is assigned a unique identifier. This routine is to be used
when the identifier of a variable either needs to be stored in a temporary buffer, or needs to be
sent as a parameter to another built-in.
Will return variable identifier.

5.21 abort
Syntax

void abort()

Purpose

abort will display a message indicating that the method has been aborted and wait for
acknowledgment from the user. Once acknowledgment has been made, the system will execute
any abort methods in the abort method list, and will exit the method process.

EDDL Specification for PROFIBUS Version 1.1, January 2001

©Copyright by PNO 2001 - All rights reserved Page: 114

See also:
add_abort_method(), remove_abort_method() remove_all_abort_methods(), process_abort().

5.22 acknowledge
Syntax

int acknowledge(prompt)
char *prompt;

Purpose

acknowledge will display the prompt and wait for the enter key to be pressed. Will return the key
pressed to exit the transaction.

5.23 add_abort_method
Syntax

int add_abort_method(abort_method_name)
char *abort_method_name;

Purpose

add_abort_method will add a method to the abort method list, which is the list of methods to be
executed if the current method is aborted. The abort method list can hold up to twenty methods at
any one time. The methods are run in the order they are added to the list, and the same method
may be added to the list more than once. The list is cleared after each method is executed.
It is important to note that the abort methods are only executed when the method is aborted, and
not when you exit the method, under normal operating conditions. Methods can be aborted due to
an abort mask condition when sending a transaction, or when the abort built-in is called.
Will return TRUE if the method was successfully added to the list, and FALSE if the list was full.
See also:
abort() remove_abort_method(), process_abort().

5.24 assign_str
Syntax

void assign_str(device_var, new_string)
char *decice_var;
char *new_string;

Purpose

assign_str will assign the specified string to the device variable. The variable must be valid. If
neccessary, the value is casted to the type of the referenced variable.

5.25 delay
Syntax

void delay(delay_time, prompt, global_var_ids)
int delay_time;
char *prompt;
int *global_var_ids;

Purpose

Will display the prompt and pause for the specified number of seconds. The prompt may contain
local and/or device variable values (see put_message for syntax). The delay time must be a

EDDL Specification for PROFIBUS Version 1.1, January 2001

©Copyright by PNO 2001 - All rights reserved Page: 115

positive number.
See also:
DELAY, DELAY_TIME.

5.26 display
Syntax

void display(prompt, global_var_ids)
char *prompt;
int *global_var_ids;

Purpose

This routine will display the specified message on the screen, continuously updating the dynamic
variable values used in the string (see put_message for syntax). This updating will continue until
the enter key is pressed.

5.27 display_comm_status
Syntax

void display_comm_status(comm_status_value)
int comm_status_value;

Purpose

Display_comm_status will display the string associated with the specified value of the
comm_status byte.
See also:
display_response_status.

5.28 display_response_status
Syntax

void display_response_status(response_code_value)
int response_code_value;

Purpose

Display_response_status will display the string associated with the specified value of the
response_code byte.
See also:
display_comm_status.

5.29 fassign
Syntax

int fassign(target_var_id, new_value)
char *target_var_id; double new_value;

Purpose

Will assign the value specified to the target variable. The variable must be valid, and must
reference a variable of type float.
Will return TRUE if the assignment was successful, and FALSE if the variable identifier was
invalid.
See also:
VARID, vassign.

EDDL Specification for PROFIBUS Version 1.1, January 2001

©Copyright by PNO 2001 - All rights reserved Page: 116

5.30 fvar_value
Syntax

double fvar_value(source_var_name)
char *source_var_name;

Purpose

Will return the value of the specified variable. The variable must be valid and of type float. Will
return the value of the variable specified. See also:
ivar_value, lvar_value.

5.31 get_dev_var_value
Syntax

int get_dev_var_value(prompt, device_var_name)
char *prompt;
char *device_var_name;

Purpose

get_dev_var_value will display the specified prompt message, and allow the user to edit the value
of a device variable. If the device variable is dynamic, the value will be continuously updated until
a new value is entered. The edited copy of the device variable value will be updated when the
new value is entered, but will not be sent to the device. This must be done explicitly using one of
the send transaction routines.
The prompt may NOT contain embedded local and/or device variable values. Will return
BI_SUCCESS if the variable was successfully modified, BI_ABORT if the routine was aborted,
and BI_ERROR if an error occurred entering the new value or accessing the specified variable.
See also:
get_local_var_value.

5.32 get_dictionary_string
Syntax

int get_dictionary_string(dict_string_name, string, max_str_len)
char *dict_string_name;
char *string;
char *max_str_len;

Purpose

get_dictionary_string will retrieve the dictionary string associated with the given name in the
current language. If the string is not available in the current language, the English string will be
retrieved. If the string is not defined in either language, an error condition occurs, and the routine
will return FALSE. If the string is longer than the max_str_len, the string will be truncated. Will
return TRUE if successful, FALSE if string could not be found.

5.33 get_local_var_value
Syntax

int get_local_var_value(prompt, local_var_name)
char *prompt;
char *local_var_name;

Purpose

EDDL Specification for PROFIBUS Version 1.1, January 2001

©Copyright by PNO 2001 - All rights reserved Page: 117

get_local_var_value will display the specified prompt message, and allow the user to edit the
value of a local variable.
The prompt may NOT contain embedded local and/or device variable values.
Will return BI_SUCCESS if the variable was successfully modified, and BI_ERROR if an error
occurred entering the new value or accessing the specified variable.
See also:
get_dev_var_value.

5.34 get_status_code_string
Syntax

void get_status_code_string(var_name, status_code, status_string,
status_string_length)
char *var_name;
int status_code;
char *status_string;
int status_string_length;

Purpose

Will return the status code string for the variable and status code specified. If the string is longer
than the maximum length defined in status_string_length, the string is truncated. The variable
identifier supplied must be valid, and the status code specified must be valid for that variable.

5.35 GET_TICK_COUNT
Syntax

long GET_TICK_COUNT()

Purpose

returns the time in milliseconds since the last system boot. It can be used for timestamps.
ATTENTION: In order to the Datatype long, the returnvalue of GET_TICK_COUNT will wrap
around and start from zero after a period of 49,71026961806 days.

5.36 ivar_value
Syntax

int ivar_value(source_var_name)
char *source_var_name;

Purpose

Will return the value of the specified variable. The variable identifier must be valid and of type
integer.
Will return the value of the variable specified.
See also:
fvar_value, lvar_value.

5.37 lvar_value
Syntax

int lvar_value(source_var_name)
char *source_var_name;

Purpose

EDDL Specification for PROFIBUS Version 1.1, January 2001

©Copyright by PNO 2001 - All rights reserved Page: 118

Will return the value of the specified variable. The variable identifier must be valid and of type
long.
Will return the value of the variable specified.
See also:
ivar_value, fvar_value.

5.38 process_abort
Syntax

void process_abort()

Purpose

process_abort will abort the current method, running any abort methods which are in the abort
method list. Unlike the abort transaction, no message will be displayed when this routine is
executed. This built-in transaction may not be run from inside an abort method.
See also:
abort, add_abort_method, remove_abort_method, remove_all_abort_methods.

5.39 put_message
Syntax

void put_message(message)
char *message;

Purpose

put_message will display the specified message on the screen.
Embedded device variables are NOT supported in this transaction.

5.40 ReadCommand
Syntax

void ReadCommand(name)

Purpose

ReadCommand reads the variables defined in the COMMAND name.

5.41 remove_abort_method
Syntax

int remove_abort_method(abort_method_name)
char *abort_method_name;

Purpose

remove_abort_method will remove a method from the abort method list, which is the list of
methods to be executed if the current method is aborted. This transaction will remove the first
occurrence of the specified method in the list, starting with the first method added. If there are
multiple occurrences of a specific method, only the first one is removed. Abort methods may not
be removed during an abort method.
will return TRUE if the method was successfully removed from the list, and FALSE if either the
method was not in the list or if this transaction was run during an abort method.
See also:
abort, add_abort_method, remove_abort_method, process_abort.

EDDL Specification for PROFIBUS Version 1.1, January 2001

©Copyright by PNO 2001 - All rights reserved Page: 119

5.42 remove_all_abort_methods
Syntax

void remove_all_abort_methods()

Purpose

remove_all_abort_methods will remove all entries in the abort method list, including multiple
entries for the same method. This transaction may not be run from an abort method.
See also:
abort, add_abort_method, remove_abort_method, process_abort.

5.43 rspcode_string
Syntax

void rspcode_string(transaction, response_code, response_string,
response_string_length)
int transaction;
int response_code;
char *response_string;
int response_string_length;

Purpose

Will return the response code string for the transaction and response code specified. If the string
is longer than the maximum length defined in response_string_length, the string is truncated. The
response code specified must be valid for the indicated transaction.

5.44 sassign
Syntax

void sassign{destination_variable, string}
char *string;

Purpose

sassign will assign the specified string to the device variable. The variable must be valid. If
necessary, the value is casted to the type of the referenced variable.

5.45 select_from_list
Syntax

int select_from_list(prompt, option_list)
char *prompt;
char *option_list;

Purpose

select_from_list has the same functionality as select_from_list_wvarids, except that device
variables are not allowed in the prompt string. For example:

int result;
result = select_from_list("Is this correct?","Yes;No");
if (result == 0)

{ ... }
else

{ ... }

EDDL Specification for PROFIBUS Version 1.1, January 2001

©Copyright by PNO 2001 - All rights reserved Page: 120

This transaction would display the prompt "Is this correct?'' and the two options "Yes'' and "No''.
If "Yes'' is selected, a 0 is returned, and the code in the statement is executed. If "No'' is
selected, a 1 is returned, and the code in the else-statement executed.

5.46 ShellExecute
Syntax

ShellExecute(string)
char *string;

Purpose

Takes the string argument and opens the specified file.

5.47 vassign
Syntax

int vassign(target_var_name, source_var_id)
char *target_var_name;
char *source_var_id;

Purpose

Will assign the value of the source variable to the destination variable. Both variables must be
valid.
Will return TRUE if the assignment was successful, and FALSE if either variable identifier was
invalid.
See also:
VARID, fassign.

5.48 WriteCommand
Syntax

void WriteCommand(name)

Purpose

WriteCommand writes the variables defined in the COMMAND name to the field device.

EDDL Specification for PROFIBUS Version 1.1, January 2001

© Copyright by PNO 2001 - All rights reserved Page: 121

A Example File
/* Example file using Electronic Device Description (EDD) */

/* Important: This file serves as an example only, it is not normative */

/* File name: example.edd */

/* 3.1. The Identification */

MANUFACTURER 42,

DEVICE_TYPE 42,

DEVICE_REVISION 1,

DD_REVISION 1

VARIABLE local_variable

{

LABEL "Local Variable";

HELP "Help";

CLASS LOCAL;

TYPE FLOAT

{

DEFAULT_VALUE 30;

MIN_VALUE 10;

MAX_VALUE 200;

SCALING_FACTOR 200;

EDIT_FORMAT "5d";

DISPLAY_FORMAT "5d";

}

HANDLING READ & WRITE;

VALIDITY TRUE;

}

BLOCK BlockIdentifier1

{

TYPE PHYSICAL;

NUMBER 1;

}

VARIABLE local_variable_1

{

LABEL "Local Variable 1";

CLASS LOCAL;

TYPE FLOAT

{

DEFAULT_VALUE 20;

MIN_VALUE 10;

MAX_VALUE 200;

}

POST_EDIT_ACTIONS

{

postscale_variable

}

HANDLING READ & WRITE;

}

METHOD postscale_variable

EDDL Specification for PROFIBUS Version 1.1, January 2001

©Copyright by PNO 2001 - All rights reserved Page: 122

{

LABEL "Local Method";

DEFINITION

{

float f;

int i;

f = fvar_value(local_variable_1);

i = (f / 5) + 0.5;

assign_int(variable, i);

f = i * 5;

assign_float(local_variable_1, f);

}

}

COMMAND read_command

{

SLOT 1;

INDEX 2;

OPERATION READ;

TRANSACTION

{

REQUEST

{

}

REPLY

{

variable1,

variable2 <0xF0>,

variable3 <0x08>,

variable4 <0x07>

}

}

}

BLOCK physical_block

{

TYPE PHYSICAL;

NUMBER 1;

}

COMMAND read_phys_blk

{

BLOCK physical_block;

INDEX 0;

OPERATION READ;

TRANSACTION

{

REQUEST

{

}

REPLY

{

EDDL Specification for PROFIBUS Version 1.1, January 2001

©Copyright by PNO 2001 - All rights reserved Page: 123

phys_blk_reserve, phys_blk_object,

phys_blk_parent_class, phys_blk_class,

phys_blk_dd_reference, phys_blk_dd_rev,

phys_blk_profile, phys_blk_profile_rev,

phys_blk_execution_time, phys_blk_highest_rel_offset,

phys_blk_index_view_1, phys_blk_num_view_lists

}

}

}

VARIABLE VariableInCollection1

{

CLASS LOCAL;

TYPE FLOAT;

HANDLING READ;

}

COLLECTION OF VARIABLE CollectionIdentifier1

{

LABEL "Collection 1";

HELP "Help for Collection 1";

MEMBERS

{

member_1, VariableInCollection1, "description", "help";

}

}

VARIABLE VariableInArray1

{

CLASS LOCAL;

TYPE FLOAT;

HANDLING READ;

}

ITEM_ARRAY OF VARIABLE ArrayIdentifier1

{

LABEL "Array 1";

HELP "Help for Array 1";

ELEMENTS

{

1, VariableInArray1, "description", "help";

}

}

VARIABLE VariableModified1

{

CLASS LOCAL;

TYPE FLOAT;

HANDLING READ & WRITE;

}

VARIABLE VariableModified2

{

EDDL Specification for PROFIBUS Version 1.1, January 2001

©Copyright by PNO 2001 - All rights reserved Page: 124

CLASS LOCAL;

TYPE FLOAT;

HANDLING READ & WRITE;

}

VARIABLE VariableModified3

{

CLASS LOCAL;

TYPE FLOAT;

HANDLING READ & WRITE;

}

VARIABLE VariableToBeRefreshed1

{

CLASS LOCAL;

TYPE FLOAT;

HANDLING READ & WRITE;

}

VARIABLE VariableToBeRefreshed2

{

CLASS LOCAL;

TYPE FLOAT;

HANDLING READ & WRITE;

}

REFRESH Refresh1

{

VariableModified1, VariableModified2, VariableModified3

: VariableToBeRefreshed1, VariableToBeRefreshed2

}

VARIABLE VariableUnit

{

CLASS LOCAL;

TYPE FLOAT;

HANDLING READ & WRITE;

}

UNIT Unit1

{

VariableUnit

: VariableToBeRefreshed1, VariableToBeRefreshed2

}

VARIABLE condition

{

CLASS LOCAL;

TYPE FLOAT;

HANDLING READ & WRITE;

}

VARIABLE VariableForConditional

EDDL Specification for PROFIBUS Version 1.1, January 2001

©Copyright by PNO 2001 - All rights reserved Page: 125

{

LABEL "VariableForConditional";

CLASS CONTAINED;

TYPE INTEGER (2);

HANDLING IF(condition == 0x00)

{

READ;

}

ELSE

{

READ & WRITE;

}

}

VARIABLE identfier_1

{

CLASS LOCAL;

TYPE FLOAT;

HANDLING READ;

}

VARIABLE identfier_2

{

CLASS LOCAL;

TYPE FLOAT;

HANDLING READ;

}

MENU name

{

LABEL "string_A";

HELP "string_B";

ACCESS ONLINE;

STYLE WINDOW;

ITEMS

{

identfier_1,

identfier_2

}

}

MENU Menu_Main_Specialist

{

LABEL "main menu";

ITEMS

{

Menu_File, /* assume to be defined somewhere else */

Menu_Device, /* assume to be defined somewhere else */

Menu_View, /* assume to be defined somewhere else */

Menu_Options, /* assume to be defined somewhere else */

Menu_Help /* assume to be defined somewhere else */

}

}

EDDL Specification for PROFIBUS Version 1.1, January 2001

©Copyright by PNO 2001 - All rights reserved Page: 126

MENU Menu_Device

{

LABEL "Device";

ITEMS

{

status,

diagnostic,

Online_Value

}

}

MENU Online_Value

{

ACCESS ONLINE;

STYLE BarGraph;

LABEL "Value";

ITEMS

{

meas_value

}

}

VARIABLE Variable1

{

CLASS LOCAL;

TYPE FLOAT;

HANDLING READ;

}

VARIABLE Variable2

{

CLASS LOCAL;

TYPE FLOAT;

HANDLING READ;

}

VARIABLE Variable3

{

CLASS LOCAL;

TYPE FLOAT;

HANDLING READ;

}

MENU Table_Main_Specialist2

{

LABEL "Test Device";

ITEMS

{

Variable1,

Menu

}

}

EDDL Specification for PROFIBUS Version 1.1, January 2001

©Copyright by PNO 2001 - All rights reserved Page: 127

MENU Menu

{

LABEL "Menu";

ITEMS

{

Variable2,

Variable3

}

}

/* Application Context */

VARIABLE ApplicationContext

{

LABEL "ApplicationContext";

CLASS LOCAL;

TYPE BIT_ENUMERATED (4)

{

{0, "reserved"},

{1, "FDT_CONFIGURATION"},

{2, "FDT_PARAMETERIZE"},

{3, "FDT_DIAGNOSIS"},

{4, "FDT_MANAGEMENT"},

{5, "FDT_OBSERVE"},

{6, "FDT_DOCUMENTATION"},

{7, "FDT_FORCE"},

{8, "FDT_ASSET_MANAGEMENT"},

{9, "reserved"},

{10, "reserved"},

{11, "reserved"},

{12, "reserved"},

{13, "reserved"},

{14, "FDT_GMA_MAINTENANCE"},

{15, "FDT_GMA_SPECIALIST"},

{16, "DTM and / or vendor specific"},

{17, "DTM and / or vendor specific"},

{18, "DTM and / or vendor specific"},

{19, "DTM and / or vendor specific"},

{20, "DTM and / or vendor specific"},

{21, "DTM and / or vendor specific"},

{22, "DTM and / or vendor specific"},

{23, "DTM and / or vendor specific"},

{24, "DTM and / or vendor specific"},

{25, "DTM and / or vendor specific"},

{26, "DTM and / or vendor specific"},

{27, "DTM and / or vendor specific"},

{28, "DTM and / or vendor specific"},

{29, "DTM and / or vendor specific"},

{30, "DTM and / or vendor specific"},

{31, "DTM and / or vendor specific"}

}

}

EDDL Specification for PROFIBUS Version 1.1, January 2001

© Copyright by PNO 2001 - All rights reserved Page: 128

B Lexic-Formal Definition

B.1 Operators
! != % %=
& && &= (
) * *= +
++ += , -
-- -= . /
/= : ; <
<< <<= <= =
== > >= >>
>>= ? []
^ ^= { |
|= || } ~

B.2 Keywords
ACCESS ADD ALARM
ALL AO APPINSTANCE
ARGUMENTS ARRAY ARRAYS
ASCII AUTO BAD
BIT_ENUMERATED BITSTRING BLOCK
BLOCKS break CASE
case char CLASS
COLLECTION COLLECTIONS COMMAND
COMMANDS COMM_ERROR CONNECTION
CONSTANT_UNIT CONTAINED continue
CORRECTABLE DATA DATA_ENTRY_ERROR
DATA_ENTRY_WARNING DATA_EXCHANGE DATE_AND_TIME
DD_REVISION DEFAULT default
DEFAULT_VALUE DEFINITION DELETE
DETAIL DEVICE_REVISION DEVICE_TYPE
DIAGNOSTIC DIALOG DISPLAY_FORMAT
DISPLAY_VALUE do DOMAIN
DOUBLE double DV
DYNAMIC EDD_REVISION EDIT_FORMAT
ELEMENTS ELSE else
ENUMERATED EVENT EVERYTHING
FALSE FLOAT float
for FUNCTION GOOD
HANDLING HARDWARE HELP
HIDDEN IF if
IGNORE_IN_HANDHELD IMPORT INDEX
INFO INITIAL_VALUE INPUT
int INTEGER ITEM_ARRAY
ITEMS LABEL LIKE
LOCAL long MANUAL
MANUFACTURER MAX_VALUE MEMBERS
MENU MENUS METHOD
METHODS MIN_VALUE MISC
MISC_ERROR MISC_WARNING MODE
MODE_ERROR MODULE MORE
NUMBER NUMBER_OF_ELEMENTS OF
OFFLINE ONLINE OPERATE
OPERATION OUTPUT PASSWORD

EDDL Specification for PROFIBUS Version 1.1, January 2001

©Copyright by PNO 2001 - All rights reserved Page: 129

PHYSICAL POST_EDIT_ACTIONS POST_READ_ACTIONS
POST_WRITE_ACTIONS PRE_EDIT_ACTIONS PRE_READ_ACTIONS
PRE_WRITE_ACTIONS PROCESS PROCESS_ERROR
PROGRAM READ READ_ONLY
READ_TIMEOUT RECORD REDEFINE
REDEFINITIONS REFRESH RELATIONS
REPLY REQUEST RESPONSE_CODES
return REVIEW SCALING_FACTOR
SELECT SELF_CORRECTING SERVICE
short signed SLOT
SOFTWARE STATE STYLE
SUCCESS SUMMARY switch
TIME TRANSACTION TRANSDUCER
TRUE TUNE TV
TYPE UNCORRECTABLE UNIT
unsigned UNSIGNED_INTEGER VALIDITY
VARIABLE VARIABLE_LIST VARIABLES
while WINDOW WRITE
WRITE_AS_ONE WRITE_TIMEOUT

B.3 Terminals
DEFINE digit = { 0-9 } .

bin_digit = { 0 1 } .

non_zero_digit = { 1-9 '-' } .

oct_digit = { 0-7 } .

hex_digit = { 0-9abcdefABCDEF } .

letter = { a-zA-Z } .

escapes = { '"?afnrtv'\' } .

ISOLatin1char = - { " } .

/* Integer */

(0b|0B) bin_digit + /* binaer */

non_zero_digit digit * /* dezimal */

"0" oct_digit * /* octal */

(0x|0X) hex_digit + /* hexadezimal */

/* real zahl */

digit*"."digit+((E|e){+\-}?digit+)?

/* string */

\" ISOLatin1char * \"

/* character */

\' ISOLatin1char \'

/* Identifier */

letter (letter|digit|_)*

EDDL Specification for PROFIBUS Version 1.1, January 2001

© Copyright by PNO 2001 - All rights reserved Page: 130

C Syntax-Formal Definition

C.1 Device Description Information
device_description

= identification definition_list

identification

= manufacturer ',' device_type ',' device_revision ',' DD_revision '

manufacturer

= 'MANUFACTURER' Integer

device_type

= 'DEVICE_TYPE' Integer

device_revision

= 'DEVICE_REVISION' Integer

DD_revision

= 'DD_REVISION' Integer

= 'EDD_REVISION' Integer

definition_list

= definition

= definition_list definition

definition

= item

= imported_description

= like

item

= array

= block

= collection

= command

= connection

= domain

= item_array

= menu

= method

= program

= record

= refresh_relation

= response_codes_definition

= unit_relation

= variable

= variable_list

= write_as_one_relation

EDDL Specification for PROFIBUS Version 1.1, January 2001

©Copyright by PNO 2001 - All rights reserved Page: 131

C.2 Array
array

= 'ARRAY' Identifier '{' array_attribute_list '}'

array_attribute_list

= array_attribute_listR

array_attribute_listR

= array_attribute

= array_attribute_listR array_attribute

array_attribute

= array_type /* M */

= array_size /* M */

= required_label /* M */

= help /* O */

= response_codes /* O */

array_type

= 'TYPE' variable_reference ';'

array_size

= 'NUMBER_OF_ELEMENTS' Integer ';'

C.3 Block
block

= 'BLOCK' Identifier '{' block_attribute_list '}'

block_attribute_list

= block_attribute_listR

block_attribute_listR

= block_attribute

= block_attribute_listR block_attribute

block_attribute

= block_type /* M */

= block_number /* M */

block_type

= 'TYPE' 'PHYSICAL' ';'

= 'TYPE' 'TRANSDUCER' ';'

= 'TYPE' 'FUNCTION' ';'

block_number

= 'NUMBER' Integer ';'

= 'NUMBER' expr ';'

EDDL Specification for PROFIBUS Version 1.1, January 2001

©Copyright by PNO 2001 - All rights reserved Page: 132

C.4 C-Grammer
c_primary_expr

= '[' Identifier ']'

= Identifier

= c_constant

= string_literal

= '(' c_expr ')'

c_constant

= Integer

= RealConst

= CharacterConst

c_postfix_expr

= c_primary_expr

= c_postfix_expr '[' c_expr ']'

= c_postfix_expr '(' ')'

= c_postfix_expr '(' c_argument_expr_list ')'

= c_postfix_expr '.' Identifier

= c_postfix_expr '.' 'DEFAULT_VALUE'

= c_postfix_expr '.' 'INITIAL_VALUE'

= c_postfix_expr '++'

= c_postfix_expr '--'

c_argument_expr_list

= c_assignment_expr

= c_argument_expr_list ',' c_assignment_expr

c_unary_expr

= c_postfix_expr

= '++' c_unary_expr

= '--' c_unary_expr

= c_unary_operator c_postfix_expr

c_unary_operator

= '+'

= '-'

= '~'

= '!'

c_multiplicative_expr

= c_unary_expr

= c_multiplicative_expr '*' c_unary_expr

= c_multiplicative_expr '/' c_unary_expr

= c_multiplicative_expr '%' c_unary_expr

c_additive_expr

= c_multiplicative_expr

= c_additive_expr '+' c_multiplicative_expr

EDDL Specification for PROFIBUS Version 1.1, January 2001

©Copyright by PNO 2001 - All rights reserved Page: 133

= c_additive_expr '-' c_multiplicative_expr

c_shift_expr

= c_additive_expr

= c_shift_expr '<<' c_additive_expr

= c_shift_expr '>>' c_additive_expr

c_relational_expr

= c_shift_expr

= c_relational_expr '<' c_shift_expr

= c_relational_expr '>' c_shift_expr

= c_relational_expr '>=' c_shift_expr

= c_relational_expr '<=' c_shift_expr

c_equality_expr

= c_relational_expr

= c_equality_expr '==' c_relational_expr

= c_equality_expr '!=' c_relational_expr

c_and_expr

= c_equality_expr

= c_and_expr '&' c_equality_expr

c_exclusive_or_expr

= c_and_expr

= c_exclusive_or_expr '^' c_and_expr

c_inclusive_or_expr

= c_exclusive_or_expr

= c_inclusive_or_expr '|' c_exclusive_or_expr

c_logical_and_expr

= c_inclusive_or_expr

= c_logical_and_expr '&&' c_inclusive_or_expr

c_logical_or_expr

= c_logical_and_expr

= c_logical_or_expr '||' c_logical_and_expr

c_conditional_expr

= c_logical_or_expr

= c_logical_or_expr '?' c_logical_or_expr ':' c_conditional_expr

c_assignment_expr

= c_conditional_expr

= c_unary_expr c_assignment_operator c_assignment_expr

c_assignment_operator

= '='

= '*='

= '/='

= '%='

= '+='

EDDL Specification for PROFIBUS Version 1.1, January 2001

©Copyright by PNO 2001 - All rights reserved Page: 134

= '-='

= '>>='

= '<<='

= '&='

= '^='

= '|='

c_expr

= c_assignment_expr

= c_expr ',' c_assignment_expr

c_constant_expr

= c_conditional_expr

c_declaration

= c_declaration_specifiers ';'

= c_declaration_specifiers c_declarator_list ';'

c_declaration_specifiers

= c_type_specifier

= c_type_specifier c_declaration_specifiers

c_declarator_list

= c_declarator

= c_declarator_list ',' c_declarator

c_declarator

= Identifier

= c_declarator '[' ']'

= c_declarator '[' c_constant_expr ']'

c_type_specifier

= 'char'

= 'short'

= 'int'

= 'long'

= 'signed'

= 'unsigned'

= 'float'

= 'double'

c_statement

= c_labeled_statement

= c_compound_statement

= c_expr_statement

= c_selection_statement

= c_iteration_statement

= c_jump_statement

c_labeled_statement

= 'case' c_constant_expr ':' c_statement

= 'default' ':' c_statement

EDDL Specification for PROFIBUS Version 1.1, January 2001

©Copyright by PNO 2001 - All rights reserved Page: 135

c_compound_statement

= '{' '}'

= '{' c_statement_list '}'

= '{' c_declaration_list '}'

= '{' c_declaration_list c_statement_list '}'

c_declaration_list

= c_declaration

= c_declaration_list c_declaration

c_statement_list

= c_statement

= c_statement_list c_statement

c_expr_statement

= ';'

= c_expr ';'

c_selection_statement

= 'if' '(' c_expr ')' c_statement

= 'if' '(' c_expr ')' c_statement 'else' c_statement

= 'switch' '(' c_expr ')' c_statement

c_iteration_statement

= 'while' '(' c_expr ')' c_statement

= 'do' c_statement 'while' '(' c_expr ')' ';'

= 'for' '(' ';' ';' ')' c_statement

= 'for' '(' ';' ';' c_expr ')' c_statement

= 'for' '(' ';' c_expr ';' ')' c_statement

= 'for' '(' ';' c_expr ';' c_expr ')' c_statement

= 'for' '(' c_expr ';' ';' ')' c_statement

= 'for' '(' c_expr ';' ';' c_expr ')' c_statement

= 'for' '(' c_expr ';' c_expr ';' ')' c_statement

= 'for' '(' c_expr ';' c_expr ';' c_expr ')' c_statement

c_jump_statement

= 'continue' ';'

= 'break' ';'

= 'return' ';'

= 'return' c_expr ';'

C.5 Collection
collection

= 'COLLECTION' 'OF' item_type Identifier '{' collection_attribute_list '}'

collection_attribute_list

= collection_attribute_listR

collection_attribute_listR

= collection_attribute

= collection_attribute_listR collection_attribute

EDDL Specification for PROFIBUS Version 1.1, January 2001

©Copyright by PNO 2001 - All rights reserved Page: 136

collection_attribute

= members /* M */

= help /* O */

= optional_label /* O */

members

= 'MEMBERS' '{' members_specifier_list '}'

members_specifier_list

= members_specifier_listR

members_specifier_listR

= members_specifier

= members_specifier_listR members_specifier

members_specifier

= member_list

= 'IF' '(' expr ')' '{' members_specifier_list '}'

= 'IF' '(' expr ')' '{' members_specifier_list '}'

'ELSE' '{' members_specifier_list '}'

= 'SELECT' '(' expr ')' '{' members_selection_list '}'

member_list

= member_listR

member_listR

= member

= member_listR member

member

= Identifier ',' reference ';'

= Identifier ',' reference ',' description_string ';'

= Identifier ',' reference ',' description_string ',' help_string ';'

members_selection_list

= members_selection

= members_selection_list members_selection

members_selection

= 'CASE' expr ':' members_specifier_list

= 'DEFAULT' ':' members_specifier_list

C.6 Command
command

= 'COMMAND' Identifier '{' command_attribute_list '}'

= 'COMMAND' Identifier '{' '}'

command_attribute_list

= command_attribute_listR

EDDL Specification for PROFIBUS Version 1.1, January 2001

©Copyright by PNO 2001 - All rights reserved Page: 137

command_attribute_listR

= command_attribute

= command_attribute_listR command_attribute

command_attribute

= command_address

= command_number

= operation

= transaction

= 'RESPONSE_CODES' '{' response_codes_specifier_list '}'

= 'CONNECTION' Identifier ';'

= 'MODULE' Identifier ';'

command_address

= 'SLOT' Integer ';'

= 'SLOT' Identifier ';'

= 'INDEX' Integer ';'

= 'BLOCK' Identifier ';'

command_number

= 'NUMBER' command_number_specifier ';'

command_number_specifier

= Integer ';'

= 'IF' '(' expr ')' '{' command_number_specifier '}' 'ELSE'

'{' command_number_specifier '}'

= 'SELECT' '(' expr ')' '{' command_number_selection_list '}'

command_number_selection_list

= command_number_selection_listR

command_number_selection_listR

= command_number_selection

= command_number_selection_listR command_number_selection

command_number_selection

= 'CASE' expr ':' command_number_specifier

= 'DEFAULT' ':' command_number_specifier

operation

= 'OPERATION' operation_specifier

operation_specifier

= 'READ' ';'

= 'WRITE' ';'

= 'COMMAND' ';'

= 'DATA_EXCHANGE' ';'

= 'IF' '(' expr ')' '{' operation_specifier '}' 'ELSE' '{' operation_specifier '}'

= 'SELECT' '(' expr ')' '{' operation_selection_list '}'

operation_selection_list

= operation_selection_listR

EDDL Specification for PROFIBUS Version 1.1, January 2001

©Copyright by PNO 2001 - All rights reserved Page: 138

operation_selection_listR

= operation_selection

= operation_selection_listR operation_selection

operation_selection

= 'CASE' expr ':' operation_specifier

= 'DEFAULT' ':' operation_specifier

transaction

= 'TRANSACTION' '{' transaction_specifier_list '}'

= 'TRANSACTION' Integer '{' transaction_specifier_list '}'

transaction_specifier_list

= transaction_specifier_listR

transaction_specifier_listR

= transaction_specifier

= transaction_specifier_listR transaction_specifier

transaction_specifier

= request

= reply

= 'RESPONSE_CODES' '(' reference ')'

request

= 'REQUEST' '{' data_items_specifier_list '}'

= 'REQUEST' '{' '}'

reply

= 'REPLY' '{' data_items_specifier_list '}'

= 'REPLY' '{' '}'

data_items_specifier_list

= data_items_specifier_listR

data_items_specifier_listR

= data_items_specifier

= data_items_specifier_listR data_items_specifier

data_items_specifier

= data_items_list

= 'IF' '(' expr ')' '{' data_items_specifier_list '}'

'ELSE' '{' data_items_specifier_list '}'

= 'SELECT' '(' expr ')' '{' data_items_selection_list '}'

data_items_list

= data_items_listR

data_items_listR

= data_items

= data_items_listR ',' data_items

EDDL Specification for PROFIBUS Version 1.1, January 2001

©Copyright by PNO 2001 - All rights reserved Page: 139

data_items

= Integer

= variable_reference

= variable_reference '<' Integer '>'

= variable_reference '(' data_items_qualifiers ')'

= variable_reference '<' Integer '>' '(' data_items_qualifiers ')'

data_items_qualifiers

= data_items_qualifiers_

data_items_qualifiers_

= data_items_qualifier

= data_items_qualifiers_ ',' data_items_qualifier

data_items_qualifier

= 'INDEX'

= 'INFO'

data_items_selection_list

= data_items_selection_listR

data_items_selection_listR

= data_items_selection

= data_items_selection_listR data_items_selection

data_items_selection

= 'CASE' expr ':' data_items_specifier_list

= 'DEFAULT' ':' data_items_specifier_list

C.7 Connection
connection

= 'CONNECTION' Identifier '{' connection_attribute_list '}'

connection_attribute_list

= connection_attribute_listR

connection_attribute_listR

= connection_attribute

= connection_attribute_listR connection_attribute

connection_attribute

= 'APPINSTANCE' Integer /* M */

C.8 Domain
domain

= 'DOMAIN' Identifier '{' domain_attribute_list '}'

domain_attribute_list

= domain_attribute_listR

EDDL Specification for PROFIBUS Version 1.1, January 2001

©Copyright by PNO 2001 - All rights reserved Page: 140

domain_attribute_listR

= domain_attribute

= domain_attribute_listR domain_attribute

domain_attribute

= handling /* O */

= response_codes /* O */

C.9 Expression
primary_expr

= reference '.' 'MIN_VALUE'

= reference '.' 'MAX_VALUE'

= reference '.' MIN_VALUE_Integer

= reference '.' MAX_VALUE_Integer

= reference

= RealConst

= Integer

= '(' expr ')'

postfix_expr

= primary_expr

= postfix_expr '++'

= postfix_expr '--'

unary_expr

= postfix_expr

= '++' unary_expr

= '--' unary_expr

= unary_operator multiplicative_expr

unary_operator

= '+'

= '-'

= '~'

= '!'

= '&'

multiplicative_expr

= unary_expr

= multiplicative_expr '*' unary_expr

= multiplicative_expr '/' unary_expr

= multiplicative_expr '%' unary_expr

additive_expr

= multiplicative_expr

= additive_expr '+' multiplicative_expr

= additive_expr '-' multiplicative_expr

shift_expr

= additive_expr

= shift_expr '<<' additive_expr

= shift_expr '>>' additive_expr

EDDL Specification for PROFIBUS Version 1.1, January 2001

©Copyright by PNO 2001 - All rights reserved Page: 141

relational_expr

= shift_expr

= relational_expr '<' shift_expr

= relational_expr '>' shift_expr

= relational_expr '>=' shift_expr

= relational_expr '<=' shift_expr

equality_expr

= relational_expr

= equality_expr '==' relational_expr

= equality_expr '!=' relational_expr

and_expr

= equality_expr

= and_expr '&' equality_expr

exclusive_or_expr

= and_expr

= exclusive_or_expr '^' and_expr

inclusive_or_expr

= exclusive_or_expr

= inclusive_or_expr '|' exclusive_or_expr

logical_and_expr

= inclusive_or_expr

= logical_and_expr '&&' inclusive_or_expr

logical_or_expr

= logical_and_expr

= logical_or_expr '||' logical_and_expr

conditional_expr

= logical_or_expr

= logical_or_expr '?' expr ':' conditional_expr

assignment_expr

= conditional_expr

= unary_expr assignment_operator assignment_expr

assignment_operator

= '='

= '*='

= '/='

= '%='

= '+='

= '-='

= '>>='

= '<<='

= '&='

= '^='

EDDL Specification for PROFIBUS Version 1.1, January 2001

©Copyright by PNO 2001 - All rights reserved Page: 142

= '|='

expr

= assignment_expr

= expr ',' assignment_expr

C.10 Imported EDD
imported_description

= 'IMPORT' identification '{' imports '}'

= 'IMPORT' identification '{' imports redefinitions '}'

imports

= 'EVERYTHING' ';'

= item_import_list

item_import_list

= item_import_listR

item_import_listR

= item_import

= item_import_listR item_import

item_import

= item_import_by_type ';'

= item_import_by_name ';'

item_import_by_type

= import_item_type

= item_import_by_type '&' import_item_type

import_item_type

= 'VARIABLES'

= 'METHODS'

= 'MENUS'

= 'RELATIONS'

= 'COLLECTIONS'

= 'COMMANDS'

= 'ARRAYS'

= 'RESPONSE_CODES'

= 'BLOCKS'

= 'ITEM_ARRAYS'

= 'RECORDS'

= 'VARIABLE_LIST'

= 'PROGRAMS'

= 'DOMAINS'

= 'CONNECTIONS'

item_import_by_name

= item_type Identifier

redefinitions

EDDL Specification for PROFIBUS Version 1.1, January 2001

©Copyright by PNO 2001 - All rights reserved Page: 143

= 'REDEFINITIONS' '{' redefinition_list '}'

redefinition_list

= redefinition_listR

redefinition_listR

= redefinition

= redefinition_listR redefinition

redefinition

= block_redefinition

= variable_redefinition

= menu_redefinition

= command_redefinition

= method_redefinition

= write_as_one_redefinition

= refresh_redefinition

= unit_redefinition

= item_array_redefinition

= collection_redefinition

= response_codes_definition_redefinition

= record_redefinition

= array_redefinition

= variable_list_redefinition

= program_redefinition

= domain_redefinition

= connection_redefinition

C.11 Item array
item_array

= 'ITEM_ARRAY' 'OF' item_type Identifier '{'item_array_attribute_list '}'

item_type

= 'VARIABLE'

= 'MENU'

= 'METHOD'

= 'REFRESH'

= 'UNIT'

= 'WRITE_AS_ONE'

= 'ITEM_ARRAY' 'OF' item_type

= 'COLLECTION' 'OF' item_type

= 'RECORD'

= 'ARRAY'

= 'VARIABLE_LIST'

= 'PROGRAM'

= 'DOMAIN'

= 'RESPONSE_CODES'

= 'BLOCK'

= 'COMMAND'

= 'CONNECTION'

EDDL Specification for PROFIBUS Version 1.1, January 2001

©Copyright by PNO 2001 - All rights reserved Page: 144

item_array_attribute_list

= item_array_attribute_listR

item_array_attribute_listR

= item_array_attribute

= item_array_attribute_listR item_array_attribute

item_array_attribute

= elements /* M */

= help /* M */

= optional_label /* O */

elements

= 'ELEMENTS' '{' elements_specifier_list '}'

elements_specifier_list

= elements_specifier_listR

elements_specifier_listR

= elements_specifier

= elements_specifier_listR elements_specifier

elements_specifier

= element_list

= 'IF' '(' expr ')' '{' elements_specifier_list '}'

= 'IF' '(' expr ')' '{' elements_specifier_list '}'

'ELSE' '{' elements_specifier_list '}'

= 'SELECT' '(' expr ')' '{' elements_selection_list '}'

element_list

= element_listR

element_listR

= element

= element_listR element

element

= Integer ',' reference ';'

= Integer ',' reference ',' description_string ';'

= Integer ',' reference ',' description_string ',' help_string ';'

elements_selection_list

= elements_selection_listR

elements_selection_listR

= elements_selection

= elements_selection_listR elements_selection

elements_selection

= 'CASE' expr ':' elements_specifier_list

= 'DEFAULT' ':' elements_specifier_list

EDDL Specification for PROFIBUS Version 1.1, January 2001

©Copyright by PNO 2001 - All rights reserved Page: 145

optional_label

= 'LABEL' string_specifier

C.12 Like
like

= Id1: Identifier 'LIKE' 'VARIABLE' Id2: Identifier

'{' variable_attribute_redefinition_list '}'

= Id1: Identifier 'LIKE' 'MENU' Id2: Identifier

'{' menu_attribute_redefinition_list '}'

= Id1: Identifier 'LIKE' 'METHOD' Id2: Identifier

'{' method_attribute_redefinition_list '}'

= Id1: Identifier 'LIKE' 'ITEM_ARRAY' 'OF' item_type Id2: Identifier

'{' item_array_attribute_redefinition_list '}'

= Id1: Identifier 'LIKE' 'COLLECTION' 'OF' item_type Id2: Identifier

'{' collection_attribute_redefinition_list '}'

= Id1: Identifier 'LIKE' 'RESPONSE_CODES' Id2: Identifier

'{' response_code_redefinition_list '}'

= Id1: Identifier 'LIKE' 'BLOCK' Id2: Identifier

'{' block_attribute_redefinition_list '}'

= Id1: Identifier 'LIKE' 'RECORD' Id2: Identifier

'{' record_attribute_redefinition_list '}'

= Id1: Identifier 'LIKE' 'ARRAY' Id2: Identifier

'{' array_attribute_redefinition_list '}'

= Id1: Identifier 'LIKE' 'VARIABLE_LIST' Id2: Identifier

'{' variable_list_attribute_redefinition_list '}'

= Id1: Identifier 'LIKE' 'COMMAND' Id2: Identifier

'{' command_attribute_redefinition_list '}'

= Id1: Identifier 'LIKE' 'CONNECTION' Id2

'{' connection_attribute_redefinition_list '}'

= Id1: Identifier 'LIKE' 'PROGRAM' Id2: Identifier

'{' program_attribute_redefinition_list '}'

= Id1: Identifier 'LIKE' 'DOMAIN' Id2: Identifier

'{' domain_attribute_redefinition_list '}'

C.13 Menu
menu

= 'MENU' Identifier '{' menu_attribute_list '}'

menu_attribute_list

= menu_attribute_listR

menu_attribute_listR

= menu_attribute

= menu_attribute_listR menu_attribute

menu_attribute

= required_label /* M */

= menu_items

EDDL Specification for PROFIBUS Version 1.1, January 2001

©Copyright by PNO 2001 - All rights reserved Page: 146

= menu_access

= menu_style

= help /* O */

= validity /* O */

menu_items

= 'ITEMS' '{' '}'

= 'ITEMS' '{' menu_item_list '}'

menu_item_list

= menu_item_listR

menu_item_listR

= menu_item

= menu_item_listR ',' menu_item

menu_item

= menu_item_item

= 'IF' '(' expr ')' '{' menu_item_list '}'

= 'IF' '(' expr ')' '{' menu_item_list '}' 'ELSE' '{' menu_item_list '}'

= 'SELECT' '(' expr ')' '{' menu_item_list_selection_list '}'

menu_item_item

= reference

= reference '(' 'REVIEW' ')'

= reference '(' variable_qualifier_list ')'

variable_qualifier_list

= variable_qualifier

= variable_qualifier_list ',' variable_qualifier

variable_qualifier

= 'DISPLAY_VALUE'

= 'READ_ONLY'

= 'HIDDEN'

menu_item_list_selection_list

= menu_item_list_selection_listR

menu_item_list_selection_listR

= menu_item_list_selection

= menu_item_list_selection_list menu_item_list_selection

menu_item_list_selection

= 'CASE' expr ':' menu_item_list

= 'DEFAULT' ':' menu_item_list

menu_access

= 'ACCESS' 'ONLINE' ';'

= 'ACCESS' 'OFFLINE' ';'

menu_style

EDDL Specification for PROFIBUS Version 1.1, January 2001

©Copyright by PNO 2001 - All rights reserved Page: 147

= 'STYLE' 'WINDOW' ';'

= 'STYLE' 'DIALOG' ';'

= 'STYLE' string ';'

C.14 Method
method

= 'METHOD' Identifier '{' method_attribute_list '}'

= 'METHOD' Identifier method_parameter_list'{' method_attribute_list '}'

method_parameter_list

= '(' method_parameter_listR ')'

method_parameter_listR

= method_parameter

= method_parameter_listR ',' method_parameter

method_parameter

= method_parameter_type Identifier

method_parameter_type

= 'float'

= 'int'

= 'long'

method_attribute_list

= method_attribute_listR

method_attribute_listR

= method_attribute

= method_attribute_listR method_attribute

method_attribute

= variable_class /* O */

= method_definition /* M */

= optional_label /* O */

= method_access

= help /* O */

= validity /* O */

method_access

= 'ACCESS' 'OFFLINE' ';'

= 'ACCESS' 'ONLINE' ';'

method_definition

= 'DEFINITION' c_compound_statement

C.15 Open-Close
open

= 'OPEN' filename

EDDL Specification for PROFIBUS Version 1.1, January 2001

©Copyright by PNO 2001 - All rights reserved Page: 148

close

= 'CLOSE' filename

filename

= Identifier

C.16 Program
program

= 'PROGRAM' Identifier '{' program_attribute_list '}'

program_attribute_list

= program_attribute_listR

program_attribute_listR

= program_attribute

= program_attribute_listR program_attribute

program_attribute

= arguments /* O */

= response_codes /* O */

arguments

= 'ARGUMENTS' '{' '}'

= 'ARGUMENTS' '{' arguments_specifier_list '}'

arguments_specifier_list

= arguments_specifier_listR

arguments_specifier_listR

= arguments_specifier

= arguments_specifier_listR arguments_specifier

arguments_specifier

= argument_list

= 'IF' '(' expr ')' '{' arguments_specifier_list '}'

= 'IF' '(' expr ')' '{' arguments_specifier_list '}'

'ELSE' '{' arguments_specifier_list '}'

= 'SELECT' '(' expr ')' '{' arguments_selection_list '}'

argument_list

= argument_listR

argument_listR

= argument

= argument_listR ',' argument

argument

= Integer

= RealConst

= variable_reference

EDDL Specification for PROFIBUS Version 1.1, January 2001

©Copyright by PNO 2001 - All rights reserved Page: 149

arguments_selection_list

= arguments_selection_listR

arguments_selection_listR

= arguments_selection

= arguments_selection_listR arguments_selection

arguments_selection

= 'CASE' expr ':' arguments_specifier_list

= 'DEFAULT' ':' arguments_specifier_list

C.17 Records
record

= 'RECORD' Identifier '{' record_attribute_list '}'

record_attribute_list

= record_attribute_listR

record_attribute_listR

= record_attribute

= record_attribute_listR record_attribute

record_attribute

= members /* M */

= required_label /* M */

= help /* O */

= response_codes /* O */

C.18 Redefinition
command_redefinition

= 'DELETE' 'COMMAND' Identifier ';'

= 'REDEFINE' 'COMMAND' Identifier '{' '}'

= 'REDEFINE' 'COMMAND' Identifier '{' command_attribute_list '}'

= 'COMMAND' Identifier '{' command_attribute_redefinition_list '}'

command_attribute_redefinition_list

= command_attribute_redefinition

= command_attribute_redefinition_list command_attribute_redefinition

command_attribute_redefinition

= command_address_redefinition

= command_number_redefinition

= command_operation_redefinition

= command_transaction_redefinition

= command_connection_redefinition

= command_response_codes_redefinition

= command_module_redefinition

command_address_redefinition

= 'DELETE' 'SLOT' ';'

EDDL Specification for PROFIBUS Version 1.1, January 2001

©Copyright by PNO 2001 - All rights reserved Page: 150

= 'DELETE' 'INDEX' ';'

= 'DELETE' 'BLOCK' ';'

= 'REDEFINE' 'SLOT' Integer ';'

= 'REDEFINE' 'SLOT' Identifier ';'

= 'REDEFINE' 'INDEX' Integer ';'

= 'REDEFINE' 'BLOCK' Identifier ';'

command_number_redefinition

= 'DELETE' 'NUMBER' ';'

= 'REDEFINE' 'NUMBER' command_number_specifier ';'

command_operation_redefinition

= 'DELETE' 'OPERATION' ';'

= 'REDEFINE' 'OPERATION' operation_specifier ';'

command_transaction_redefinition

= 'DELETE' 'TRANSACTION' ';'

= 'DELETE' 'TRANSACTION' Integer ';'

= 'REDEFINE' 'TRANSACTION' '{' transaction_specifier_list '}'

= 'REDEFINE' 'TRANSACTION' Integer '{' transaction_specifier_list '}'

command_connection_identifier_redefinition

= 'DELETE' 'CONNECTION' ';'

= 'REDEFINE' 'CONNECTION' Identifier ';'

command_response_codes_redefinition

= 'DELETE' 'RESPONSE_CODES' ';'

= 'REDEFINE' 'RESPONSE_CODES' '{' response_codes_specifier_list '}'

= 'RESPONSE_CODES' '{' response_codes_redefinition_list '}'

command_module_redefinition

= 'DELETE' 'MODULE' ';'

= 'REDEFINE' 'MODULE' Identifier ' ;'

connection_redefinition

= 'DELETE' 'CONNECTION' Identifier ';'

= 'REDEFINE' 'CONNECTION' Identifier '{' connection_attribute_list '}'

write_as_one_redefinition

= 'DELETE' 'WRITE_AS_ONE' Identifier ';'

= 'REDEFINE' 'WRITE_AS_ONE' Identifier '{' variable_reference_list '}'

block_redefinition

= 'DELETE' 'BLOCK' Identifier ';'

= 'REDEFINE' 'BLOCK' Identifier '{' '}'

= 'REDEFINE' 'BLOCK' Identifier '{' block_attribute_list '}'

= 'BLOCK' Identifier '{' block_attribute_redefinition_list '}'

block_attribute_redefinition_list

= block_attribute_redefinition

EDDL Specification for PROFIBUS Version 1.1, January 2001

©Copyright by PNO 2001 - All rights reserved Page: 151

= block_attribute_redefinition_list block_attribute_redefinition

block_attribute_redefinition

= block_type_redefinition

= block_number_redefinition

block_type_redefinition

= 'REDEFINE' block_type

block_number_redefinition

= 'REDEFINE' block_number

variable_redefinition

= 'DELETE' 'VARIABLE' Identifier ';'

= 'REDEFINE' 'VARIABLE' Identifier '{' '}'

= 'REDEFINE' 'VARIABLE' Identifier '{' variable_attribute_list '}'

= 'VARIABLE' Identifier '{' variable_attribute_redefinition_list '}'

variable_attribute_redefinition_list

=

= variable_attribute_redefinition_list variable_attribute_redefinition

variable_attribute_redefinition

= variable_class_redefinition

= handling_redefinition

= help_redefinition

= constant_unit_redefinition

= required_label_redefinition

= pre_edit_actions_redefinition

= post_edit_actions_redefinition

= pre_read_actions_redefinition

= post_read_actions_redefinition

= pre_write_actions_redefinition

= post_write_actions_redefinition

= read_timeout_redefinition

= write_timeout_redefinition

= type_redefinition

= response_codes_reference_redefinition

= validity_redefinition

= default_value_redefinition

= initial_value_redefinition

variable_class_redefinition

= 'REDEFINE' variable_class

handling_redefinition

= 'DELETE' 'HANDLING' ';'

= 'REDEFINE' handling

help_redefinition

= 'DELETE' 'HELP' ';'

= 'REDEFINE' help

EDDL Specification for PROFIBUS Version 1.1, January 2001

©Copyright by PNO 2001 - All rights reserved Page: 152

constant_unit_redefinition

= 'DELETE' 'CONSTANT_UNIT' ';'

= 'REDEFINE' constant_unit

required_label_redefinition

= 'REDEFINE' required_label

pre_edit_actions_redefinition

= 'DELETE' 'PRE_EDIT_ACTIONS' ';'

= 'REDEFINE' pre_edit_actions

post_edit_actions_redefinition

= 'DELETE' 'POST_EDIT_ACTIONS' ';'

= 'REDEFINE' post_edit_actions

pre_read_actions_redefinition

= 'DELETE' 'PRE_READ_ACTIONS' ';'

= 'REDEFINE' pre_read_actions

post_read_actions_redefinition

= 'DELETE' 'POST_READ_ACTIONS' ';'

= 'REDEFINE' post_read_actions

pre_write_actions_redefinition

= 'DELETE' 'PRE_WRITE_ACTIONS' ';'

= 'REDEFINE' pre_write_actions

post_write_actions_redefinition

= 'DELETE' 'POST_WRITE_ACTIONS' ';'

= 'REDEFINE' post_write_actions

read_timeout_redefinition

= 'DELETE' 'READ_TIMEOUT' ';'

= 'REDEFINE' read_timeout

write_timeout_redefinition

= 'DELETE' 'WRITE_TIMEOUT' ';'

= 'REDEFINE' write_timeout

type_redefinition

= 'TYPE' type_redefinitions

= 'REDEFINE' type

type_redefinitions

= 'INTEGER' '{' arithmetic_option_redefinition_list '}'

= 'UNSIGNED_INTEGER' '{' arithmetic_option_redefinition_list '}'

= 'FLOAT' '{' arithmetic_option_redefinition_list '}'

= 'DOUBLE' '{' arithmetic_option_redefinition_list '}'

= 'ENUMERATED' '{' enumeration_redefinition_list '}'

= 'BIT_ENUMERATED' '{' bit_enumeration_redefinition_list '}'

arithmetic_option_redefinition_list

= arithmetic_option_redefinition

EDDL Specification for PROFIBUS Version 1.1, January 2001

©Copyright by PNO 2001 - All rights reserved Page: 153

= arithmetic_option_redefinition_list arithmetic_option_redefinition

arithmetic_option_redefinition

= display_format_redefinition

= edit_format_redefinition

= scaling_factor_redefinition

= minimum_value_redefinition

= maximum_value_redefinition

= default_value_redefinition

= initial_value_redefinition

display_format_redefinition

= 'DELETE' 'DISPLAY_FORMAT' ';'

= 'REDEFINE' display_format

edit_format_redefinition

= 'DELETE' 'EDIT_FORMAT' ';'

= 'REDEFINE' edit_format

scaling_factor_redefinition

= 'DELETE' 'SCALING_FACTOR' ';'

= 'REDEFINE' scaling_factor

minimum_value_redefinition

= 'DELETE' 'MIN_VALUE' ';'

= 'DELETE' MIN_VALUE_Integer ';'

= 'REDEFINE' minimum_value

maximum_value_redefinition

= 'DELETE' 'MAX_VALUE' ';'

= 'DELETE' MAX_VALUE_Integer ';'

= 'REDEFINE' maximum_value

enumeration_redefinition_list

= enumeration_redefinition

= enumeration_redefinition_list enumeration_redefinition

enumeration_redefinition

= 'DELETE' Integer ';'

= 'REDEFINE' enumerator

= 'ADD' enumerator

bit_enumeration_redefinition_list

= bit_enumeration_redefinition

= bit_enumeration_redefinition_list bit_enumeration_redefinition

bit_enumeration_redefinition

= 'DELETE' Integer ';'

= 'REDEFINE' bit_enumerator

= 'ADD' bit_enumerator

response_codes_reference_redefinition

= 'DELETE' 'RESPONSE_CODES' ';'

EDDL Specification for PROFIBUS Version 1.1, January 2001

©Copyright by PNO 2001 - All rights reserved Page: 154

= 'REDEFINE' response_codes

validity_redefinition

= 'DELETE' 'VALIDITY' ';'

= 'REDEFINE' validity

default_value_redefinition

= 'DELETE' 'DEFAULT_VALUE' ';'

= 'REDEFINE' default_value

initial_value_redefinition

= 'DELETE' 'INITIAL_VALUE' ';'

= 'REDEFINE' initial_value

menu_redefinition

= 'DELETE' 'MENU' Identifier ';'

= 'REDEFINE' 'MENU' Identifier '{' '}'

= 'REDEFINE' 'MENU' Identifier '{' menu_attribute_list '}'

= 'MENU' Identifier '{' menu_attribute_redefinition_list '}'

menu_attribute_redefinition_list

= menu_attribute_redefinition_list menu_attribute_redefinition

menu_attribute_redefinition

= required_label_redefinition

= menu_items_redefinition

= menu_access_redefinition

= menu_style_redefinition

= help_redefinition

menu_items_redefinition

= 'REDEFINE' menu_items

menu_access_redefinition

= 'REDEFINE' menu_access

menu_style_redefinition

= 'REDEFINE' menu_style

method_redefinition

= 'DELETE' 'METHOD' Identifier ';'

= 'REDEFINE' 'METHOD' Identifier '{' '}'

= 'REDEFINE' 'METHOD' Identifier '{' method_attribute_list '}'

= 'METHOD' Identifier '{' method_attribute_redefinition_list '}'

method_attribute_redefinition_list

= method_attribute_redefinition

= method_attribute_redefinition_list method_attribute_redefinition

method_attribute_redefinition

= variable_class_redefinition

= method_definition_redefinition

= required_label_redefinition

EDDL Specification for PROFIBUS Version 1.1, January 2001

©Copyright by PNO 2001 - All rights reserved Page: 155

= help_redefinition

= validity_redefinition

method_definition_redefinition

= 'REDEFINE' method_definition

refresh_redefinition

= 'DELETE' 'REFRESH' Identifier ';'

= 'REDEFINE' 'REFRESH' Identifier '{' '}'

= 'REDEFINE' 'REFRESH' Identifier '{' refresh_specifier '}'

unit_redefinition

= 'DELETE' 'UNIT' Identifier ';'

= 'REDEFINE' 'UNIT' Identifier '{' '}'

= 'REDEFINE' 'UNIT' Identifier '{' unit_specifier '}'

item_array_redefinition

= 'DELETE' 'ITEM_ARRAY' Identifier ';'

= 'REDEFINE' 'ITEM_ARRAY' 'OF' item_type Identifier '{' '}'

= 'REDEFINE' 'ITEM_ARRAY' 'OF' item_type Identifier

'{' item_array_attribute_list '}'

= 'ITEM_ARRAY' 'OF' item_type Identifier

'{' item_array_attribute_redefinition_list '}'

item_array_attribute_redefinition_list

= item_array_attribute_redefinition

= item_array_attribute_redefinition_list item_array_attribute_redefinition

item_array_attribute_redefinition

= elements_redefinition

= help_redefinition

= optional_label_redefinition

elements_redefinition

= 'ELEMENTS' '{' element_redefinition_list '}'

= 'REDEFINE' elements

element_redefinition_list

= element_redefinition

= element_redefinition_list element_redefinition

element_redefinition

= 'DELETE' Integer ';'

= 'REDEFINE' element

= 'ADD' element

optional_label_redefinition

= 'DELETE' 'LABEL' ';'

= 'REDEFINE' optional_label

collection_redefinition

= 'DELETE' 'COLLECTION' Identifier ';'

= 'REDEFINE' 'COLLECTION' 'OF' item_type Identifier '{' '}'

EDDL Specification for PROFIBUS Version 1.1, January 2001

©Copyright by PNO 2001 - All rights reserved Page: 156

= 'REDEFINE' 'COLLECTION' 'OF' item_type Identifier

'{' collection_attribute_list '}'

= 'COLLECTION' 'OF' item_type Identifier

'{' collection_attribute_redefinition_list '}'

collection_attribute_redefinition_list

= collection_attribute_redefinition

= collection_attribute_redefinition_list collection_attribute_redefinition

collection_attribute_redefinition

= members_redefinition

= help_redefinition

= optional_label_redefinition

members_redefinition

= 'MEMBERS' '{' member_redefinition_list '}'

= 'REDEFINE' members

member_redefinition_list

= member_redefinition

= member_redefinition_list member_redefinition

member_redefinition

= 'DELETE' Identifier ';'

= 'REDEFINE' member

= 'ADD' member

record_redefinition

= 'DELETE' 'RECORD' Identifier ';'

= 'REDEFINE' 'RECORD' Identifier '{' record_attribute_list '}'

= 'RECORD' Identifier '{' record_attribute_redefinition_list '}'

record_attribute_redefinition_list

= record_attribute_redefinition

= record_attribute_redefinition_list record_attribute_redefinition

record_attribute_redefinition

= help_redefinition

= required_label_redefinition

= response_codes_reference_redefinition

= members_redefinition

array_redefinition

= 'DELETE' 'ARRAY' Identifier ';'

= 'REDEFINE' 'ARRAY' Identifier '{' array_attribute_list '}'

= 'ARRAY' Identifier '{' array_attribute_redefinition_list '}'

array_attribute_redefinition_list

= array_attribute_redefinition

= array_attribute_redefinition_list array_attribute_redefinition

array_attribute_redefinition

= array_type_redefinition

= number_of_elements_redefinition

EDDL Specification for PROFIBUS Version 1.1, January 2001

©Copyright by PNO 2001 - All rights reserved Page: 157

= help_redefinition

= required_label_redefinition

= response_codes_reference_redefinition

array_type_redefinition

= 'REDEFINE' array_type

number_of_elements_redefinition

= 'REDEFINE' number_of_elements

response_codes_definition_redefinition

= 'DELETE' 'RESPONSE_CODES' Identifier ';'

= 'REDEFINE' 'RESPONSE_CODES' Identifier '{' '}'

= 'REDEFINE' 'RESPONSE_CODES' Identifier '{' response_codes_specifier_list '}'

= 'RESPONSE_CODES' Identifier '{' response_code_redefinition_list '}'

response_code_redefinition_list

= response_code_redefinition

= response_code_redefinition_list response_code_redefinition

response_code_redefinition

= 'DELETE' Integer ';'

= 'REDEFINE' response_code

= 'ADD' response_code

variable_list_redefinition

= 'DELETE' 'VARIABLE_LIST' Identifier ';'

= 'REDEFINE' 'VARIABLE_LIST' Identifier '{' variable_list_attribute_list '}'

= 'VARIABLE_LIST' Identifier '{' variable_list_attribute_redefinition_list '}'

variable_list_attribute_redefinition_list

= variable_list_attribute_redefinition

= variable_list_attribute_redefinition_list variable_list_attribute_redefinition

variable_list_attribute_redefinition

= help_redefinition

= optional_label_redefinition

= response_codes_reference_redefinition

= members_redefinition

program_redefinition

= 'DELETE' 'PROGRAM' Identifier ';'

= 'REDEFINE' 'PROGRAM' Identifier '{' program_attribute_list '}'

= 'PROGRAM' Identifier '{' program_attribute_redefinition_list '}'

program_attribute_redefinition_list

= program_attribute_redefinition

= program_attribute_redefinition_list program_attribute_redefinition

program_attribute_redefinition

= arguments_redefinition

= response_codes_reference_redefinition

EDDL Specification for PROFIBUS Version 1.1, January 2001

©Copyright by PNO 2001 - All rights reserved Page: 158

arguments_redefinition

= 'DELETE' 'ARGUMENTS' ';'

= 'REDEFINE' arguments

domain_redefinition

= 'DELETE DOMAIN' Identifier ';'

= 'REDEFINE DOMAIN' Identifier '{' domain_attribute_list '}'

= 'DOMAIN' Identifier '{' domain_attribute_redefinition_list '}'

domain_attribute_redefinition_list

= domain_attribute_redefinition

= domain_attribute_redefinition_list domain_attribute_redefinition

domain_attribute_redefinition

= handling_redefinition

= response_codes_reference_redefinition

C.19 References
reference

= Identifier

= reference '[' expr ']'

= reference '(' argument_list ')'

= reference '.' Identifier

= 'BLOCK' '.' Identifier

variable_reference

= reference

menu_reference

= reference

method_reference

= reference

item_array_reference

= reference

collection_reference

= reference

response_codes_reference

= reference

refresh_reference

= reference

unit_reference

= reference

block_reference

EDDL Specification for PROFIBUS Version 1.1, January 2001

©Copyright by PNO 2001 - All rights reserved Page: 159

= reference

C.20 Relation
refresh_relation

= 'REFRESH' Identifier '{' refresh_specifier '}'

refresh_specifier

= left: variable_reference_list ':' right: variable_reference_list

variable_reference_list

= variable_reference_listR

variable_reference_listR

= variable_reference

= variable_reference_listR variable_reference

= variable_reference_listR ',' variable_reference

unit_relation

= 'UNIT' Identifier '{' unit_specifier '}'

unit_specifier

= variable_reference ':' variable_reference_list

write_as_one_relation

= 'WRITE_AS_ONE' Identifier '{' variable_reference_list '}'

C.21 Response Code
response_codes_definition

= 'RESPONSE_CODES' Identifier '{' response_codes_specifier_list '}'

response_codes_specifier_list

= response_codes_specifier_listR

response_codes_specifier_listR

= response_codes_specifier

= response_codes_specifier_listR response_codes_specifier

response_codes_specifier

= response_code_list

= 'IF' '(' expr ')' '{' response_codes_specifier_list '}'

= 'IF' '(' expr ')' '{' response_codes_specifier_list '}'

'ELSE' '{' response_codes_specifier_list '}'

= 'SELECT' '(' expr ')' '{' response_codes_selection_list '}'

response_code_list

= response_code_listR

response_code_listR

= response_code

= response_code_listR response_code

EDDL Specification for PROFIBUS Version 1.1, January 2001

©Copyright by PNO 2001 - All rights reserved Page: 160

response_code

= Integer ',' response_code_type ',' description_string ',' help_string ';'

= Integer ',' response_code_type ',' description_string ';'

response_code_type

= 'SUCCESS'

= 'MISC_WARNING'

= 'DATA_ENTRY_WARNING'

= 'DATA_ENTRY_ERROR'

= 'MODE_ERROR'

= 'PROCESS_ERROR'

= 'MISC_ERROR'

response_codes_selection_list

= response_codes_selection_listR

response_codes_selection_listR

= response_codes_selection

= response_codes_selection_listR response_codes_selection

response_codes_selection

= 'CASE' expr ':' response_codes_specifier_list

= 'DEFAULT' ':' response_codes_specifier_list

C.22 Variable
variable

= 'VARIABLE' Identifier '{' variable_attribute_list '}'

variable_attribute_list

= variable_attribute_listR

variable_attribute_listR

= variable_attribute

= variable_attribute_listR variable_attribute

variable_attribute

= variable_class /* M */

= type /* M */

= required_label /* M */

= constant_unit /* O */

= handling /* O */

= help /* O */

= pre_edit_actions /* O */

= post_edit_actions /* O */

= pre_read_actions /* O */

= post_read_actions /* O */

= pre_write_actions /* O */

= post_write_actions /* O */

= read_timeout /* O */

= write_timeout /* O */

= response_codes /* O */

EDDL Specification for PROFIBUS Version 1.1, January 2001

©Copyright by PNO 2001 - All rights reserved Page: 161

= validity /* O */

= default_value

= initial_value

variable_class

= 'CLASS' variable_class_definition ';'

variable_class_definition

= variable_class_keyword

= variable_class_definition '&' variable_class_keyword

variable_class_keyword

= 'INPUT'

= 'OUTPUT'

= 'CONTAINED'

= 'DYNAMIC'

= 'DIAGNOSTIC'

= 'SERVICE'

= 'OPERATE'

= 'ALARM'

= 'TUNE'

= 'LOCAL'

required_label

= 'LABEL' required_string_specifier

required_string_specifier

= string ';'

= 'IF' '(' expr ')' '{' required_string_specifier '}'

'ELSE' '{' required_string_specifier '}'

= 'SELECT' '(' expr ')' '{' required_string_selection_list '}'

string

= string_literal

= variable_reference

= variable_reference '(' Integer ')'

= '[' Identifier ']'

string_literal

= string_const

= string_literal string_const

required_string_selection_list

= required_string_selection_listR

required_string_selection_listR

= required_string_selection

= required_string_selection_listR required_string_selection

required_string_selection

= 'CASE' expr ':' required_string_specifier

= 'DEFAULT' ':' required_string_specifier

EDDL Specification for PROFIBUS Version 1.1, January 2001

©Copyright by PNO 2001 - All rights reserved Page: 162

constant_unit

= 'CONSTANT_UNIT' string_specifier

string_specifier

= string ';'

= 'IF' '(' expr ')' '{' string_specifier '}'

= 'IF' '(' expr ')' '{' string_specifier '}' 'ELSE' '{' string_specifier '}'

= 'SELECT' '(' expr ')' '{' string_selection_list '}'

string_selection_list

= string_selection_listR

string_selection_listR

= string_selection

= string_selection_listR string_selection

string_selection

= 'CASE' expr ':' string_specifier

= 'DEFAULT' ':' string_specifier

handling

= 'HANDLING' handling_specifier

handling_specifier

= handling_definition ';'

= 'IF' '(' expr ')' '{' handling_specifier '}'

= 'IF' '(' expr ')' '{' handling_specifier '}' 'ELSE' '{' handling_specifier '}'

= 'SELECT' '(' expr ')' '{' handling_selection_list '}'

handling_definition

= handling_definition_

handling_definition_

= handling_keyword

= handling_definition_ '&' handling_keyword

handling_keyword

= 'READ'

= 'WRITE'

handling_selection_list

= handling_selection_listR

handling_selection_listR

= handling_selection

= handling_selection_listR handling_selection

handling_selection

= 'CASE' expr ':' handling_specifier

= 'DEFAULT' ':' handling_specifier

help

= 'HELP' string_specifier

EDDL Specification for PROFIBUS Version 1.1, January 2001

©Copyright by PNO 2001 - All rights reserved Page: 163

pre_edit_actions

= 'PRE_EDIT_ACTIONS' '{' actions_specifier_list '}'

post_edit_actions

= 'POST_EDIT_ACTIONS' '{' actions_specifier_list '}'

pre_read_actions

= 'PRE_READ_ACTIONS' '{' actions_specifier_list '}'

post_read_actions

= 'POST_READ_ACTIONS' '{' actions_specifier_list '}'

pre_write_actions

= 'PRE_WRITE_ACTIONS' '{' actions_specifier_list '}'

post_write_actions

= 'POST_WRITE_ACTIONS' '{' actions_specifier_list '}'

actions_specifier_list

= actions_specifier_listR

actions_specifier_listR

= actions_specifier

= actions_specifier_listR actions_specifier

actions_specifier

= method_reference_list

= 'IF' '(' expr ')' '{' actions_specifier_list '}'

= 'IF' '(' expr ')' '{' actions_specifier_list '}'

'ELSE' '{' actions_specifier_list '}'

= 'SELECT' '(' expr ')' '{' actions_selection_list '}'

method_reference_list

= method_reference_listR

method_reference_listR

= method_reference

= method_reference_listR ',' method_reference

actions_selection_list

= actions_selection_listR

actions_selection_listR

= actions_selection

= actions_selection_listR actions_selection

actions_selection

= 'CASE' expr ':' actions_specifier_list

= 'DEFAULT' ':' actions_specifier_list

read_timeout

= 'READ_TIMEOUT' expr_specifier

EDDL Specification for PROFIBUS Version 1.1, January 2001

©Copyright by PNO 2001 - All rights reserved Page: 164

write_timeout

= 'WRITE_TIMEOUT' expr_specifier

expr_specifier

= expr ';'

= 'IF' '(' expr ')' '{' expr_specifier '}'

= 'IF' '(' expr ')' '{' expr_specifier '}' 'ELSE' '{' expr_specifier '}'

= 'SELECT' '(' expr ')' '{' expr_selection_list '}'

expr_selection_list

= expr_selection_listR

expr_selection_listR

= expr_selection

= expr_selection_listR expr_selection

expr_selection

= 'CASE' expr ':' expr_specifier

= 'DEFAULT' ':' expr_specifier

type

= 'TYPE' type_specifier

type_specifier

= arithmetic_type

= enumerated_type

= index_type

= string_type

= bitstring_type

= date_time_type

arithmetic_type

= float_type

= double_type

= integer_type

= unsigned_integer_type

float_type

= 'FLOAT' ';'

= 'FLOAT' '{' arithmetic_option_list '}'

double_type

= 'DOUBLE' ';'

= 'DOUBLE' '{' arithmetic_option_list '}'

integer_type

= 'INTEGER' ';'

= 'INTEGER' '(' Integer ')' ';'

= 'INTEGER' '{' arithmetic_option_list '}'

= 'INTEGER' '(' Integer ')' '{' arithmetic_option_list '}'

unsigned_integer_type

EDDL Specification for PROFIBUS Version 1.1, January 2001

©Copyright by PNO 2001 - All rights reserved Page: 165

= 'UNSIGNED_INTEGER' ';'

= 'UNSIGNED_INTEGER' '(' Integer ')' ';'

= 'UNSIGNED_INTEGER' '{' arithmetic_option_list '}'

= 'UNSIGNED_INTEGER' '(' Integer ')' '{' arithmetic_option_list '}'

arithmetic_option_list

= arithmetic_option_listR

arithmetic_option_listR

= arithmetic_option

= arithmetic_option_listR arithmetic_option

arithmetic_option

= display_format

= edit_format

= scaling_factor

= minimum_value

= maximum_value

= default_value

= initial_value

= enumerator_list

display_format

= 'DISPLAY_FORMAT' string_specifier

edit_format

= 'EDIT_FORMAT' string_specifier

scaling_factor

= 'SCALING_FACTOR' expr_specifier

minimum_value

= 'MIN_VALUE' expr_specifier

= MIN_VALUE_Integer expr_specifier

MIN_VALUE_Integer

= 'MIN_VALUE1'

= 'MIN_VALUE2'

= 'MIN_VALUE3'

= 'MIN_VALUE4'

= 'MIN_VALUE5'

maximum_value

= 'MAX_VALUE' expr_specifier

= MAX_VALUE_Integer expr_specifier

MAX_VALUE_Integer

= 'MAX_VALUE1'

= 'MAX_VALUE2'

= 'MAX_VALUE3'

= 'MAX_VALUE4'

= 'MAX_VALUE5'

EDDL Specification for PROFIBUS Version 1.1, January 2001

©Copyright by PNO 2001 - All rights reserved Page: 166

enumerated_type

= 'ENUMERATED' '{' enumerators_list '}'

= 'ENUMERATED' '(' Integer ')' '{' enumerators_list '}'

= 'BIT_ENUMERATED' '{' bit_enumerators_list '}'

= 'BIT_ENUMERATED' '(' Integer ')' '{' bit_enumerators_list '}'

enumerators_list

= enumerators_listR

enumerators_listR

= enumerators_items

= enumerators_listR enumerators_items

enumerators_items

= default_value

= initial_value

= enumerators

enumerators

= enumerator_list

= 'IF' '(' expr ')' '{' enumerators_list '}'

= 'IF' '(' expr ')' '{' enumerators_list '}' 'ELSE' '{' enumerators_list '}'

= 'SELECT' '(' expr ')' '{' enumerators_list_selection_list '}'

enumerator_list

= enumerator_listR

enumerator_listR

= enumerator

= enumerator_listR ',' enumerator

enumerator

= '{' Integer ',' description_string '}'

= '{' Integer ',' description_string ',' help_string '}'

description_string

= string

help_string

= string

enumerators_list_selection_list

= enumerators_list_selection_listR

enumerators_list_selection_listR

= enumerators_list_selection

= enumerators_list_selection_list enumerators_list_selection

enumerators_list_selection

= 'CASE' expr ':' enumerators_list

= 'DEFAULT' ':' enumerators_list

EDDL Specification for PROFIBUS Version 1.1, January 2001

©Copyright by PNO 2001 - All rights reserved Page: 167

bit_enumerators_list

= bit_enumerators_listR

bit_enumerators_listR

= bit_enumerators_items

= bit_enumerators_listR bit_enumerators_items

bit_enumerators_items

= default_value

= initial_value

= bit_enumerators

bit_enumerators

= bit_enumerator_list

= 'IF' '(' expr ')' '{' bit_enumerators_list '}'

= 'IF' '(' expr ')' '{' bit_enumerators_list '}' 'ELSE' '{' bit_enumerators_list '}'

= 'SELECT' '(' expr ')' '{' bit_enumerators_list_selection_list '}'

bit_enumerator_list

= bit_enumerator_listR

bit_enumerator_listR

= bit_enumerator

= bit_enumerator_listR ',' bit_enumerator

bit_enumerator

= '{' Integer ',' description_string '}'

= '{' Integer ',' description_string ',

' help_string '}'

= '{' Integer ',' description_string ',

' variable_class_definition '}'

= '{' Integer ',' description_string ',

' status_class '}'

= '{' Integer ',' description_string ',

' method_reference '}'

= '{' Integer ',' description_string ',

' help_string ',' variable_class_definition '}'

= '{' Integer ',' description_string ',

' help_string ',' status_class '}'

= '{' Integer ',' description_string ',

' help_string ',' method_reference '}'

= '{' Integer ',' description_string ',

' variable_class_definition ',' status_class '}'

= '{' Integer ',' description_string ',

' variable_class_definition ',' method_reference '}'

= '{' Integer ',' description_string ',

' status_class ',' method_reference '}'

= '{' Integer ',' description_string ',

' help_string ',' variable_class_definition ',' status_class '}'

= '{' Integer ',' description_string ',

' help_string ',' variable_class_definition ',' method_reference '}'

= '{' Integer ',' description_string ',

' help_string ',' status_class ',' method_reference '}'

EDDL Specification for PROFIBUS Version 1.1, January 2001

©Copyright by PNO 2001 - All rights reserved Page: 168

= '{' Integer ',' description_string ',

' variable_class_definition ',' status_class ',' method_reference '}'

= '{' Integer ',' description_string ',

' help_string ',' variable_class_definition ',' status_class ',

' method_reference '}'

status_class

= status_class_keyword

= status_class '&' status_class_keyword

status_class_keyword

= 'HARDWARE'

= 'SOFTWARE'

= 'PROCESS'

= 'MODE'

= 'DATA'

= 'MISC'

= 'EVENT'

= 'STATE'

= 'SELF_CORRECTING'

= 'CORRECTABLE'

= 'UNCORRECTABLE'

= 'SUMMARY'

= 'DETAIL'

= 'MORE'

= 'COMM_ERROR'

= 'IGNORE_IN_HANDHELD'

= 'DV' '(' output_mode ')'

= 'TV' '(' output_mode ')'

= 'AO' '(' output_mode ')'

= 'ALL' '(' output_mode ')'

= 'DV' Integer '(' output_mode ')'

= 'TV' Integer '(' output_mode ')'

= 'AO' Integer '(' output_mode ')'

= 'ALL' Integer '(' output_mode ')'

output_mode

= reliability '&' mode

= mode '&' reliability

reliability

= 'AUTO'

= 'MANUAL'

mode

= 'GOOD'

= 'BAD'

bit_enumerators_list_selection_list

= bit_enumerators_list_selection_listR

bit_enumerators_list_selection_listR

= bit_enumerators_list_selection

EDDL Specification for PROFIBUS Version 1.1, January 2001

©Copyright by PNO 2001 - All rights reserved Page: 169

= bit_enumerators_list_selection_listR bit_enumerators_list_selection

bit_enumerators_list_selection

= 'CASE' expr ':' bit_enumerators_list

= 'DEFAULT' ':' bit_enumerators_list

index_type

= 'INDEX' item_array_reference ';'

= 'INDEX' item_array_reference '{' '}'

= 'INDEX' item_array_reference '{' string_option_list '}'

= 'INDEX' '(' Integer ')' item_array_reference ';'

= 'INDEX' '(' Integer ')' item_array_reference '{' '}'

= 'INDEX' '(' Integer ')' item_array_reference '{' string_option_list '}'

string_type

= 'ASCII' '(' Integer ')' ';'

= 'ASCII' '(' Integer ')' '{' '}'

= 'ASCII' '(' Integer ')' '{' string_option_list '}'

= 'PASSWORD' '(' Integer ')' ';'

= 'PASSWORD' '(' Integer ')' '{' '}'

= 'PASSWORD' '(' Integer ')' '{' string_option_list '}'

string_option_list

= string_option_listR

string_option_listR

= string_option

= string_option_listR string_option

string_option

= default_value

= initial_value

bitstring_type

= 'BITSTRING' '(' Integer ')' ';'

date_time_type

= 'DATE_AND_TIME' ';'

= 'DATE_AND_TIME' '{' '}'

= 'DATE_AND_TIME' '{' string_option_list '}'

= 'TIME' ';'

= 'TIME' '{' '}'

= 'TIME' '{' string_option_list '}'

= 'TIME' '(' Integer ')' ';'

= 'TIME' '(' Integer ')' '{' '}'

= 'TIME' '(' Integer ')' '{' string_option_list '}'

response_codes

= 'RESPONSE_CODES' response_codes_reference ';'

= 'RESPONSE_CODES' expr_specifier

validity

EDDL Specification for PROFIBUS Version 1.1, January 2001

©Copyright by PNO 2001 - All rights reserved Page: 170

= 'VALIDITY' boolean_specifier

boolean_specifier

= boolean ';'

= 'IF' '(' expr ')' '{' boolean_specifier '}'

= 'IF' '(' expr ')' '{' boolean_specifier '}' 'ELSE' '{' boolean_specifier '}'

= 'SELECT' '(' expr ')' '{' boolean_selection_list '}'

boolean

= 'TRUE'

= 'FALSE'

boolean_selection_list

= boolean_selection_listR

boolean_selection_listR

= boolean_selection

= boolean_selection_listR boolean_selection

boolean_selection

= 'CASE' expr ':' boolean_specifier

= 'DEFAULT' ':' boolean_specifier

default_value

= 'DEFAULT_VALUE' expr_specifier

= 'DEFAULT_VALUE' string ';'

initial_value

= 'INITIAL_VALUE' expr_specifier

= 'INITIAL_VALUE' string ';'

C.23 Variable List
variable_list

= 'VARIABLE_LIST' Identifier '{' variable_list_attribute_list '}'

variable_list_attribute_list

= variable_list_attribute_listR

variable_list_attribute_listR

= variable_list_attribute

= variable_list_attribute_listR variable_list_attribute

variable_list_attribute

= members /* M */

= help /* O */

= optional_label /* O */

= response_codes /* O */

EDDL Specification for PROFIBUS Version 1.1, January 2001

© Copyright by PNO 2001 - All rights reserved Page: 171

D List of Manufacturers
List Of Manufacturer* DEVICE_MAN_ID (Hexadecimal)

ABB Automation 0x1A

ACCUTECH 0x5E

Acromag 0x1

Allen Bradley 0x2

Ametek 0x3

Analog Devices 0x4

Anderson Instrument Company 0x5A

Apparatebau Hundsbach 0x71

Applied System Technologies 0x41

Arcom Control Systems 0x3C

ASCO 0x102

Beckman 0x6

Bell Microsensor 0x7

BESTA 0x66

Betz 0x46

Bopp & Reuther Heinrichs 0x6C

Bourns 0x8

Bristol Babcock 0x9

Brooks Instrument 0x0A

BTG 0x55

Bürkert 0x78

Camille Bauer 0x2B

Chessell 0x0B

Combustion Engineering 0x0C

Daniel Industries 0x0D

Delta 0x0E

Dieterich Standard 0x0F

Dohrmann 0x10

Draeger 0x52

Drexelbrook 0x4E

Druck 0x47

Elcon Instruments 0x49

Elsag Bailey 0x5

Elsag Bailey 0x12

Elsag Bailey 0x16

EMCO 0x4A

Endress & Hauser 0x11

Exac Corporation 0x3A

EDDL Specification for PROFIBUS Version 1.1, January 2001

©Copyright by PNO 2001 - All rights reserved Page: 172

List Of Manufacturer* DEVICE_MAN_ID (Hexadecimal)

Fireye 0x44

Fisher Controls 0x13

Flow Measurement 0x5F

Flowdata 0x51

Foxboro 0x14

Foxboro Eckardt 0x3F

Fuji 0x15

Harold Beck and Sons 0x68

HELIOS 0x59

Honeywell 0x17

INOR 0x5B

ITT Barton 0x18

Jordan Controls 0x6E

KAMSTRUP 0x60

Kay Ray/Sensall 0x19

KDG Mobrey 0x3B

Knick 0x61

Krohne 0x45

K-TEK 0x50

Leeds & Northrup 0x1B

Leslie 0x1C

Magnetrol 0x56

Masoneilan-Dresser 0x65

Measurement Technology 0x40

Measurex 0x1E

Meridian Instruments 0x54

Micro Motion 0x1F

Milltronics 0x58

Moore Industries 0x20

Moore Products 0x21

M-System Co. 0x1D

MTS Systems Corp. 0x63

Neles Controls 0x57

Nuovo Pignone 0x38

Ohkura Electric 0x22

Ohmart 0x67

Oval 0x64

Paine 0x23

Peek Measurement 0x27

EDDL Specification for PROFIBUS Version 1.1, January 2001

©Copyright by PNO 2001 - All rights reserved Page: 173

List Of Manufacturer* DEVICE_MAN_ID (Hexadecimal)

PEPPERL+FUCHS 0x5D

PR Electronics 0x6D

Princo 0x3D

Promac 0x39

Raytek 0x53

rittmeyer instrumentation 0x69

ROBERTSHAW 0x5C

Rochester Instrument Systems 0x24

Ronan 0x25

Rosemount 0x26

Rosemount Analytic 0x2E

Rossel Messtechnik 0x6A

Rüeger 0x100

Saab Tank Control 0x4F

Samson 0x42

Schlumberger 0x28

Sensall 0x29

SICK 0x101

Siemens 0x2A

Smar 0x3E

SOR 0x48

Sparling Instruments 0x43

Termiflex Corporation 0x4B

Toshiba 0x2C

Transmation 0x2D

US ELECTRIC MOTORS 0x70

VAF Instruments 0x4C

Valcom s.r.l. 0x6F

Valmet 0x2F

Valtek 0x30

Varec 0x31

VEGA 0x62

Viatran 0x32

Weed 0x33

Westinghouse 0x34

Westlock Controls 0x4D

WIKA 0x6B

Xomox 0x35

Yamatake 0x36

EDDL Specification for PROFIBUS Version 1.1, January 2001

©Copyright by PNO 2001 - All rights reserved Page: 174

List Of Manufacturer* DEVICE_MAN_ID (Hexadecimal)

Yokogawa 0x37

EDDL Specification for PROFIBUS Version 1.1, January 2001

© Copyright by PNO 2001 - All rights reserved Page: 175

E Description of the EDDL-Syntax using Unified Modeling Language

Figure 9: Array

BLO CK

TYPE : Block_Type
NUMBER : Integer

(from EDDLanguage)

Figure 10: Block

VARIABLE
(from Variab leSpec)

ARRAY
Label : String
Type : Enumeration
Number_Of_Elements : Integer
Help : String
Response_Code : Enumeration

EDDL Specification for PROFIBUS Version 1.1, January 2001

©Copyright by PNO 2001 - All rights reserved Page: 176

VARIABLE
(f rom Var ia bl eSpec)

METHOD

Label : String
Help : Str ing
Class : Enumerated
Definition : Code
Validity : Boolean

(from EDDLanguage)

is k nown

Figure 11: Method

Figure 12: Domain

DOMAIN

Handlin g : En umeration
Res pons e_Code : Re s pons e_Code

EDDL Specification for PROFIBUS Version 1.1, January 2001

©Copyright by PNO 2001 - All rights reserved Page: 177

Figure 13: Collection

BLOCK
(from BlockSpec)

M ENU
(from M enuSpec)

METHOD
(from M ethodSpec)

RESPONSE_CODES
(from RespCodeSpec)

PROGRAM
(from Program Spec)

DOMAIN
(from Dom ainSpec)

VARIABLE_LIST
(from Var ia b le nLi st Spec)

RECORD
(from RecordSpec)

ARRAY
(from ArraySpec)

REFRESH
(from RefreshSpec)

UNIT
(from UNi tSpec)

VARIABLE
(from Varia ble Spec)

ITEM_ARRAY
(from Item ArraySpec)

W RITE_AS_ONE
(f rom Writ eAsOneSp ec)

COLLECTION
Label : String
Help : String

Members

Members Memb ers

Members

Members

Memb ers

Memb ers

Memb ers

Memb ers

Mem bers

Mem be rs

Members

Members

Members

Mem bers

EDDL Specification for PROFIBUS Version 1.1, January 2001

©Copyright by PNO 2001 - All rights reserved Page: 178

Transaction

Request
Reply

(from RefreshSpec)

COMMAND
Bloc k : Block
Slot : Integer
Index : Integer
Operation : Enumeration
Response_Code : Response_Code
Transaction : Transact ion

Figure 14: Command

EDDL Specification for PROFIBUS Version 1.1, January 2001

©Copyright by PNO 2001 - All rights reserved Page: 179

Figure 15: Variable

FORMAT

MIN_VALUE : Variant
MAX_VALUE : Variant
DEFAULT_VALUE : Variant
Display_Format : String
Edi t_Format : String
Scal ing_Factor : Variant

(from EDDLan guag e)

VARIABLE
Class : Enumeration
Type : Enumeration
Lable : String
Constant_Unit : String
Handling : Enumeration
Help : STring
Read_Time_Out : Integer
W rite_Time_Out : Integer
Validity : Boolean
Response_Codes : Enumeration

Pre_Edit_Action()
Post_Edit_Action()
Pre_Read_Action()
Post_Read_Action()
Pre_W rite_ACtion()
Post_W rite_Action()

EDDL Specification for PROFIBUS Version 1.1, January 2001

©

Copyright by PNO 2001 - All rights reserved Page: 180

Figure 16: Item Array

Figure 17: Program

PR OGRAM

Argum ents : Octet_String
Res pons e_Code : Res pons e_Code

B LO CK
(from B lockSpec)

MENU
(f rom M en uSpe c)

ME THOD
(from M ethodSpec)

UNIT
(from UNi tSpec)

REFRESH
(from RefreshSpec)

W RITE_AS _O NE
(from Wri teAsOneSpec)

VARIABLE
(from Var iabl eSpe c)

COLLECTION
(from Co l lectionSpec)

AR RAY
(from ArraySpec)

RECO RD
(from RecordSpec)

VARIABLE_ LIST
(from Variab lenL istSpec)

DOMAIN
(from Dom ainSpec)

PROGRAM
(fro m Program Sp ec)RES PONSE_CO DES

(from RespCodeSpec)

ITEM_ARRAY

Label : String
Help : String

Elements

Elements

Elements

Elements

Element

Element

Element

Element

Elements

Elements

Elements

Elemen ts

Elements

Elem ents

Elements

EDDL Specification for PROFIBUS Version 1.1, January 2001

©

Copyright by PNO 2001 - All rights reserved Page: 181

Figure 18: Menu

METHOD
(from EDDLanguage)

VARIABLE
(from VariableSpec)

MENU

Label : String
Access : Enumerated
Style : Enumerated

(from EDDLanguage) Items

ItemsItems

Validity : Boolean

EDDL Specification for PR FIBUS Version 1.1, January 2001

©Copyright by PNO 2001 - All ri

O

ghts reserved Page: 182

Figure 19: Record

RESPONSE_CODES

Type : Enum eration
Value : Integer
Des criptio n : String
Help : String

Figure 20: Response Code

VARIABLE
(from Variab leSpec)

R ECO RD
Label : String
Help : String
Response_Code : Response_Code

Members

EDDL Specification for PROFIBUS Version 1.1, January 2001

©Copyright by PNO 2001 - All rights reserved

Figure 21: Refresh

VARIABLE
(from VariableSpec)

REFRESH

 Page: 183

Figure 22: Unit

VARIABLE
(from Variab leSpec)

UNIT

EDDL Specification for PROFIBUS Version 1.1, January 2001

©Copyright by PNO 2001 - All rights rese

Lab
Hel
Res

rved Page: 184

Figure 23: Write As One

VARIABLE
(from Variab leSpec)

VARIABLE_LIST
el : String
p : String
ponse_Code : Response_Code

Members

Figure 24: Variable List

VARIABLE
(from VariableSpec)

WRITE_AS_ONE

EDDL Specification for PROFIBUS Version 1.1, January 2001

© Copyright by PNO 2001 - All rights reserved Page: 185

 Copyright by:

PROFIBUS Nutzerorganisation e.V.
Haid-und-Neu-Str. 7
D-76131 Karlsruhe

Phone: ++ 721 / 96 58 590
Fax: ++ 721 / 96 58 589
PROFIBUS_International@compuserve.com
www.profibus.com

http://www.profibus.com/

	1	Preface	14
	Preface
	Introduction
	Scope
	References
	Abbreviations
	Definitions
	Conventions
	UML-Notations
	Explanation of the Syntax- and Built-in-Description

	EDD Background

	EDD Concept
	Overview
	EDD Architecture
	Electronic Device Description Source and Profiles

	EDD Language - Basic Elements
	Introduction
	Preprocessor
	Overview
	Avoidance of Ambiguities in the EDD
	Top Level Objects of equal Types and equal Identifiers
	Top Level Objects of different Types and equal Identifiers
	Top Level Object containing equal Attributes

	Blocks
	Type Block Attribute
	Number Block Attribute

	Connection
	Appinstance Connection Attribute

	Variables
	Class Variable Attribute
	Type Variable Attribute
	Arithmetic Types
	Enumeration Types
	Cause

	Table 2: Status Classes and Bit Settings for Bit Enumerated Variables
	String Types
	Index Type
	Date / Time Types

	Constant Unit Variable Attribute
	Handling Variable Attribute
	Help Variable Attribute
	Label Variable Attribute
	Pre/Post Edit Actions Variable Attributes
	Pre/Post Read Actions Variable Attributes
	Pre/Post Write Actions Variable Attributes
	Read/Write Timeout Variable Attributes
	Validity Variable Attribute
	Response Codes Variable Attribute
	Application Context

	Menus
	Label-Menu Attribute
	Items-Menu Attribute
	Style-Menu Attribute
	Access-Menu Attribute
	Validity-Menu Attribute
	Table 3: Processing of menu-items

	Recommendation for the menu structure

	Methods
	Class-Method Attribute
	Access-Method Attribute
	Definition-Method Attribute
	Label-Method Attribute
	Help-Method Attribute
	Validity-Method Attribute
	Methods with Arguments

	Relations
	Refresh Relation
	Unit Relation
	Write-As-One Relation

	Item Arrays
	Elements-Item Array Attribute
	Help-Item Array Attribute
	Label-Item Array Attribute

	Collections
	Members-Collection Attribute
	Help-Collection Attribute
	Label-Collection Attribute

	Records
	Members-Record Attribute
	Help-Record Attribute
	Label-Record Attribute
	Response Codes-Record Attribute

	Arrays
	Type-Array Attribute
	Number of Elements-Array Attribute
	Help-Array Attribute
	Label-Array Attribute
	Response Codes-Array Attribute

	Variable Lists
	Members-Variable List Attribute
	Help-Variable List Attribute
	Label-Variable List Attribute
	Response Codes-Variable List Attribute

	Command
	Block Command Attribute
	Slot Command Attribute
	Index Command Attribute
	Operation Command Attribute
	Connection Command Attribute
	Module Command Attribute
	Response Code Command Attribute
	Transaction Command Attribute
	Data Item Mask
	Data Item Qualifier

	Upload-/Download-Menu

	Programs
	Arguments-Program Attribute
	Response Codes-Program Attribute

	Domains
	Handling-Domain Attribute
	Response Codes-Domain Attribute

	Response Codes
	
	Table 4: Response Code Types

	Device Description Information
	Output Redirection (OPEN and CLOSE Keywords)
	Creating Similar Items (LIKE Keyword)
	Importing Device Descriptions
	Import Keywords
	Item Redefinitions
	Redefining Imported Blocks
	Redefining Imported Variables
	Redefining Imported Records
	Redefining Imported Item Arrays
	Redefining Imported Menus
	Redefining Imported Methods
	Redefining Imported Relations
	Redefining Imported Arrays
	Redefining Imported Collections
	Redefining Imported Variable Lists
	Redefining Imported Programs
	Redefining Imported Domains
	Redefining Imported Response Codes

	Preprocessor Directives
	Header Files
	Macros

	Conditional Expressions
	If Conditional
	Select Conditional

	References
	Referencing Items
	Referencing Elements of a Record
	Referencing Elements Of An Array
	Referencing Members of a Collection
	Referencing Elements of an Item Array
	Referencing Members of a Variable List

	Expressions
	Primary Expressions
	Unary Expressions
	Binary Expressions
	Multiplicative Operators
	Additive Operators
	Shift Operators
	Relational Operators
	Equality Operators
	Bitwise AND Operator (&)
	Bitwise XOR Operator (()
	Bitwise OR Operator (|)
	Logical AND Operator (&&)
	Logical OR Operator (||)

	Strings
	Specifying a String as a String Literal
	Specifying a String as a String Variable
	Specifying a String as a Enumeration Value
	Specifying a String as a Dictionary Reference

	Lexical Conventions
	Integer Constants
	Floating Point Constants
	String Literals
	Using Language Codes in String Constants

	Standard Text Dictionary

	EDDL Method Built-ins Library
	ABORT_ON_ALL_COMM_STATUS
	ABORT_ON_ALL_RESPONSE_CODES
	ABORT_ON_COMM_STATUS
	ABORT_ON_NO_DEVICE
	ABORT_ON_RESPONSE_CODE
	DELAY
	DELAY_TIME
	IGNORE_ALL_COMM_STATUS
	IGNORE_ALL_RESPONSE_CODES
	IGNORE_COMM_STATUS
	IGNORE_NO_DEVICE
	IGNORE_RESPONSE_CODE
	METHODID
	PROGID
	RETRY_ON_ALL_COMM _STATUS
	RETRY_ON_ALL_RESPONSE_CODES
	RETRY_ON_COMM_STATUS
	RETRY_ON_NO_DEVICE
	RETRY_ON_RESPONSE_CODE
	VARID
	abort
	acknowledge
	add_abort_method
	assign_str
	delay
	display
	display_comm_status
	display_response_status
	fassign
	fvar_value
	get_dev_var_value
	get_dictionary_string
	get_local_var_value
	get_status_code_string
	GET_TICK_COUNT
	ivar_value
	lvar_value
	process_abort
	put_message
	ReadCommand
	remove_abort_method
	remove_all_abort_methods
	rspcode_string
	sassign
	select_from_list
	ShellExecute
	vassign
	WriteCommand

	L

