PROFIBUS Guideline

Specification for PROFIBUS Device
Description and Device Integration

Volume 1: GSD V31
Volume 2: EDDL V1.1

Volume 3: FDT V1.1

January 2001

PROFIBUS

PROFIBUS Guideline — Order No. 2.152

EDDL Specification for PROFIBUS Version 1.1, January 2001

PROFIBUS Guideline, Order No. 2.152

Specification for PROFIBUS Device
Description and Device Integration

Volume 1: GSD V31l
Volume 2: EDDL V 1.1

Volume 3: FDT V11

January 2001

Prepared by the PROFIBUS Working Groups ,GSD Specification®,
,pevice Description Language“ and ,Engineering” in the Technical
Committee ,System Integration®.

Publisher:

PROFIBUS Nutzerorganisation e.V.
Haid-und-Neu-Str. 7

D-76131 Karlsruhe

Phone: ++ 721 /96 58 590

Fax: ++ 721/ 96 58 589
PROFIBUS_International@compuserve.com
www.profibus.com

No part of this publication may be reproduced or uitilized in any form or
by any means, electronic or mechanical, including photocopying and
microfilm, without permission in writing from the publisher.

© Copyright by PNO 2001 - All rights reserved Page: 2

EDDL Specification for PROFIBUS Version 1.1, January 2001

Preface

Synopsis:
This paper comprises the specifications for GSD (Basic Profibus Device Description), EDDL (Electronic

Device Description Language) and FDT (Field Device Tool Interface). They are artefacts of working groups
within Technical Commitee 4 of the PROFIBUS Trade Organization.

Trademarks:

Most computer and software brand names have trademarks or registered trademarks. The individual
trademarks have not been listed here.

Abstract:

GSD, EDDL and FDT are representing the means to configure network devices and to parametrize and/or
manipulate their operational modes. While GSD and EDD are based on human readable descriptions, FDT
defines a set of interface to integrate device specific software components into engineering tools or other
frameworks. GSD and EDDL are using device description languages and FDT defines a client/server
relationship.

In order to meet the market requirements and the customer's needs this set of specifications is covering all
the different aspects of complexity and usage, thus protecting the members’ investments and providing
scalable and compatible solutions.

© Copyright by PNO 2001 - All rights reserved Page: 3

EDDL Specification for PROFIBUS Version 1.1, January 2001

Motivation

In process and manufacturing automation, a control system often comprises more than 10,000 binary and
analog input/output signals. When a fieldbus is used, these signals are transmitted via the bus. To this end,
the field devices are connected directly to the bus or measured via remote 1/0. More than 100 different field
device types from various device manufacturers are frequently in use.

The devices are configured and parameterized for each task. The device-specific properties and settings
must be taken into consideration when configuring the fieldbus coupler and the bus communication, and
the devices must be made known to the control system. Input and output signals provided by devices must
be created and integrated into the function planning of the control system.

The large number of different device types and suppliers within a control system project makes the
configuration task difficult and time-consuming today. Different tools must be mastered and data must be
exchanged between these tools and hosting system environments. The electronic data exchange format is
now standardized and the interfaces between those tools are defined.

Approach
Discrete * Controls
. e Binary Remote 1/0
Manufacturing e Fixed Configuration
e Parametrization at Start-up
* Simplest Handling
* Drives « In-process
O FunCtlonal Safety Measurement
GSD
Program FDT EDD Interpreter
e Device Specific Handling e Uniform Device Handling
e Application driven e Device Description Language
e Middle to high Complexity e Low to middle Complexity
) Closed-loop Control
Continuous e Tool-based Parametrization & Diagnostic
Manufacturing « Device-Tuning at Run-time

Fig. 1 GSD, EDD, FDT: A Scalable Solution for a Wide Set of Applications

© Copyright by PNO 2001 - All rights reserved Page: 4

EDDL Specification for PROFIBUS Version 1.1, January 2001

GSD

PROFIBUS devices may have different behavior and performance characteristics. Features differ in regard
to available functionality (i.e., number of I/O signals and diagnostic messages) or possible bus parameters
such as baud rate and time monitoring. These parameters may vary individually for each device type and
vendor and are usually documented in the technical manual. In order to achieve a simple Plug and Play
configuration for PROFIBUS, electronic device data sheets (GSD files) are defined for the communication
features of the devices. These GSD files allow easy configuration of PROFIBUS networks with devices
from different manufacturers.

GSD is a human readable ASCII text file. Keywords are specified as mandatory or optional with the
corresponding data type and their border values to support the configuration of PROFIBUS devices.
Based on the defined file format it is possible to realize vendor independent configuration tools for
PROFIBUS systems. The configuration tool uses GSD files for testing the data. These were entered
regarding limits and validity related to the performance of the individual device. New developments of
PROFIBUS products will extend the functional range.

The manufacturer of a device is responsible for the functionality and the quality of its GSD file. The device
certification procedure is requesting either a standard GSD file based on a PROFIBUS profile or a device
specific GSD file.

EDDL

Up to now most of the devices have been configured by its own configuration tool. As a consequence the
customer had to deal with as many tools as he was using device types. The Electronic Device Description
Language has been designed to implement a vendor independent data set called EDD describing device
configuration, maintenance and functionality. The EDDL defines the syntax (form) and the semantics
(meaning) of the data and the behavior of a PROFIBUS device or component and the structure of the
corresponding user interface. In its most basic form, the EDD source is human readable text written by
device developers. The device manufacturer is responsible for completeness and correctness of his EDD
source.

The EDD source can be easily incorporated into configuration tools just by reading it into an EDD
interpreter (EDDI).

Configuration tool developers no longer need to be responsible for validation testing of all devices
supported by their products. Device Description technology is state of the art for describing devices not
only in the PROFIBUS arena but also in the environment of other fieldbus systems. Device Description
Languages guarantee a uniform handling of all devices independent of the supplier and the type of the
device. This means a user handles a temperature transmitter from a supplier A and a remote I/O system
from a supplier B in the same way.

The EDDL specification provides a detailed description of the Electronic Device Description Language
required for the development of an Electronic Device Description source file. The architecture of the EDD
application and its usage during design and operational phases of a device are defined.

© Copyright by PNO 2001 - All rights reserved Page: 5

EDDL Specification for PROFIBUS Version 1.1, January 2001

FDT

With the integration of fieldbusses into control systems, there are some more tasks that have to be
performed. This applies to fieldbusses in general. Up to now there was no unified way to integrate device
specific tools into engineering environments, console applications and diagnostic software. Especially
within extensive and heterogeneous control systems, the unambiguous definition of interfaces with ease of
use is getting growing importance.

As simple as a new printer is added to a PC just by installing a driver, as simple should be the integration of
a new device into an automation environment.

With the help of the FDT specification and its interface technology the user will be able to handle devices
and their integration into engineering tools and other frameworks in a consistent manner. Due to the well-
defined independance of system and device manufacturers the latter are enabled to support any innovative
feature of their device without limitations.

This is done via a device-specific software component, called DTM (Device Type Manager). The device
manufacturer is responsible for the functionality and the quality of a DTM. The DTM is integrated into
engineering tools or other "frame applications" like stand-alone commissioning tools or web browsers that
are providing the FDT interfaces. Even EDDI-Tools with the appropriate interfaces may be integrated this
way. The approach to integration is in general open for all kind of fieldbusses (different protocols) and thus
meets the requirements for integrating different kinds of devices into heterogeneous control systems.

An additional style guide is available for the development of DTMs in order to counteract the risk of
proliferation of user interfaces.

© Copyright by PNO 2001 - All rights reserved Page: 6

EDDL Specification for PROFIBUS Version 1.1, January 2001

Scalability via GSD, EDD and FDT

Tool / System Environment

GSD Interpreter EDD Interpreter FDT Interface
T A
proprietary
Tool
GSD EDD DTM

Fig. 2 Potential Integration Structures

Reflecting the current situation, there are a lot of different field devices ranging from simple I/O sensors to
complex, modular Remote-1/Os or drives. According to this complexity, the devices can be divided into four

categories:
A: Simple devices that communicate only cyclically, for example a light barrier

B: Adjustable devices with fixed hardware and software, for example a pressure
transducer
C: Adjustable devices with modular hardware but fixed software blocks, for example a
remote 1/O or with fixed hardware but modular software blocks, e. g. a radar sensor
D: Adjustable devices with modular hardware and programmable software blocks,
for example a complex servo-drive

GSD, EDD and FDT are supporting all ranges of device complexity and integration levels into system
environments

© Copyright by PNO 2001 - All rights reserved Page: 7

EDDL Specification for PROFIBUS Version 1.1, January 2001

MR 14|
R INEFOOUCTION Lottt e e e e e sttt e e e e e e st ettt e e e e e e e s e ettt eeeeeeeeeeetteereeeeeeeeaeennereeeeeas 15|
T - 15|
R G - 17|
2RI 18|
D 18|
P.5 CONVENTIONS ...ciueiiiiee oottt et e e et et e et e et e et se e eeae e sesenssneensnen 19|
R.5.1 UML-NOTAIONS vttt t ettt ettt r et et s e e et et naenereenneeeenenns 19|

[1.1.2 Explanation of the Syntax- and Built-in-Description...........cccccceeeevvvuunnnnnnn.n. 19]
S e e 20|
S . 24|
S N v, 24|
B.2 EDD ATCNITECIUIE ...t e e e e e e ee e eeeee e eeeeeateeaeessenaeesessnaaeeeeenns 24|
B.3 Electronic Device Description Source and ProfileS..............ccccoeuiiiiiniiiiiiaiiiaannnn. 25|
B EDD Language - BASiC EIBMENTSc....iiiuniiiiiiiiieieiiiee et eeeeeeeeeeeeeeeeeeeeaeeneenaeeenns 26|
L oY VT o T 26|
P T e o T Yo T, 26|
B3 OVEOIVIEW ittt et ettt ettt ettt ettt ettt ettt ettt e te et et seeetaaeetnaeeeeaaaeenaees 26|
#.4 Avoidance of AMbiguities in the EDDcccovuuuiiiiiiiiiieiiiieeeeeiieeeeeeiieeeeeeiiieaaeaennnns 27|
B.4.1 Top Level Objects of equal Types and equal Identifierscccceeeeeeenn.... 27|

B.4.2 Top Level Objects of different Types and equal Identifiersc.cc........... 27|

B.4.3 Top Level Object containing equal Atributesc..covviveieienniiiiiieennns 27|

S 29|
B.5.1 Type BIOCK ATIIIDULEttt ettt ettt e ren e eeenenns 29|

B.5.2 NUMDEr BIOCK ATIIIDULE L...iuuiiieiiieiiieiii et eeeeeeeeeeeeeeeseaesenesenas 30|
T 31|
B.6.1 Appinstance ConNection AtIHDULEcooeueiiueiiiieieiiniiiiiiieiiiieieiesineeeens 31|

A e 32|
B.7.1 Class Variable AtIIDULEiiiiee e eeeeeeeesiieeeeaaennns 32|

B.7.2 Type Variable AriDULEccooiiiiiiiiiii e eee e eeeeeeiiiiiiisiieeees 33|

B.7.3 Constant Unit Variable AtribULEoeiiiiiiiiiieeeeeeeeeeeee e 40|

B.7.4 Handling Variable AfrHDULEoiiiiiiiiiiiiiiiiieeeeseiiiiiieeeieeesseiiiiiiieeeeeeaaaes 40]

B.7.5 Help Variable AttriDULE eeeeaeaeeeaanans 40|

f.7.6 Label Variable AtrDULEcoovvuiiiiiii e 41|

B.7.7 Pre/Post Edit Actions Variable Attributesccocooeeivueeiieeeiieeennnnnnn. 41|

K.7.8 Pre/Post Read Actions Variable AtrHDULEScoouuuveiiieeeiiiiieieeeiiiirereennnns 41]

B.7.9 Pre/Post Write Actions Variable AttribDUIESccecuvviiuiiiniiiiiiiiiiiiiiiinnnnnn. 42|
K.7.10 Read/Write Timeout Variable AtrDULESvveiieeeeiieeeseeiiesieiiieereereeenns 42]
B.7.11 Validity Variable AtIIDULE.............couuuiiiiiiiiiiiiiiieieieeeieeeeeeeeeeeeiaaeeenn 43|
f.7.12 Response Codes Variable AHINDULE..........cccuvviieiiiiiiieiiiiiiiciieeeeeeeeee 43|
B.7.13 APPHCATION CONMEBXE . iuutuiiiiitiiee et eeeeeiteeeeeit e eeeeeiteeeeesiteeesesttaaeessenaaereseenns 43|

T 45|
B.8.1 Label-Menu AttriDUTE.couiuu it eeeeeeee e eeeee i eeeeeeieeeeesiieaeeaaennns 45|

© Copyright by PNO 2001 - All rights reserved Page: 9

EDDL Specification for PROFIBUS Version 1.1, January 2001

B.8.2 1HEMS-MENU ATITDULE......cuuiiieiii e ettt e et e e eeees e aaeeens 45|
B.8.3 Style-MENU ATIIIDULE L..uuiiie s ea e e et eeeaeeeeaeeenaeeees 46|
B.8.4 ACCESS-MENU ALIDULEuuiiiuniiiieiiiiici ettt eeeeeeenaeneens 46|
f.8.5 Validity-Menu ABIIDULEcocuuiiiiiiii e 46|
B.8.6 Recommendation for the Menu StrUCTUIE.............covvuveiuniiiiiiiiiiiiiiiierinnnnnn. 48|
e 49|
B.9.1 Class-Method AtHDULEcoovvueeiiiiei e ee e e eeeieeeaaaenans 49|
B.9.2 Access-Method AtIIDULEevueiiie i eeieeeaiaeaaens 49|
B.9.3 Definition-Method AHITDULEcoceuuiiiiiiiiiiiiieeiieeee e 50|
B.9.4 Label-Method AIIDULE.ttt ettt naeeeeeenns 51|
B.9.5 Help-Method AIIDULEccu.iieiiieiiieiiieeieeieeieeie et ettt ee e e eeeeaeeeeennas 51|
B.9.6 Validity-Method AT IDULE ... e e e seeieessereeeesseseeneessereneessereenenns 51|
B.9.7 Methods WIth ATQUIMENTScvuu.iiiee it e e e e ee e eeeeaaaens 52|
I e e T v, 53|
B.10.1 REfreSN REIATION .. .ciiiee i e e e e e e e ee e eeeeaieeeeseenaeseeeenns 53|
S R G E e 53|
B.10.3 Write-AsS-0ONe REIAIONooouuniiiiii oo eeeeeeeeeeeieaeeeaanans 54|
R N T 55|
B.11.1 Elements-1tem Array AtrDULEooiiiuue e eeeeeeeeeiieeeeeaaenn 56|
B.11.2 Help-1tem Array AtIIDULEiiiie i eeeaeeeeaeeaaeaeiaeenens 56|
B.11.3 Label-1tem Array AtDULEooouuiiiieii e 56|
ST o e T v 57|
B.12.1 Members-ColleCtion AITDULEcuuiieiiieiiiiiiieiiiieeiieeieeieeseeseeseesenasenns 58|
1.12.2 Help-ColleCtioN ATTDULE ..o.... e e e e eeeeeeeeeeteesseseeeensaeeeeenssereneenns 58|
B.12.3 Label-ColleCtion AtIIIDULEccuuiiieeiiiee i eeieeeeee e eee e eseeeeeeeeeaeenaenenns 58|
I I T T 59|
B.13.1 Members-Record AtIIDULEuuiiieeeeeeieee e eeeeeeeeeeeiieeeeaaneens 59|
B.13.2 Help-ReCord AIIDULEooiiiiiiiii e iiiiiiiiiiiisisaisesseeeeees 60|
B.13.3 Label-Record AtIrIDULE e eeeeeeeeeeeaiieeeeaiannns 60|
#.13.4 Response Codes-Record AtribULEcuvvvviiiiieeeiiiiiiiiieiieeeeeseeiiiiiieeeeeeeaas 60|
N N 61|
B.14.1 Type-Array AtIIDULE aeeeaeeeens 61|
B.14.2 Number of Elements-Array AttribULte.............oovvuuiiiiiieiieiiieeeeiieeeieeea. 61|
B.14.3 HeID-ATTAY ATTTDULE oot eeeee s e et seeteessereeeeaseseenensseeenenssereneenns 62|
B.14.4 LabDel-Array ATIIIDULEc..iiuiieiiieiiiiiieeieeieei ettt eetee e eeseeeeaeeeaeseesenns 62|
B.14.5 Response CodeS-Array AIDULEooo...eieiiieseeiieeseieieseereeesseeseeeassereenens 62|
N R 63|
B.15.1 Members-Variable LISt AUINIDULEvvvvuiiiiiiiiiieiiicc e 63|
B.15.2 Help-Variable List AtDULEooouueiiiiee e eeeee e eeeeaannn 64|
B.15.3 Label-Variable List AtriUteccooiiiieiiiiieieieiieeeeceeeeeeeeeeeeeeeeeeeeieeeenens 64|
#.15.4 Response Codes-Variable List Attribute.......cooooevvuuniiiiiiiieeiiiiiieeeeeiieeaeeaas 64|
B.16 COMIMIANG Lo ittt e e e e e s ettt e e e e e e s ettt e eeeeeesseettsseseeeeeeeeesessseseeeeeeessseessssseeeeeas 65|
B.16.1 Block Command AtrHDULE.............oiviuniiiiiiiiieii e 65|
f.16.2 Slot CoOMMANT AITDULE ...oouuuiiiiii et aeeeenns 65|
B.16.3 Index Command AtHDUTE.............oiviuiiiiiiie i 66|

© Copyright by PNO 2001 - All rights reserved Page: 10

EDDL Specification for PROFIBUS Version 1.1, January 2001

B.16.4 Operation Command ATTIDULEoeiuuiiieiiiiiiieiei e e eeeeeeeeaaeenn 66|
B.16.5 Connection Command AtIDULE..........vviueiiiieiei i eeeeeeeieeeiiaeaeens 66|
B.16.6 Module Command AIHDULEcouuuiiiiniiiiiiiiiiiiieieieeiieieieeeieeesinaeneens 67|
B.16.7 Response Code Command AtINDULEviiuuiiiiriiiiiiiiiiiiaiiaaaeiieeaiiaaenn 67|
B.16.8 Transaction Command AIDULEc..uiiiuniiiiniiiiiiiiiiiiiiieieiieeiieiesineneens 67|
B.16.9 UpPload-/DOWNIOA-IMENU .. .uuunttttt e ieeeieeeiieseeenees 69|
A T T T, 71|
B.17.1 Arguments-Program AtIIDULE............vivuuiiiiiiiiieiieeei e eeeeeeeeeaaaeanen 71|
B.17.2 Response Codes-Program AtribULEoevvueiiiiuiiiiieeiieeiieeeeaeeiaann. 72|
L T v, 73|
$.18.1 Handling-Domain AtITDULEc...cuuiieiiiiiiiiieeieeieeieeieee et et eeseesasanas 73]
1.18.2 Response Codes-Domain AMIIDULE ..oo....eiieeeieeiieeseieieseereeesseeseeeaseeeeeenns 73|
IR R L 75|
B.20 Device Description INfOMMATIONiiiiit ettt ee et e e e reeeenneeaenenns 76|
#.21 Output Redirection (OPEN and CLOSE KeyWords)uuvieiiuueiiiiiiieeeeeeiieaeennnnn. 77]
B.22 Creating Similar [tems (LIKE K@YWOTd)cccuuiiiuniiiiiiiiiieiiiiee e 78|
B.23 IMpPorting DeVICe DESCIHPTIONScvuueuieiiiiiiieeeeeeeeieeeeeeiteeeeeeieeeeeeseeeeaeeesenaaeeeeeenns 79|
B.23.1 IMPOIt KEYWOIASeeeiiieiiiieittteeeeeeeesseeettteeeesseeeesieessesseeeseeasseeissserreeeeeaaaaaes 79|
B.23.2 1temM REAETINIIONS ..ottt eeeee e e eee e eeesiiaeeeseeneaeseeennns 81|
B.24 PreprOCESSOr DIl CTIVES .. uuuuuiiitt i eiet et eeti e e e et e e et e et e eaateseeteaeestsaeenaeestaaeseneees 97|
B.24.1 HEAET FIlOSiiuuiiiii e e e e e eeeeaeeeeas 97|
N A T T v, 97|
B.25 CONAItIONAI EXPIrESSIONS ..vuuiitiiieiiitiitiitieitieitieitieetsesesestseetesssesnsessseenseesseenseenseennees 98|
P e 98|
B.25.2 SeleCt CONUILIONGLcouueiiieniiiieiiiiieiee et e e e et e e e eeeeeeeeaeeeenenenss 98|
G = 99|
B.26.1 REFEIENCING ITBIMS .. iiuueiiiiie e ee e ee e e e e e ee e e e eeit e eeeeeataaeessenaereesenns 99|
B.26.2 Referencing Elements of 8 RECOI.......ccoiiiiiiiiiiiiiiiiiiiieeieeeeeeeeieeieieanes 99|
#.26.3 Referencing Elements Of AN AITAY........oooeeuuueieieeeeeeeeeeeeeeeeeeeeaeeaannnn 99|
#.26.4 Referencing Members of @ COlECHION.uuuuiiiiieeiiiiiiiiiiiiieeeesieeiiiiieeeeeeeaaes 99|
B.26.5 Referencing Elements of an [tem Array.......cccooovveuuneieeeuunieeeeiieeaeeeiiaaaaans 100]|
#.26.6 Referencing Members of a Variable LiSt............cccoooviiiiuniiiiiiiiiiiiiiiianaaens 100|
P S I 100]|
B.27.1 Primary EXDIESSIONS ..uueiieeeseeiieeseeeeeeeseseeeesaeseeeesseseenensaerensesseseeseseeeenes 101]|
B.27.2 UNAIY EXPIESSIONS .. uiuuiiiniiieiiieiiitiiitseeeseeeseenssenssenssenssenssenssenssenssenssenssenssens 101]
B.27.3 BiNary EXDIESSIONS .ovvuunisiiiessesieeesseseneessereeeesssssenensserennessereenensserennessereens 101 |
R 103
f.28.1 Specifying a String as a String Literalccoovviuieiniiiiniiaiiieiiaeennnn 104
#.28.2 Specifying a String as a String Variablecccooeeeiiiiieiiiiieeeeee 104
#.28.3 Specifying a String as a Enumeration Value...........ccoooeeeiiiiiiiiiiiiiiiiiinnnns 104|
#.28.4 Specifying a String as a Dictionary Reference..........ccccceeeeeeeuvueeeeeiuunnnnnns 104]
(.29 LeXiCAl CONMVENTIONS. .. eiiiiiiiiiitettie e e eeeesseeeteeeeeeseeassteeestteeeeeeeaeasiesssssreeesesaaseesseeens 105]
B.29.1 INtEGET CONSTANTS ...ivuuiiiisiiiit e eeeee e eeeee e e e e e e e e e e eeeeeeteeeeiaeens 105]|
f.29.2 FIOating POINt CONSTANTS ...vvvuuiiiirtis ittt e et eaeaeninneeeens 105]|
B.29.3 SHHNG LItEIAISovvviiieeie e e e e eeeeeaeans 105]|

© Copyright by PNO 2001 - All rights reserved Page: 11

EDDL Specification for PROFIBUS Version 1.1, January 2001

#.29.4 Using Language Codes in String CONStANTSoevunniieenieinniiainrannnnnnns 106|

B.30 Standard TeXt DICTIONAIY .u...iveeneeeeiieeeieseeeeeeeeeeaeeetasaeeeaeaetaseeenaeeeenaeeenaereenaeeennns 106
B EDDL Method BUilt-INS LIDIAIYiiiuuiiieiiiieiiiieeiiiiieeiteeeieeesteeseesesnseseteesenseseensesennane 108|
B.1 ABORT ON ALL COMM STATUS ... iiiiiiiiitiiitteiiiteeseeetasseerreeeeeeeesareezeeeeeneees 108|
5.2 ABORT ON ALL RESPONSE CODESccoouuiiieiiiiiiieieeeeeeeeeeeeeeeeeeeee e 108|
F.3 ABORT ON COMM STATUS ... 108]
B.4 ABORT ON NO DEVICE ...ciiiuuiiiitiiiiiiii it eeeiee et e seeeesaeseeeeesesanaensennes 109]|
B.5 ABORT_ON_RESPONSE _CODE......cc.iiiutiiiiiiiiiieiiie e eeae 109]|
B8 DELAY oooiiioooioiorsooeeossonsonsoreereerssoneereereeeernseneereereereeeneeneereereereeseereereereereerr 109]
| A= N 2R AT 1= 109|
5.8 IGNORE ALL COMM STATUS . iuuiiiiiiiiiitiiiiiiiieeeieeeeeeeeeeeeaesaeseieaesenaenennnns 110]|
b.9 IGNORE ALL RESPONSE CODES..........iiiuiiiiiiiiiiieeeeeeeeeeeeaeeeeaeaieaaaanaes 110]|
B.10 IGNORE COMM STATUS ..ottt et ee e eeeeeeannes 110]|
B.11 IGNORE_NO _DEVICE.....ccuuiiiiiiiiii it e e e e eeeeaeeeaeeeeaeeeennas 111]
b.12 IGNORE RESPONSE CODEiivuiiiiiiiiiiiiiiieieeee ettt ees e s easaseneaas 111]
YIS 111]
B14 PROGID ..o 111]
F.15 RETRY ON ALL COMM STATUS .. 117]
b.16 RETRY ON ALL RESPONSE CODEScoovvvuiiiiiiiiiieieieeieeeieeeieeeeaenannans 112]
B.17 RETRY_ON_COMM_STATUS ...ttt ettt e eaaeeeaeeeeaeeennns 112|
B.18 RETRY ON NO DEVICE.......cuiiiuuiiiiiiiiiiiieieiceeeee et eee et eeeeeeeeeesaeeaeeennes 113|
B.19 RETRY ON RESPONSE CODE ...uuuuiiiiiiiiiieueeittseeetereeseeeeasssseeeeeeeeeeesaerzeeeereees 113]
D20 VARID L.ovvosooooososomsorseoeerseoneoneeeereeonsoneeneereeeeenseeeeereereeeneereereereereesneereereereereers 113]
| A T S T 113]
S G - 114]
B.23 @dd_abort METNOM. ... oottt ettt et e a e eeees 114
S I 114]
P 114]|
A 115|
AR E AR S 115]|
B.28 diSplay reSPONSE STALUS ...ccc.uuuiiiietiiieieiiteeeeeeiieeeeeiieeeeeeitaeeessteeaesesssaaeeessnaaeenes 115]|
I [115|
B.30 FVAI VAIUE. ..ouuu oot e e e e e eeeee e e eeateeeeeateaeeeeanaaeaeaes 116|
| T T AR R V- 116/
B.32 get diCTIONAIY STIINMQ coivutniiiiiie et et eeee e e e eeeeeeesiteeeeesstneeeeesssaaeesssnaeeeees 116|
B.33 get_10CAl VA VaAlUB .. .ccuiiiii e 116|
B.34 get StatUS COUC STINGccuuiiieiiii e e e e eeaeeenenes 117
B.35 GET TICK COUNT ..ttt ittt eteetet e taeteeetseteeeesaeseneesseseeeensseeenensseseeneseeeennnsserenes 117]
IR - 117]
YA 117
I 118|
I 118]|
B.40 ReadCOMMANGuuiiiiiie ittt eeeee e e eee e e eeeit e eeeestt e eeeesstnaaesesssaaaeesssnaeeeses 118|
B.41 remove abort Methodo aaeaes 118|

© Copyright by PNO 2001 - All rights reserved Page: 12

EDDL Specification for PROFIBUS Version 1.1, January 2001

B.42 remove all abort MeEtNOUS.........cc..iiieeiiiiiiiiieiie et eee e eaeeenas 119]|
I e S T T, 119]
R 119]|
S S e R 119]|
EE R 120]|
| AR e 1 T 120
B.48 WIItECOMMANGuuuiiiiie et e e e e eeeeeat e eeeestteeeeesetnaaeeesssnaaessssnsaeeeees 120]|
A NN S 121
B LeXiC-FOrmal DefinitiONooeuueeiieeee et e e eeaaaeen 128
B.1 O e T 128]|
B.2 [128]
B.3 I 129]|
cC SyNtaxX-FOrmal DEFINITIONcc..iiueiiiiiii et et e e e e e et e e e eeeeeesaseeaenenns 130]|
C.1 Device Description INfOrmMationooouueiierniiiiiieeeiieeeeeeeeaeeeaeeeenes 130]|
C.2 S 131]
C.3 BIOCK .ttt e e e 131]
C.4 (ST T T 132]
C.5 [T Tyt aTe) N 135]
C.6 [T Ve T IO 136
C.7 [Yo T 139]|
C.8 D 139]|
C.9 [e T 140]|
[C.10 IMPOITE EDD ..iuuiiieiiiniiitiiitiiie it ieit sttt s et et s et sseasseessenssenssenssenssenssenssens 142]
S 143
C12 LKe o 145]
C13 Menu.. ... oo 145]
o VIETNOU wvv o oooosoooonsosonsereeeeeneeneeeeneereeeneeeeeereeeneeeereereereeereereereereers 147]
SR e [Y- 147]
.16 PrOOIAM . ceuun ittt e e e e e e e e e e e ee e eeeaetteeeeeatneaeeesssnaaeeessnnaaeeees 148|
A Yo YL 149|
[C.18 REEFINIION ...oiiieee i e e e e e e e e e e e e eeeestteaeeesenaaeaenes 149]|
[C.19 RETEIENCES ...ttt ettt ettt ettt ettt e e e e enene 158|
G T 159|
R 159]|
SN . 160]|
PR S 170]|
D) T N S S 171
E Description of the EDDL-Syntax using Unified Modeling Language...................... 175|

© Copyright by PNO 2001 - All rights reserved Page: 13

EDDL Specification for PROFIBUS Version 1.1, January 2001

1 Preface

Synopsis

This paper comprises the specifications for GSD (Basic Profibus Device Description), EDDL
(Electronic Device Description Language) and FDT (Field Device Tool Interface). They are
artefacts of working groups within Technical Commitee 4 of the PROFIBUS Trade Organization.

Trademarks

Most computer and software brand names have trademarks or registered trademarks. The
individual trademarks have not been listed here.

Abstract

GSD, EDDL and FDT are representing the means to configure network devices and to
parametrize and/or manipulate their operational modes. While GSD and EDD are based on human
readable descriptions, FDT defines a set of interface to integrate device specific software
components into engineering tools or other frameworks. GSD and EDDL are using device
description languages and FDT defines a client/server relationship.

In order to meet the market requirements and the customer's needs this set of specifications is

covering all the different aspects of complexity and usage, thus protecting the members’
investments and providing scalable and compatible solutions.

© Copyright by PNO 2001 - All rights reserved Page: 14

EDDL Specification for PROFIBUS Version 1.1, January 2001

2 Introduction

2.1 Scope

The scope of this document is to provide the methodology for the electronic and computable description of
device parameters for automation system components. For this description the so called Electronic Device
Description (EDDL) is specified.

The Electronic Device Description is used for the configuration and the operational behaviour of a device.
It may also be used generally for the description of product properties in other domains. The EDD
methodology covers the following aspects:

« Description of the device parameters

e Support of parameter dependencies

* Logical grouping of the device parameters

e Selection and execution of supported device functions
« Description of the device parameter access method

Up to now most of the devices have been configured by its own configuration tool. As a consequence as
many devices come up as many configuration tools occur. Each configuration related device change
needs also a change in the configuration tool, which results in high software maintenance costs for the
configuration tools on vendor side, and the user has to manage every new software version. In addition
the configuration tools for the different devices very often come from different sources with different
quality. This may result in stability problems of the configuration system. Software bugs in the large
number of different configuration tool products may even impact the quality of the complete runtime
system of an engineering console after any update of a software product and may potentially result in a
system crash. These problems occurs independently which operating system has been installed.

System/Device

dependent operation tools
(n devices need n tools)

EDD-Methodology
(n devices need 1 tool)

Transition to the
EDD-Methodology

XN

n device descriptions

Figure 1: Transition to the EDD-Methodology reduces costs for development and support

© Copyright by PNO 2001 - All rights reserved Page: 15

EDDL Specification for PROFIBUS Version 1.1, January 2001

An efficient way to avoid such problems is to reduce the number of configuration software packages. This
can be achieved by moving device properties from the runtime code of a configuration tool into a data set
called "Electronic Device Description". This device properties specified by the "Electronic Device
Description Language" has to be delivered with each device and is interpreted by an EDD interpreter of a
configuration tool. The EDDI generates the input/output screens by interpreting the EDD data set and
allows setting single parameter values, starting sequences of parameters, settings and computing values.
Figure 1 Ehows the transition from a software tool for each devices to their device descriptions handled by
an EDDL-Tool.

The "C-based" EDDL is not a programming language. It describes product data in a declarative way. In
the case of this document it describes the device properties related to the configuration process. This
comprises the identification of the device, the setting of single parameters, sequences of parameters and
computation of values.

In this context the term "configuration" comprises the parameter settings of a field device (scaling factors,
upper and lower limits, etc.) and the determine of functionality supported by the field device (diagnosis,
calibration, etc.).

A prerequisite for setting of parameters is the communication interface of the device. In this context the
communication system is not subject of this document. It is assumed to be existent. The EDD is part of
the device application and has nothing to do with the communication system. The EDD complemented by
the GSD can be considered to be a configuration related electronic data sheet for PROFIBUS devices. It
can be delivered either on disc bundled with the device or via internet. It can even reside in every device.
The EDD can be accessed either from the configuration tool repository representing the collection of
EDDs or directly from the device, if the EDD resides in this device. Thus the consistency of the device
version and its associated EDD can easily be checked.

The advantages of this methodology are:

< Only one configuration tool for all devices in the engineering system is needed instead of a bundle
of different configuration tools.
* The configuration behaviour is stored in the EDD data set instead of binary software code.

* The EDD can easily be specified in EDDL by the device manufacturer; for the configuration
software the manufacturer of the Engineering System is in charge.

e After configuration related device changes, only the EDD update is necessary.
< Only one configuration software edition per operating system is needed.

e The device manufacturer develops the EDD only, the system manufacturer provides the
integration of the EDD tools in the engineering system.

e The EDD tools can be easily updated in the engineering system.
* Due to the ASCII format of the EDD, it is suitable for long-term archivation.

« The EDD may be used to derive other information such as HTML pages etc.

The EDD generation process is shown in Figure 2.

© Copyright by PNO 2001 - All rights reserved Page: 16

EDDL Specification for PROFIBUS Version 1.1, January 2001

Write an EDD dliver th Devel Opment
describing the Deliver the EDD (Vendor)
device properties with the device
EDD-Interpreter
Operation
(Customer)

Figure 2: The EDD generation process

2.2 References

* PROFIBUS Specification (FMS, DP, PA) All normative Parts of the PROFIBUS Specification
according to European Standard EN 50 170 Vol. 2. (version 1.0)

» GSD Specification for PROFIBUS-FMS Definition of the GSD-File formats for FMS (version 1.0)
* GSD Specification for PROFIBUS-DP Definition of the GSD-File formats for DP (version 3.0)

» Profile for Communication between Controllers FMS-Communication profile, specification of
required services (version 1.4)

» Profile for Process Control Devices PA-Branch profile for Process Control devices (version 3.0)
» Profile for NC/RC Controllers DP profile for NC/RC Controllers (version 1.0)

» Profile for Encoders DP profile for rotary, angle and linear encoders (version 1.1)

« Profile for Variable Speed Drives FMS-/DP-Profile for electric drive technique (version 2.0)

» Profile for HMI Devices (Draft) DP-Profile for Human Machine Interface devices (version 1.0)

» Profile for Failsafe with PROFIBUS (Draft) DP-Profile for Safety Applications (version 1.0)

« KERNIGHAN, BRIAN W. AND DENNIS M. RITCHIE [1978]. The C Programming
Language, Prentice Hall
Inc., Englewood Cliffs, N.J.

e Unified Modelling Language Version 1.1

© Copyright by PNO 2001 - All rights reserved Page: 17

EDDL Specification for PROFIBUS Version 1.1, January 2001

2.3 Abbreviations

ADU Analog Digital Unit

DAU Digital Analog Unit

EDD Electronic Device Description

EDDI Electronic Device Description Interpreter
EDDL Electronic Device Description Language
GSD Geratestammdatendatei

HMI Human Machine Interface

HTML Hypertext Markup Language

PLC Programmable Logic Controller

UML Unified Modelling Language

Table 1: Abbreviations

2.4 Definitions
The following naming conventions of EDD components are defined:

Electronic Device Description Technology names the all over technology which starts with the
development of EDD sources and ends with the necessary tool chain.

Electronic Device Description (EDD) names a data set describing the configuration behaviour of a
device.

EDD source (no abbreviation of source) names the ASCII representation of the device description using
the EDD language.

EDD language (EDDL) is the PROFIBUS device descriptive language.

Device Descriptive Language is a language to describe the device objects including their dependencies
and their representation.
There exist several device descriptive languages. In general the differences are only found in the
communication part of the description.

EDD server provides the device information via a specified interface to an application on a specific
software platform. The server is able to load one or more EDD sources.

EDD editor is a software tool supporting the development of the EDD sources.

EDD checker is a test tool which checks the syntax and partly the semantic of EDD sources to guarantee
compliance of EDD sources with the EDD language.

EDD compiler translates the EDD source into an EDD server internal format which can be used by the
EDD interpreter.

EDD interpreter uses the EDD source to provide the EDD information to the EDD server interface.

© Copyright by PNO 2001 - All rights reserved Page: 18

EDDL Specification for PROFIBUS Version 1.1, January 2001

2.5 Conventions

2.5.1 UML-Notations

In the appendix of this document, all important EDD language constructs are illustrated using class
diagrams. The UML class diagram shows the classes and their relationships.

These illustrations are informal and do not have normative character. The class diagrams are taken from
an UML specification, containing both, an abstract device model and the EDD language specification.
Figure 3 shows the UML constructs which are used in the EDDL diagrams.

Aggregation describes the whole-part relation. This relation is asymmetric, this means "A is a part of B"
but not "B is a part of A"

Navigation presents an action which is executed by A and concerns B. The description of this action is
specified by the text near to the arrow.

Class describes a set of objects with similar behaviour, attributes and relations to other objects.

2.5.2 Explanation of the Syntax- and Built-in-Description

The explanation of the syntax follows always the same scheme:
. name of the EDDL construct
e purpose of the EDDL construct

e syntax of the EDDL construct

Aggregation Class Diagram

Class <>—— Class Name

attribute
atribute : date_type

Navigation ?fm bute : date type = init_value

Source |———>> Target operation

operation (‘arg_list) : result_type

Figure 3: UML notation used for the description of the EDDL syntax

In the chapter "EDDL Method Built-ins Library" all built-ins are presented by the scheme:
e syntax
e description
Language fragments are used to demonstrate the syntax. The syntax uses the following notation
conventions:
. Text in
typewiter
are language fragments described elsewhere in this document. All other text is literal.

e The dots in brackets (...) are a replacement for EDDL- or C-Code

© Copyright by PNO 2001 - All rights reserved Page: 19

EDDL Specification for PROFIBUS Version 1.1, January 2001

2.6 EDD Background

The model of the EDD language is derived directly from the structure of smart field devices. Historically
the smart devices are coming from 4-20 mA devices. The example in Figure 4[bf a transmitter shows the
way from an analog 4-20 mA device to a smart fieldbus device. Other types of field devices were or are
going a similar way.

,% Trimm
SCrews

detection SEEITE

gt
S -

Sensor Transmitter PLC

Figure 4: Structure of analog transmitter

The transmitter in Figure 4[js composed of electronics, which detects the specific measurement value
(e.g. mV, mA) and which transforms the detected signal into the standardised 4-20 mA. The adjustment to
the specific sensor and wiring is done by trim resistors set by a screw driver and checked by a multimeter.
Each transmitter is connected to the Programmable Logic Controller (PLC) by its own wires.

Digital signal computation provides a higher accuracy. Therefore, the signal processing is carried out by
micro processors (Figure 5)] An analog/digital and a digital/analog unit transform the signals two times.
The signal processing may be influenced by several variables and parameters, which make the
transmitter more flexible. These parameters have to be accessed by the operator. The manufacturer
provides a local operator panel with the transmitter consisting of a display and very few buttons. PC tools
provide more ergonomic solutions for the commissioning of field devices, if those are more complex. The
user gets a higher accuracy and reliability of the field device, but has to deal with many different tools from
different manufacturers. The commissioning of the devices turns from the mechanical and electrical
adjustment by screw drivers and multimeters to a parameterisation of digital data sets with the according
user interface.

©Copyright by PNO 2001 - All rights reserved Page: 20

EDDL Specification for PROFIBUS Version 1.1, January 2001

In principle, fieldbus devices replace the analog 4-20 mA converter by fieldbus controllers. That increases
the accuracy of the devices again. These devices according to Figure 6|_ﬁ|eed additional communication
parametrisation. The commissioning tools interact with the field devices via the fieldbus. The
commissioning tool have to replace the local display and keyboard and have to provide all adjustment
parameterisation of the device features. The used EDD language have to offer language elements to
describe all mentioned device components, i.e. (Figure 7):

¢« Communication configuration parameters
* Device variables and functions

e Visualisation of device variables and user guidance for commissioning, diagnosis and maintenance

Local display /
local keyboard RS 232

Variables, functions for
adjustment, operation, diagnosis and maintenance

A A A A
A 4 A 4 A 4 \ 4 —
77777777777 i . . 4-20 mA i
Sgnd L1 apy [S9d L] pau
detection processing
A A A A D g
\ 4 \ 4 \ 4 \ 4] ot
Processor control transmitter
Sensor Transmitter PLC

Figure 5: Structure of smart 4-20 mA transmitters

© Copyright by PNO 2001 - All rights reserved Page: 21

EDDL Specification for PROFIBUS Version 1.1, January 2001

Local display /
local keyboard

Variables, functions for Comm
adjustment, operation, '
diagnosis and maintenance
t Commissioning Tool
Signal conditioning,
ADU Comm.
t Control
ler
Processor control
transmitter
Sensor Transmitter

Figure 6: Structure of smart fieldbus transmitter

The EDDL is a language used to describe the information and procedures available through the fieldbus
interface in a general and extensible way. It is a human readable structured text language designed to
express how a field device can interact with a host device and other field devices. The basic constructs of
the language are:

. Arrays . Programs

. Blocks . Records

. Collections . Refresh Relations

. Commands . Response Codes

. Connections . Unit Relations

. Domains e Variable Lists

. Item Arrays . Variables

. Menues *« Write As One Relations
. Methods

Each of these constructs have a set of attributes associated with them. These attributes are used to define
each construct. For example, a menu has three attributes: items, label and style. A specific menu is
defined by defining each of these attributes. Attributes can also have sub-attributes, which refine the
definition of the attribute and hence the definition of the construct itself. An Electronic Device Description
(EDD) source file is developed using the EDDL syntax.

© Copyright by PNO 2001 - All rights reserved Page: 22

EDDL Specification for PROFIBUS Version 1.1, January 2001

Local display /
local keyboard

Variables, functions for
adjustment, operation, ——

diagnosis and maintenance Param. (M >

t Commissioning Tool

Comm.

Signal conditioning,
ADU Comm.

t Control
ler

Processor control
transmitter

Sensor Transmitter

abstraction

Visualisation Varlab!% & Communication
Functions
Technology dependent Technology independent Technology dependent

Figure 7: The components of an EDD

Examples of the information specified in a EDD source file are:

Parameter definitions These definitions identify all available device variables used for communication
with other devices. For instance, a process variable and operation mode variable can be described.

Relationships Relationships among parameters are common in devices described by EDDL include
refresh relationships, write-as-one relationships and unit relationships.

Human interface support Menues, help text, and display formats are available as hints to the interface
developer. These facilities provide the device developer with a degree of control over the
presentation of the device to the end user. Enough information is provided to implement a menu
driven interface for a small display device, or a simple full screen display.

Variable Lists These constructs describe messages that contain groups of parameters for transmission
and reception, along with application specific response codes and help. Variable lists allow write-as-
one behavior as well as providing communication efficiencies.

Blocks These describe the parameters, parameter lists, and associated menues, relations etc. of a block.

Programs These constructs contain groups of variables that may be transmitted to a program
object in a field device. The returned value, along with application specific response codes
are available from the program object.

©Copyright by PNO 2001 - All rights reserved Page: 23

EDDL Specification for PROFIBUS Version 1.1, January 2001

3 EDD Concept

3.1 Overview

The Electronic Device Description Language has been designed to implement a data vendor independent
set called EDD describing device configuration, maintenance and functionality.

The EDDL describes the meaning or semantics, of the data sets. In its most basic form, the EDD source,
it is human readable text written by device developers to specify all the information to configure the device
using the communication interface.

The tightly coupled relationship that currently exists between the release of new field devices and the host
device configuration tool will not existing any longer. Field device development schedules are not tied to
host development or revision schedules. Field device developers will no longer be involved in verifying the
operation of the configuration tool. They will only have to verify their EDD source file. The EDD source can
be easily incorporated into a configuration tool just by reading by the EDD interpreter (EDDI).
Configuration tool developers no longer need to be responsible for validation testing of all devices
supported in their products. They just have to ensure that they interpret the Electronic Device Descriptions
correctly.

This document give a detailed description of the Electronic Device Description Language used to develop
an Electronic Device Description source file. The other sections in this chapter briefly describe the
architecture of the EDD application and its usage during both the design and operational phases of a
device.

3.2 EDD Architecture

The EDD system architecture consists of a collection of specifications of EDDs together with a set of tools
which are implemented following these specifications. Specifically the EDD Architecture consists of the
following components:

* Specifications

— A specification of a structured text language, called EDDL, used to specify the meaning and
relationships between device properties available via the fieldbus. This specifies the syntax
of the language used to create EDDL source files.

* Tools

- Atool for converting the EDD source into a binary format. This tool, referred to as the
compiler/interpreter, also validates for proper syntax and conformance to interoperability
rules. Not all EDDL-constructs may be available in the tool because for specific application
only a subset is needed. Therefore refer to the respective tool manual.

— Atool for extracting information from the binary source and providing the information at an
interface when needed by the applications, referred to as the Device Description Server.

© Copyright by PNO 2001 - All rights reserved Page: 24

EDDL Specification for PROFIBUS Version 1.1, January 2001

Device Tool System
manufacturer manufacturer integrator, User

Application
Electronic Device
Descriptionsaccording gpp.- ‘
to EDDL -Specification |nterpreter/
nepreer EDD-Interface

Compiler

m=) ([EDD-Server

Com-Interface

Communication

Fieldbus

Figure 8: The integration of the EDD in the whole system

3.3 Electronic Device Description Source and Profiles

An EDD source file contains all necessary information needed to describe a field device. An EDD source
file consists of two parts, standard and device specific. Standard descriptions are imported from the
standard device descriptions maintained by the profile groups. The device implementor must write the
device specific part. A detailed description of the syntax is found in the following chapter "Electronic
Device Description Language".

© Copyright by PNO 2001 - All rights reserved Page: 25

EDDL Specification for PROFIBUS Version 1.1, January 2001

4 EDD Language - Basic Elements

4.1 Introduction

The Electronic Device Description Language is a simple structured English language for
describing field devices. The EDDL brings together in one place all the information a host device
needs to operate with field devices. It presents this information as a clear, unambiguous,
consistent description of a field device.

4.2 Preprocessor

Before processing by the Compiler, the source file is filtered through the standard C
preprocessor. This filtering allows the EDD developer to use the standard C preprocessor
directives such as #if, #ifdef, #endif, #define, and #include. Comments in a EDD source file are
delimited with /* and */ or \\ .

The rest of this section refers to a source file that has already been processed. Experienced C
programmers, however, should be very comfortable with this syntax.

4.3 Overview

There are sixteen basic constructs of the language: arrays, blocks, collections, commands,
domains, item arrays, menus, methods, programs, records, refresh relations, response codes,
unit relations, variable lists, variables, write as one relations.

Blocks describe the relative adressing of the parameter sets.

Connection defines multiple applications in a device.

Variables, records, and arrays describe the data contained in the device.

Menus describe how the data will be presented to a user by a host.

Methods describe the execution of complex sequence of event interactions that must take place
between host devices and field devices.

Relations describe relationships between variables, records and arrays.
Item Arrays and Collections describe logical groupings of data.

Variable Lists describe logical groupings of data contained in the device that may be
communicated as a group.

Commands describe the structure and the adressing of the variables in the device.
Programs specify how device executable code can be initiated by a host.

Domains can be used to download or upload moderately large amounts of data to or from a
device.

Response codes specify the application specific response codes for a variable, record,
array,variable list, program, or domain.

© Copyright by PNO 2001 - All rights reserved Page: 26

EDDL Specification for PROFIBUS Version 1.1, January 2001

For example, some of the variables in a device are the process value, the upper and lower range values,
and the upper and lower sensor limits. These variables would be described by the variable construct.
Menus would describe what the users would see when they use the host to communicate with the device.
The procedure used to trim the sensor as well as the procedure for reconfiguring the device would be
specified by methods. Unit Relations are used to specify which variables are units codes and which
variables have the units indicated by the units code. Refresh relations indicate variables that affect each
other. Write-as-one relations indicate variables that are logically related and must be edited by the user
simultaneously.

Each of the top level constructs, except relations and response codes, has a set of attributes associated
with it. These attributes are used to define each construct. For example, a menu has the attributes: items
and label. A menu is defined by specifying a definition for each of these attributes. Attributes may also
have sub attributes, which refine the definition of the attribute and hence the definition of the top level
construct.

The definition of an attribute may be static or dynamic. A static attribute definition never changes, while a
dynamic attribute definition may change due to parameter value changes in the device. For example, an
attribute that is defined one way when the device is in a certain mode and another way when it is not in
that mode is a dynamic attribute definition. An attribute definition that is the same regardless of the
situation is a static attribute definition.

The rest of this section describes the syntax and semantics of the Electronic Device Description
Language.

4.4 Avoidance of Ambiguities in the EDD

4.4.1 Top Level Objects of equal Types and equal Identifiers
Top level objects of equal type and equal identifiers are not allowed.

4.4.2 Top Level Objects of different Types and equal Identifiers
Top level objects of different types and equal identifiers are not allowed. Example:

VARI ABLE X
{ ...}
MENU X /1 NOT ALLOWED!
{ ...}

4.4.3 Top Level Object containing equal Attributes
Top Level Object containing equal attributes are not allowed. Example:

VARI ABLE x
LABEL "x";
TYPE | NTEGER,
CLASS CONTAI NED;
CLASS CONTAI NED & DYNAM C; \'\' NOT ALLOWED!
}
Also subattributes may not appear more than once:
VARI ABLE vy
LABEL "y";
TYPE | NTEGER

M N_VALUE 1,
MAX_VALUE 2;

© Copyright by PNO 2001 - All rights reserved Page: 27

EDDL Specification for PROFIBUS Version 1.1, January 2001

M N_VALUE 3; \\ NOT ALLOWED!
}
CLASS CONTAI NED;
CLASS CONTAI NED & DYNAM C; \\ NOT ALLOWED!

©Copyright by PNO 2001 - All rights reserved Page: 28

EDDL Specification for PROFIBUS Version 1.1, January 2001

4.5 Blocks

Purpose
A block construct defines the addressing scheme of a PROFIBUS device, which is organized in
blocks.

Syntax

BLOCK name

attribute, attribute,

}

where:
name is the name of the block. This name is used in the command for referencing.
attribute is one of the following block attributes:

* Required Attributes

- Type
- Number

4.5.1 Type Block Attribute

Purpose

A logical processing unit of software comprising an individual, named copy of the block and
associated parameters specified by a block type, which persists from one invocation of the block
to the next.

Syntax

TYPE type-definition;
where:
type-definition is one of the following types:

+ PHYSICAL
Hardware specific characteristics of a field device, which are associated with a resource, are
made visible through the physical block. Similar to transducer blocks, they insulate function blocks
from the physical hardware by containing a set of implementation independent hardware
parameters.

e TRANSDUCER
A named block consisting of one or more input, output and contained parameters. Function blocks
represent the basic automation functions performed by an application which is as independent as
possible of the specifics of I/O devices and the network. Each function block processes input
parameters according to a specified algorithm and an internal set of contained parameters. They
produce output parameters that are available for use within the same function block application or
by other function block applications.

« FUNCTION
Transducer blocks insulate function blocks from the specifics of I/O devices, such as sensors,
actuators, and switches. Transducer blocks control access to I/O devices through a device
independent interface defined for use by function blocks. Transducer blocks also perform
functions, such as calibration and linearization, on 1/O data to convert it to a device independent
representation. Their interface to function blocks is defined as one or more implementation
independent I/O channels.

© Copyright by PNO 2001 - All rights reserved Page: 29

EDDL Specification for PROFIBUS Version 1.1, January 2001

45.2 Number Block Attribute

Purpose

A field device may contain several blocks which are described with the number attribute. The
number attribute counts the blocks of the same type in the device management.

Syntax

NUMBER i nt eger;
NUMBER nane;
where:

integer order number of the block instance in the directory (Composite_Directory_ Entries) of the
same block type.

name is the value of the variable name.

© Copyright by PNO 2001 - All rights reserved Page: 30

EDDL Specification for PROFIBUS Version 1.1, January 2001

4.6 Connection

Purpose

The connection command attribute specifies the name of the connection which is a reference to
the connection type.

Syntax

CONNECTI ON nane
attribute, attribute,

where:
name is the name of the connection. This name is used in the command for referencing.
attribute is the following connection attribute:

¢ Required Attributes
- Appinstance

4.6.1 Appinstance Connection Attribute

Purpose

Using this address model it is possible to define multiple applications in a device. Each
application represents an Application Process Instance. Within an Application Process Instance it

is possible to define different access levels. Further information about the addressing model can
be found in the Profibus specification.

Syntax

APPI NSTANCE i nt eger;
where:

integer is the number of the application process instance. Further information about the
addressing model can be found in the Profibus specification.

© Copyright by PNO 2001 - All rights reserved Page: 31

EDDL Specification for PROFIBUS Version 1.1, January 2001

4.7 Variables
Purpose

VARIABLE is an EDDL construct which describes the data contained in a device.

Syntax

VARI ABLE nane

attribute attribute ...

where:

name is the name of the variable. Every variable must have a name which may be used in the
device description to refer to the variable.

attribute is one of the following variable attributes:
* Required Attributes
- Class
- Type
- Label

* Optional Attributes
— Constant unit
- Handling
- Help
- Pre-/post-edit actions
- Pre-/post-read actions
— Pre-/post-write actions
- Read timeout
- Write timeout
- Validity
- Response codes

4.7.1 Class Variable Attribute
Purpose

The class attribute of a variable specifies how the variable is used by the host devices for
organization and display.

Syntax

CLASS cl ass-nane & class-nane & ... ;
here:
class-name identifies the variable class, and can be one of the following keywords:
INPUT Block parameters whose values can be determined by the output of another block.

OUTPUT Block parameters whose values may be accessed by another block input.

© Copyright by PNO 2001 - All rights reserved Page: 32

EDDL Specification for PROFIBUS Version 1.1, January 2001

CONTAINED Block parameters that cannot be referenced by another block input or set by a
block output.

DYNAMIC Variables modified by a field device without stimulus from the fieldbus network.
DIAGNOSTIC Variables that contain the device status.

SERVICE Variables in service or maintenance routines. For example, limit values that are
defined for a deviation of reference measurement.

OPERATE Block parameters manipulated to control a block's operation (for instance, set
point).

ALARM Variables of a block that represent the triggering limit for an alarm

TUNE Block parameters used to tune the algorithm of a block.

LOCAL Variables used locally by host devices. Local variables are not stored in a field
device, but they can be sent to a field device. For example, a local variable may be
used to guide the menu structure, that is, the user edits a variable and based on that
value a new menu is presented. In this case, the local variable is never sent to a field
device.

4.7.2 Type Variable Attribute
Purpose

A type describes the format of the variable's value.
Syntax

TYPE type-definition;
where:
type-definition is one of the following types (detailed descriptions of each type follow):

» Arithmetic Types
- INTEGER
— UNSIGNED_INTEGER
- FLOAT
- DOUBLE

 Enumeration Types
- ENUMERATED
- BIT_ENUMERATED

* Index Type
- INDEX

e String Types
- ASCII
- PASSWORD
- BITSTRING

« Date/Time Types
- DATE_AND_TIME
- TIME

©Copyright by PNO 2001 - All rights reserved Page: 33

EDDL Specification for PROFIBUS Version 1.1, January 2001

4.7.2.1 Arithmetic Types
Purpose

Arithmetic variable types include the following:

. Float
. Double
. Integer

. Unsigned Integer

Variables of type float and double are single precision basic format and double precision basic
format floating point numbers, as defined in ANSI/IEEE Std. 754.

Variables of type integer and unsigned integer are signed and unsigned integer numbers,
respectively.

Syntax

FLOAT { option option ...
{val ue, description, help} ,
{val ue, description, help}
{val ue, description, help} }

DOUBLE { option option ...
{val ue, description, help} ,
{val ue, description, help}
{val ue, description, help} }

| NTEGER (si ze)
{ option option ...
{val ue, description, help} ,
{val ue, description, help} ,
{val ue, description, help} }

UNSI GNED_I| NTEGER (size)
{ option option ... }
{val ue, description, help} ,
{val ue, description, help}
{val ue, description, help} }

where:

size specifies the size of the variable in octets. Size is an integer constant greater than zero and
has no upper bound. This value is optional. The default is 1.

option specifies additional information about the variable related to its type. There are six
arithmetic options:

 DISPLAY_FORMAT / EDIT_FORMAT
A display format specifies how a host device will display the value of the variable.
An edit format specifies how a host device will allow the variable to be edited by
the user.

DI SPLAY_FORMAT stri ng;
EDI T_FORMAT stri ng;

string contains conversion specifiers for the ANSI C print function (for the
display format) and ANSI C scan function (for the edit format).

©Copyright by PNO 2001 - All rights reserved Page: 34

EDDL Specification for PROFIBUS Version 1.1, January 2001

MIN_VALUE / MAX_VALUE

Minimum and maximum values specify the range of values to which the user may
set the variable. If the variable is a dynamic variable (see variable CLASS
attribute), a field device can set the value of the variable outside the range
specified by its minimum and maximum values.

An arithmetic variable can have more than one minimum and maximum value. As
an example, the variable can have a range just above zero and just below zero,
but not exactly at zero.

M N_VALUE expression;
MAX VALUE expression;

When there are multiple minimum and maximum values, an integer is appended to
the keywords MIN_VALUE and MAX_VALUE. The integer must be in the range of
0 through 31. The minimum and maximum values with the same suffix form a
range for the variable.
For example, the following syntax specifies two ranges: one from -10 to -5 and
another from 5 to 10:

M N_VALUEl1 -10 ; MAX_VALUEl -5;
M N_VALUE2 5 ; MAX_VALUE2 10;

SCALING_FACTOR

Scaling factor indicates that the actual value of the variable is not the value
returned by a field device. The actual value is the value returned by a field device
multiplied by a factor. Therefore, a host device must multiply the value of the
variable returned by a field device with its scaling factor before it is displayed (or
before it is used in any other way). This is useful for field devices that need to
represent very large or very small values and for field devices that need to
represent floating point values but do not have enough power for floating point
arithmetic.

SCALI NG_FACTOR expression;

DEFAULT_VALUE

Available for all types. A variable can be preset to a constant value but can also
depend on other variables. For this purpose DEFAULT_VALUE allows conditional
expressions.

DEFAULT_VALUE expression;

INITIAL_VALUE

Available for all types. Overwrites variable values set by DEFAULT_VALUE. A
variable can be preset to a constant value. This constant value is defined with
INITIAL_VALUE. The value defined with INITIAL_VALUE has a higher degree of
priority as the DEFAULT_VALUE.

value (Optional) is an integer constant that specifies the value. The enumeration list is optional
but if defined a value and a description is required. Equal values are not allowed.

description (Optional) is the text displayed when the variable takes on that value.

help (Optional) is text that provides a moderately extensive description of the value. The help
text is intended to be used by host devices as on-line help.

There can be only one display format, one edit format, and one scaling factor. However, there
can be multiple minimum and maximum values. All arithmetic options are optional.

©Copyright by PNO 2001 - All rights reserved Page: 35

EDDL Specification for PROFIBUS Version 1.1, January 2001

4.7.2.2 Enumeration Types
Purpose

Enumeration type variables include the following:

Enumerated
This variable type is an unsigned integer that has a text string associated with some or all of its
values. One use for enumerated variables is to define tables.

Bit enumerated
This variable type is an unsigned integer value that has a text string associated with some
or all of its bits. One use for bit enumerated variables is defining status octets.

Syntax

ENUMERATED (size)
{ option option ...
{val ue, description, help} ,
{val ue, description, help} ,
{val ue, description, help} }

where:

size (Optional) specifies the size of the variable in octets. This value is an integer constant
greater than zero and has no upper bound. The default is 1.

option (Optional) specifies additional information about the variable related to its type. There are
two enumerated options:

e DEFAULT_VALUE
A variable can be preset to a constant value but can also depend on other
variables. For this purpose DEFAULT_VALUE allows conditional expressions.

* INITIAL_VALUE
Overwrites variable values set by DEFAULT_VALUE. A variable can be preset to
a constant value. This constant value is defined with INITIAL_VALUE. The value
defined with INITIAL_VALUE has a higher degree of priority as the
DEFAULT_VALUE.

value (Required) is an integer constant that specifies the value. Equal values are not allowed.
description (Required) is the text displayed when the variable takes on that value.

help (Optional) is text that provides a moderately extensive description of the value. The help
text is intended to be used by host devices as on-line help.

Bl T_ENUMERATED (size)
{ option option ...
{val ue, description, help, function, status-class, actions} ,
{val ue, description, help, function, status-class, actions} |,
{val ue, description, help, function, status-class, actions} }

where:

size (Optional) specifies the size of the variable in octets. This value is an integer constant
greater than zero and has no upper bound. The default is 1.

option (Optional) specifies additional information about the variable related to its type. There are
two bit enumerated options:

©Copyright by PNO 2001 - All rights reserved Page: 36

EDDL Specification for PROFIBUS

Version 1.1, January 2001

. DEFAULT_VALUE

A variable can be preset to a constant value but can also depend on other
variables. For this purpose DEFAULT_VALUE allows conditional expressions.

. INITIAL_VALUE

Overwrites variable values set by DEFAULT_VALUE. A variable can be preset to
a constant value. This constant value is defined with INITIAL_VALUE. The value
defined with INITIAL_VALUE has a higher degree of priority as the

DEFAULT_VALUE.

value (Required) is an integer constant that specifies a bit position, that is, only one bit is set in
the binary representation of the value. Equal values are not allowed.

description (Required) is the text that will be displayed when that bit of the variable is set.

help (Optional) is text that provides a moderately extensive description of the bit. The help text is
intended to be used by host devices as on-line help.

function (Optional) specifies the functional class of the bit. The functional class of a bit is the
same as the class of a variable (see the "Class" subsection earlier in this section). If no
function is specified, the value of the function class defaults to the class of the variable.
Therefore if all the bits have the same function you need only specify the class of the

variable.

status class (Optional) specifies what the meaning of the bit is if it is a status bit. A status bit
may belong to more than one status class. If the variable is not a status octet, the bits do

not have status classes.

There are several types of status classes:

Cause
Duration
Correctability
Scope

Output
Miscellaneous

actions (Optional) specifies actions that will be performed by the host device when the bit is set.
Each bit defined must specify a bit position and description. All other components are

optional.

Table 2 shows the status class and the bit settings.

Cause

HARDWARE Hardware failure

SOFTWARE Software failure

PROCESS Problem with process connected to field
device

MODE Device is in a particular mode

DATA Invalid data configuration

MISC Miscellaneous condition

Duration

EVENT A one-time event

STATE Field device is in a particular state.

Correctability

SELF_CORRECTING

| The bit will clear without further intervention

©Copyright by PNO 2001 - All rights reserved

Page: 37

EDDL Specification for PROFIBUS

Version 1.1, January 2001

CORRECTABLE The bit can be cleared by either a host device
or the connected process

UNCORRECTABLE The bit is neither self-correcting nor
correctable

Scope

SUMMARY The bit is the logical combination of other bits
of class detail. Each summary bit indicates a
detail class

DETAIL The bit is summarized elsewhere in a bit of

class summary. Each detail bit indicates a
specific status class

Miscellaneous

MORE There is more status available from the field
device
COMM Communications failure in the other device

IGNORE_IN_TEMPORARY_MASTER

Bit should be ignored in temporary master
devices

Output Status

BAD

Output is unreliable and should not be used
for control.

Table 2: Status Classes and Bit Settings for Bit Enumerated Variables

4.7.2.3 String Types
Purpose

String variable types include the following:

ASCII

This string type is for specifying a sequence of characters from the 1SO Latin-1 character set.

Password

This string type is intended for specifying password strings. Except for how the variable is presented

to the user, password and ASCII string types are identical.

Bit Strin
Th%s string type is an ordered sequence of bits. The interpretation of the bits is unspecified.
Syntax
ASCI | (size) { option option ... };
{
{val ue, description, help} ,
{val ue, description, help} ,
{val ue, description, help}
}
PASSWORD (size) { option option ... };
Bl TSTRI NG (length) { option option ... };
{

©Copyright by PNO 2001 - All rights reserved

Page: 38

EDDL Specification for PROFIBUS Version 1.1, January 2001

{val ue, description, help} ,
{val ue, description, help} ,
{val ue, description, help}

}

where:

size is an integer constant greater than zero and specifies the number of characters from the
appropriate character set. The size has no upper bound. It is important to note this
specifies the number of characters in a string and not the size of the variable.

option (Optional) specifies additional information about the variable related to its type. There are
two string options:

. DEFAULT_VALUE
A variable can be preset to a constant value but can also depend on other variables.
For this purpose DEFAULT_VALUE allows conditional expressions.

. INITIAL_VALUE
Overwrites variable values set by DEFAULT_VALUE. A variable can be preset to a
constant value. This constant value is defined with INITIAL_VALUE. The value defined
with INITIAL_VALUE has a higher degree of priority as the DEFAULT_VALUE.

length is an integer constant greater than zero and specifies the number of bits.

value (Optional) is an integer constant that specifies the value. The enumeration list is optional
but if defined a value and a description is required. Equal values are not allowed.

description (Optional) is the text displayed when the variable takes on that value.

help (Optional) is text that provides a moderately extensive description of the value. The help
text is intended to be used by host devices as on-line help.

4.7.2.4 Index Type

Purpose

An index type variable is an unsigned integer which is interpreted as an index into an item array
(see “Item Arrays” later in this section). An index variable may only take on the values defined by
the item array, that is, the indices of the item array define the allowable values of the variable.

When an index variable is presented to the user, the description of each of the indices of the item
array should be displayed, not the numeric values of the indices.

Syntax

I NDEX (size) itemarray;
where:

size (Optional) specifies the size of the index type variable in octets. This value is an integer
constant greater than zero and has no upper bound. The default is 1. The item array may
not contain an index which exceeds the index size of the variable.

item-array specifies the item array into which the variable is an index.

4.7.2.5 Date/Time Types
Purpose

Date/Time variable types include the following:

©Copyright by PNO 2001 - All rights reserved Page: 39

EDDL Specification for PROFIBUS Version 1.1, January 2001

. Date/Time
This type is a sequence of octets representing the calendar date in both time and
date. The octet representation is defined in the Profibus DPV1 specification.
. Time
This type is sequence of octets representing time of day. The octet representation is
defined in the Profibus DPV1 specification.
Syntax

DATE_AND_TI ME;
Tl MVE;

4.7.3 Constant Unit Variable Attribute

Purpose

If a variable has a units code associated with it and the units code never changes, the units code
is specified by a constant unit. The constant units code is specified as the text that will be
displayed along with the variable’s value. A variable without a constant unit either has no units

associated with it or the units are not constant.
Damping is an example of a variable whose units never change — it is always in seconds.

Syntax

CONSTANT_UNI T string;

4.7.4 Handling Variable Attribute
Purpose

Handling specifies the operations host devices may perform on the variable. There are two
operations described by EDDL:

. The read operation indicates host devices can read the value of the variable from
the device.

. The write operation indicates host devices can write the value of the variable to
the device.

A variable without a handling attribute may be read and written by host devices.
These operations are independent of each other. Therefore, a variable may be read but not
written, written but not read, both read and written, or neither read nor written.

Syntax

HANDLI NG handl i ng & handl i ng;
where:
handling is one of the following keywords:

 READ
« WRITE

4.7.5 Help Variable Attribute
Purpose

©Copyright by PNO 2001 - All rights reserved Page: 40

EDDL Specification for PROFIBUS Version 1.1, January 2001

Help specifies text which provides a moderately extensive description of the variable. This text is
intended to be used by host devices as on-line help.

Syntax

HELP stri ng;

4.7.6 Label Variable Attribute
Purpose

A variable’s label specifies text that host devices will display along with the variable’s value.
Every variable displayed by a host device needs a label.

Syntax

LABEL string;

4.7.7 Pre/Post Edit Actions Variable Attributes
Purpose

The pre/post edit actions of a variable specify actions host devices must execute when the user
edits the variable.

. Pre-edit actions are executed before the variable is edited.
. Post-edit actions are executed after the variable is edited.

Syntax

PRE_EDI T_ACTI ONS
{

}
POST_EDI T_ACTI ONS

met hod, nmet hod,

met hod, nmet hod,

}

where:

method specifies an action the host device must execute before or after the user edits the
variable.
The specified methods are executed in the order they appear at the appropriate time. If a method
exits abnormally, the methods following it are not executed. If a pre-edit method aborts, the variable
may not be edited.

4.7.8 Pre/Post Read Actions Variable Attributes
Purpose

The pre/post read actions of a variable specify actions host devices must execute when reading
the variable from a field device.

. Pre-read actions are executed before initiating a read service request.
. Post-read actions are executed after receiving a read service confirmation.

©Copyright by PNO 2001 - All rights reserved Page: 41

EDDL Specification for PROFIBUS Version 1.1, January 2001

Syntax
PRE_READ_ACTI ONS
{
met hod, net hod,
}
POST_READ_ACTI ONS
{
met hod, net hod,
}
where:

method specifies an action the host device must perform before or after reading the variable
from a field device.
The specified methods are executed in the order they appear at the appropriate time. If a method
exits abnormally, the methods following it are not executed. If a pre-read method aborts, the
variable is not read from a field device.

4.7.9 Pre/Post Write Actions Variable Attributes

Purpose

The pre/post write actions of a variable specify actions host devices must execute when writing
the variable to a field device.

Pre-write actions are executed before initiating a write service request.

Post-write actions are executed after receiving a write service confirmation.

Syntax
PRE_WRI TE_ACTI ONS
{

met hod, nmet hod,
}
POST_WRI TE_ACTI ONS
{

met hod, nmet hod,
}
where:

method specifies an action the host device must execute before or after writing the variable to a
field device.
The specified methods are executed in the order they appear at the appropriate time. If a method
exits abnormally, the methods following it are not executed. If a pre-write method aborts, the
variable is not written to a field device.

4.7.10 Read/Write Timeout Variable Attributes
Purpose

A read timeout specifies the length of time, in milliseconds, host device must wait for the variable
to be read from a field device.

©Copyright by PNO 2001 - All rights reserved Page: 42

EDDL Specification for PROFIBUS Version 1.1, January 2001

Similarly, a write timeout specifies the length of time, in milliseconds, a host device must wait for
the variable to be written to a field device.

For example, a write timeout may indicate the length of time it takes a field device to store the
value of a variable. Then as long as host devices wait for the timeout to expire before reading the
variable, the proper value will always be returned.

Syntax

READ_TI MEOUT expressi on;
VRI TE_TI MEOUT expressi on;

An expression specified for the read or write timeout must evaluate to an integral value.

4.7.11 Validity Variable Attribute

Purpose

Although the parameter list of a function block is static, it is possible to indicate that some
variables become logically nonexistent in some modes. A variable with the validity attribute
defined as FALSE will be treated by a host device as though it didn't exist. This is a much
different from variables with invalid values. A variable may be valid with respect to validity
attribute, but have an invalid value. A variable without a validity is always considered valid.

For example, when a single sensor is connected to a temperature transmitter there is one sensor
serial number, but when there are two sensors connected there are two sensor serial numbers.
All the parameters associated with a missing sensor must be defined as invalid.

Syntax

VALI DI TY bool ean;
where:

boolean is either TRUE or FALSE.
Validity is almost always expressed using a conditional (IF, IF-ELSE, SELECT). If the validity of a
variable is simply TRUE the variable is always valid; however, since this is the default it need not be
specified as such. If the validity of a variable is simply FALSE the variable is never valid and should
not be defined at all. Therefore, a conditional is usually used to specify that the variable is valid
under certain conditions and invalid under other conditions.

4.7.12 Response Codes Variable Attribute

Purpose

Response codes specify the values that are returned from the FMS read and write services (see
“Response Code Types” later in this section.).

Each variable can have its own set of response codes, because each variable is eligible for
reading and writing.

Syntax

RESPONSE_CODES response- code- nane;

4.7.13 Application Context

To ensure the integration of field devices into engineering environments it is useful to adapt the
device (i.e. its description and therefore its appearance within host software tools) according to

©Copyright by PNO 2001 - All rights reserved Page: 43

EDDL Specification for PROFIBUS

Version 1.1, January 2001

specific contexts. This is done using a special variable called ApplicationContext, defined as

follows:

VARI ABLE Applicati onCont ext

LABEL " ApplicationContext";

TYPE Bl T_ENUMERATED (4)

{0, "reserved"},

{1, "FDT_CONFI GURATI ON"},
{2, "FDT_PARAMETERI ZE"},
{3, "FDT_DI AGNOSI S"},
{4, "FDT_MANAGEMENT"},

{5, "FDT_OBSERVE"},

{6, "FDT_DOCUMENTATI ON'},
{7, "FDT_FORCE"},
{8, "FDT_ASSET_MANAGEMENT"},

{9, "reserved"},

{10, "reserved"},
{11, "reserved"},
{12, "reserved"},
{13, "reserved"},
{14, "FDT_GVA MAI NTENANCE"},
{15, "FDT_GMA SPECI ALI ST"},

{

CLASS LOCAL;

{
{16, "DTM
{17, "DTM
{18, "DTM
{19, "DTM
{20, "DTM
{21, "DTM
{22, "DTM
{23, "DTM
{24, "DTM
{25, "DTM
{26, "DTM
{27, "DTM
{28, "DTM
{29, "DTM
{30, "DTM
{31, "DTM

}

}

and
and
and
and
and
and
and
and
and
and
and
and
and
and
and
and

e T e T T

or
or
or
or
or
or
or
or
or
or
or
or
or
or
or
or

vendor
vendor
vendor
vendor
vendor
vendor
vendor
vendor
vendor
vendor
vendor
vendor
vendor
vendor
vendor
vendor

specific"},
specific"},
specific"},
specific"},
specific"},
specific"},
specific"},
specific"},
specific"},
specific"},
specific"},
specific"},
specific"},
specific"},
specific"},
specific"}

More than one context can be provided, so a field of bits is used. Every EDD which is used in
such engineering environments should contain this variable ApplicationContext.

The Variable ApplicationContext is set by the host environment (the engineering tool) and
influences the device appearance according to pre-defined constraints and methods. E.g., the
structure and the contents of menu definitions can be changed.

©Copyright by PNO 2001 - All rights reserved

Page: 44

EDDL Specification for PROFIBUS Version 1.1, January 2001

4.8 Menus

Purpose

A menu construct organizes parameters, methods, and other items specified in the EDDL into a
hierarchical structure. A host application may use the menu items to display information to the user in an
organized and consistent fashion.

Syntax

MENU nane
{

}

where:

attribute attribute

name is the name of the menu. Every menu must have a name which may be
used in the device description to refer to the menu.

attribute is one of the following:

. Required Attributes
- Label
- Items

. Optional Attributes
- Style
- Access
- Validity

4.8.1 Label-Menu Attribute

Purpose

The label of a menu is the text that is displayed when the menu appears as a menu item of another menu.
Syntax

LABEL string;

4.8.2 Items-Menu Attribute

Purpose

The items of a menu specify the items associated with this menus plus an optional qualifier.

Syntax

| TEMS
{

}

If a Menu-item occurs more than once the menu displays the item as often as it occurs. The Menu-item
field may be any one of the following:

menu-item, nenu-item,

©Copyright by PNO 2001 - All rights reserved Page: 45

EDDL Specification for PROFIBUS Version 1.1, January 2001

¢ variables
* methods
e other menus

Variables may be qualified with the following:

« (DISPLAY_VALUE)

« (READ_ONLY)

« (DISPLAY_VALUE, READ_ONLY)
.+ (HIDDEN)

Menus may be qualified with

« (REVIEW)

4.8.3 Style-Menu Attribute
Purpose

The style attribute specifies the type of the window. This attribute gives the manufacturer the possibility to
supply special objects. For example a dialog contains a bargraph or a XY-Diagram for representing the
measuring data.

Syntax

STYLE string
where:
string is one of the following items:

DIALOG for modal dialogboxes.
WINDOW for non-modal dialogboxes.
user-defined for embedding user-defined objects.

4.8.4 Access-Menu Attribute

Purpose

The access attribute defines whether the dialog communicates with the device during its lifecycle.
Syntax

ACCESS access-style
where:
access-style has the both possibilities:

« ONLINE
» OFFLINE

4.8.5 Validity-Menu Attribute
Purpose

©Copyright by PNO 2001 - All rights reserved Page: 46

EDDL Specification for PROFIBUS Version 1.1, January 2001

A menu without a validity is always considered valid. A menu can be complete hidden, setting the validity
to false.

Syntax

VALI DI TY bool ean;
where:

boolean is either TRUE or FALSE.
Validity is almost always expressed using a conditional (IF, IF-ELSE, SELECT). If the validity of a
menu is simply TRUE the menu is always valid; however, since this is the default it need not be
specified as such. If the validity of a menu is simply FALSE the menu is never valid and should not
be defined at all. Therefore, a conditional is usually used to specify that the menu is valid under
certain conditions and invalid under other conditions.

Application Handling

The menu items are presented to the user in the order they appear. For vertical menus, the first
item appears on top and the last item appears on the bottom; for horizontal menus, the first item
appears on the left and the last item appears on the right.

The following table specifies how the various menu-items are processed by a host application
when displaying a menu item on a menu and when that menu items is selected by a user.

menu-item type Host Application Handling

variable Display The variable's label appears on the menu. If the variable is
qualified with DISPLAY_VALUE, the value of the variable is displayed
along with its label.

Selection The value of the variable is presented to the user. If the
variable may be modified (determined by variable's handling), the user is
allowed to modify the variable. If the variable is qualified with
READ_ONLY, the variable may not be modified via this menu, regardless
of its handling. And if the variable is qualified with HIDDEN, it does not
appear the user.

method Display The method's label appears on the menu.
Selection The method is executed.

menu)
Display The menu's label appears on the menu.

Selection The new menu is presented to the user. If the menu is
qualified with REVIEW, the menu is presented in a manner consistent
with reviewing an extensive set of data.

Table 3: Processing of menu-items

Data Access

To avoid unintentional access on the parameter of the field device, all menus are derived from these four
entries.

. Horicontal menus
- MENU Menu_Mai n_Speci al i st
- MENU Menu_Mai n_Mai nt enance

©Copyright by PNO 2001 - All rights reserved Page: 47

EDDL Specification for PROFIBUS Version 1.1, January 2001

. Vertical menus
- MENU Tabl e_Mai n_Speci al i st
- MENU Tabl e_Mai n_Mai nt enance

Starting the EDD-Interpreter, the user has to choose between specialist or maintenance and get the
belonging menu-items and access rights.

4.8.6 Recommendation for the menu structure

Despite the unrestricted possibilities for the menu layout, it is useful to keep to a certain sequence. This
ensures an almost completely standard user guidance for different devices.

DIN 19259 describes technical data and a classification scheme for measurement equipment in the
industrial process. All EDDs should follow the structure according to this scheme. On the basis of DIN
19259, the following list provides help with the arrangement of variables for individual menus. The names
used in this list must be adhered to strictly.

Identification

Application

Method of operation and structure

Input

Output

Characteristic values

S e S o

(a) Conditions of operation
(b) Mounting conditions
(c) Ambient conditions
7. Process conditions
Design
Display and operator interface
10. Auxiliary power
11. Certificates and approval documents
12. Ordering information
13. External standards and guidelines
For the menu arrangement, the following scheme was recommended:
* File, including save, properties, print or exit methods
» Device, including upload, download, self test or calibrate methods
* View, including measured-value display, alarm status or device status
e Tools, including configuration menus for the EDD-Tool
* Help, including help menus for the device or the EDD-Tool

The menu item “Device” contains dialogs that permit bi-directional communication with the
device. That means that data are not only read but also loaded into the device. Unlike the menu
item “Device”, the menu item “View” contains only passive elements such as status displays or
measured value displays.

©Copyright by PNO 2001 - All rights reserved Page: 48

EDDL Specification for PROFIBUS Version 1.1, January 2001

4.9 Methods
Purpose

A method describes the execution of interactions that must occur between host devices and a
field device.

Syntax

METHOD nane

attribute attribute ...

where:

name is the name of the method. Every method must have a name which may be used in the
device description to refer to it.

attribute is one of the following method attributes
* Required Attributes
- Class
— Access
— Definition
- Label
» Optional Attributes
- Help
- Validity

4.9.1 Class-Method Attribute

Purpose

The class of a method specifies the affect of the method on a field device. This attribute is
intended to be used by host devices to implement permission levels and organize how methods
are presented.

Method classes are identical to variable classes. For more information, see the "Class"
subsection earlier in this chapter.

4.9.2 Access-Method Attribute
Purpose

The access of a method specifies wether the method implemention is using the variable values
stored the device or the offline parameterset.

Syntax

ACCESS opti on;
where:
option can be one of the following keywords:

ONLINE specifies that the values of the variables used within the method definition are
actually read from the device.

© Copyright by PNO 2001 - All rights reserved Page: 49

EDDL Specification for PROFIBUS Version 1.1, January 2001

OFFLINE specifies that the values of the variables used within the method definition are
read from the offline parameterset.

4.9.3 Definition-Method Attribute
Purpose

A method's definition specifies the actions to be performed by a host device. This requires a
simple yet flexible means of specifying the computation of values and flow of control. The ANSI C
programming language provides these features. Unfortunately, it also provides a lot of
functionality that is unnecessary for most methods. To ease the burden on host device
developers, the definition of a method is specified using only a subset of ANSI C.

The ANSI C subset used to specify the actions of host devices consists of simple declarations,
expressions, and statements. This ANSI C subset includes the following items:

. Basic types (char, short, int, long, ...)
. Arrays (int[],long[1], ...)
. Arithmetic operators (+, -, *, /, %, ...)
. Statements (if, for, switch, while, ...)
but does not include these items:
. Pointers (int *, long *, ...)
. Initializers (int x = 43;)
. Enumerations (enum {red, white, blue})
. Structures (struct { int day; int month; int year; })
. Unions (union { short sval; int ival; long Ival; })

For the formal specification of the ANSI C subset allowed when specifying a method definition
see "Methods" in Appendix C.11.

Syntax

DEFI NI TI ON c- conpound- st at enent

where:

c-compound-statement is as defined in ANSI C. Beyond it, it is possible to call user defined
methods within a method.

Using Built-In Functions to Specify Method Actions

The actions specified by a method generally fall into two classes:

. User interaction. Typical user interaction actions include getting values from the user and
getting acknowledgment from the user before continuing.

. Device interaction. Typical device interaction actions include sending read and write
requests commands and interpreting response codes and status.

There is a library of built-in functions that can be used to specify actions taken by host devices.
See chapter 4 for descriptions of the built-in functions.

©Copyright by PNO 2001 - All rights reserved Page: 50

EDDL Specification for PROFIBUS Version 1.1, January 2001

Access to the attributes of a variable

Purpose

Within a method definition the attribute values can be read as follows.
Syntax

vari abl e_nane. attri bute;
where:
variable_name is the name of the variable.

attribute is one of the following keywords:

- LABEL
« CONSTANT_UNIT
- HELP

. MIN_VALUE

. MAX_VALUE

. SCALING_FACTOR
. DEFAULT_VALUE
. INITIAL_VALUE

For example, runtime DEFAULT_VALUE supplies the default value of the varibale runtime.
494 Label-Method Attribute

Purpose

A method's label specifies text that host devices will display as the name of the method.
Syntax

LABEL string;

4.9.5 Help-Method Attribute
Purpose

Help specifies text which provides a moderately extensive description of the method. This text is
intended to be used by host devices as on-line help.

Syntax

HELP stri ng;

4.9.6 Validity-Method Attribute
Purpose
Validity specifies when the method is valid, that is, when it may be executed. Some field devices

have methods that are only meaningful when the device is in a particular configuration. A method
without a validity is always valid.

© Copyright by PNO 2001 - All rights reserved Page: 51

EDDL Specification for PROFIBUS Version 1.1, January 2001

Syntax

VALI DI TY bool ean;
where:

boolean is either TRUE or FALSE.
Validity is almost always expressed using a conditional.
If the validity of a method is simply TRUE the method is always valid; however, since this is
the default it need not be specified as such.
If the validity of a method is simply FALSE the method is never valid and should not be
defined at all.
Therefore, a conditional is usually used to specify that the method is valid under certain
conditions and invalid under other conditions.

4.9.7 Methods with Arguments
Purpose
Methods with arguments are used to save code, e.g. if the same method is needed but with

different variables. In this case the EDDL supply function calls with arguments as specified in
ANSI C. For parameter passing the mechanisms call-by-value and call-by-reference are possible.

Syntax

met hod_nane(vari able, variable, ...)
METHOD met hod_name(type var, type var, ...)

DEFI NI TI ON
{

}
}

where:
method_name is the name of the method.

variable is the name of the variable defined in the EDD. All input variables in the argument list
are coinstantaneous to the output variables.

type is the type (int, float, long) of the variables used in the method. The type is identical with the
type of the device variable. If the EDDL type and the ANSI C type has different length (e.g.
INTEGER(1) - int), the EDDL variable is casted to the ANSI C type. After the execution of
the method the ANSI C type is casted back to the EDDL type. The application has to care
for that after the method execution the value of the variable is within the defined min and
max values.

var is the name of the variable used in the method.

©Copyright by PNO 2001 - All rights reserved Page: 52

EDDL Specification for PROFIBUS Version 1.1, January 2001

4.10 Relations

Purpose

Relations specify relationships between variables. The EDDL defines the following types of
relations:

. Refresh
. Unit
. Write-as-one

4.10.1 Refresh Relation

Purpose

A refresh relation allows the host device to make decisions regarding parameter value
consistency when a parameter value changes. It specifies a set of block parameters which may
need to be refreshed (reread from the device) whenever a block parameter from another set is
modified. A block parameter can have a refresh relationship with itself, implying that the block
parameter must be read after writing.

Occasionally writing a block parameter to a field device causes the field device to update the
values of other block parameters. If the additional updated block parameters are dynamic, there
is no conflict, because the host device should reread the parameter values from a field device
each time the values are needed. However, host devices may cache the values of static block
parameters. Therefore, for host devices to maintain the correct values of all static block
parameters, they need to know when the field device is changing its values.

Syntax
REFRESH nane
{
par amet er, paraneter,
parameter, paraneter,
}
where:

name is the name of the refresh relation. Every refresh relation must have a name which can be
used in the device description to refer to it.

parameter is a block parameter. The block parameters following the colon should be reread from
the device whenever one of the block parameters preceding the colon is modified.

4.10.2 Unit Relation
Purpose

A unit relation specifies a units code parameter and the block parameters with those units. When
a units code parameter is modified, the block parameters with that units code should be
refreshed. In this respect, a unit relation is exactly like a refresh relation. In addition, when a
block parameter with a units code is displayed, the value of its units code will also be displayed.

Syntax

UNI T nane
{

}

unit-code: paraneter, paraneter,

© Copyright by PNO 2001 - All rights reserved Page: 53

EDDL Specification for PROFIBUS Version 1.1, January 2001

where:

name is the name of the unit relation. Every unit relation must have a name which can be used in
the device description to refer to it.

unit-code is the units code of each of the block parameters following the colon.

parameter is a block parameter associated with the units code. This value can be a variable or
an array.

4.10.3 Write-As-One Relation

Purpose

A write-as-one relation informs the host device that a group of block parameters needs to be
modified as a group. This relation does not necessarily mean the block parameters are written to
the field device at the same time. Not all block parameters sent to the field device at the same
time are necessarily part of a write-as-one relation.

If a field device requires specific block parameters to be examined and modified at the same time
for proper operation, a write-as-one relation is required.

Syntax
VRI TE_AS_ONE nane
{
paramet er, paraneter,
where:

name is the name of the write-as-one relation. Every write-as-one relation must have a name
which can be used in the device description to refer to it.

parameter is a block parameter that must be modified with other members of the write-as-one
relation by an application in a host device. A parameter may occur only once.

©Copyright by PNO 2001 - All rights reserved Page: 54

EDDL Specification for PROFIBUS Version 1.1, January 2001

4.11 Item Arrays

Purpose

An item array is a logical group of items, such as variables or menus. Each item in the group is
assigned a number, called an index. The items can be referenced from elsewhere in the device
description via the item array name and the item number. Item arrays are merely groups of EDDL

items and are unrelated to communication arrays (item type "ARRAY"). Communication arrays
are arrays of values.

Syntax

| TEM ARRAY OF itemtype nane

attribute ...

where:

item-type specifies the type of elements in the item array. All the item array elements must be of
the specified type. Following types are allowed:

. VARIABLE

. MENU

. METHOD
. REFRESH
. UNIT

* WRITE_AS_ONE

. ITEM_ARRAY OF item_type
. COLLECTION OF item_type
. RECORD

« ARRAY

* VARIABLE_LIST

. PROGRAM

. DOMAIN

. BLOCK

. COMMAND

. CONNECTION

. RESPONSE_CODES

name is the name of the item array. Every item array must have a name which may be used in
the device description to refer to it.

attribute is one of the following item array attributes:

. Required Attributes
- Elements

. Optional Attributes
- Help
- Label

© Copyright by PNO 2001 - All rights reserved Page: 55

EDDL Specification for PROFIBUS Version 1.1, January 2001

4.11.1 Elements-Item Array Attribute

Purpose

The elements item array attribute identifies elements of an item array. Each item array element
specifies one item (such as a variable or menu) in the group, and is defined by a group of four

parameters (index, item, description, help).
Syntax

ELEMENTS

i ndex, item description, help;
i ndex, item description, help;

}

where:

index (Required) specifies the number by which the item may be referenced. The item array may
not contain an index which exceeds the size of a variable. An index which refers to the
same item-type may not occur more than once.

item (Required) is the name of the EDDL item associated with the index value.
description (Optional) provides a short description of the item.

help (Optional) specifies help text for the item.
4.11.2 Help-Item Array Attribute
Purpose

Help specifies text which provides a moderately extensive description of the item array. This text
is intended to be used by host devices as on-line help.

Syntax

HELP string;
where:

string specifies the help string.

4.11.3 Label-ltem Array Attribute

Purpose

An item array's label specifies text that host devices will display as the name of the item array.
Syntax

LABEL string;
where:

string specifies the help string.

© Copyright by PNO 2001 - All rights reserved Page: 56

EDDL Specification for PROFIBUS Version 1.1, January 2001

4.12 Collections

Purpose

A collection is a logical group of items, such as variables or menus. Each item in the group is
assigned a name. The items may be referenced from in the device description by using the
collection name and the item name.

Syntax

COLLECTION OF itemtype nane

attribute attribute ...

where:

item-type specifies the type of members in the collection. All the collection members must be of
the specified type. The following types are allowed:

. VARIABLE

. MENU

. METHOD
. REFRESH
. UNIT

* WRITE_AS_ONE

. ITEM_ARRAY OF item_type
. COLLECTION OF item_type
. RECORD

e ARRAY

* VARIABLE_LIST

. PROGRAM

. DOMAIN

. BLOCK

. COMMAND

. CONNECTION

. RESPONSE_CODES

name is the name of the collection. Every collection must have a name which may be used in the
device description to refer to it.

attribute is one of the following collection attributes (descriptions of each attribute follow):
. Required Attributes
- Members
. Optional Attributes
- Help
- Label

Remark:

Item types must be completeley specified. For example, if the members of a collection contains
item arrays of variables, then it must be specified as COLLECTION OF ITEM_ARRAY OF
VARIABLE.

© Copyright by PNO 2001 - All rights reserved Page: 57

EDDL Specification for PROFIBUS Version 1.1, January 2001

4.12.1 Members-Collection Attribute
Purpose
The members collection attribute defines members of a collection. Each collection member

specifies one item (such as a variable or menu) in the group, and is defined by a group of four
parameters (name, item, description, help).

Syntax

MEMBERS
{

name, item description, help;
name, item description, help;

}

where:
name (Required) specifies the name by which the item may be referenced.

item (Required) is the name of the EDDL item associated with the name value. It is not allowed
to define an item more than once.

description (Optional) is a short description of the item.

help (Optional) specifies help text for the item.
4.12.2 Help-Collection Attribute
Purpose

Help specifies text which provides a moderately extensive description of the collection. This text
is intended to be used by host devices as on-line help.

Syntax

HELP string;
where:

string specifies the help string.

4.12.3 Label-Collection Attribute

Purpose

A collection's label specifies text that host devices will display as the name of the collection.
Syntax

LABEL string;
string specifies the help string.

© Copyright by PNO 2001 - All rights reserved Page: 58

EDDL Specification for PROFIBUS Version 1.1, January 2001

4.13 Records

Purpose

A record is a logical group of variables. Each variable in the record is assigned a EDDL variable
name. Each variable may have a different data type. The variables may be referenced from
elsewhere in the device description via the record name and the member name. EDDL records
describe communication record objects. Therefore, from a communication perspective, the

individual members of the record are not treated as individual variables, but simply as a group of
variable values.

Syntax

RECORD nane

attribute attribute ...

where:

name is the name of the record. Every record must have a name which may be used in the
device description to refer to it.

attribute is one of the following record attributes (descriptions of each attribute follow):

. Required Attributes
- Members
— Label

. Optional Attributes
- Help
- Response Codes

4.13.1 Members-Record Attribute
Purpose

The members record attribute defines the members of a record. Each record member specifies
one EDDL variable, and is defined by a group of four parameters (name, item, description, help).

Syntax

MEMBERS
{

nane, item description, help;
name, item description, help;

}

where:
name (Required) specifies the name by which the variable may be referenced through the record.

Item (Required) is the name of the EDDL item associated with the name value. It is not allowed
to define an item more than once.

description (Optional) is a short description of the variable.

help (Optional) specifies help text for the variable.

© Copyright by PNO 2001 - All rights reserved Page: 59

EDDL Specification for PROFIBUS Version 1.1, January 2001

4.13.2 Help-Record Attribute
Purpose

Help specifies text which provides a moderately extensive description of the record. This text is
intended to be used by host devices as on-line help.

Syntax

HELP stri ng;

4.13.3 Label-Record Attribute
Purpose

A record's label specifies text that host devices will display as the name of the record.
Syntax

LABEL string;

4.13.4 Response Codes-Record Attribute

Purpose

Response codes specify the error values that are returned from the FMS read and write services
(see "Response Code Types" later in this section). Each record can have its own set of response
codes, because each record is eligible for reading and writing.

Syntax

RESPONSE_CODES r esponse- code- nane;

©Copyright by PNO 2001 - All rights reserved Page: 60

EDDL Specification for PROFIBUS Version 1.1, January 2001

4.14 Arrays

Purpose

An array is a logical group of values. Each value, or element, is of the data type of an EDDL
variable. An element may be referenced from elsewhere in the device description via the array
name and the element index. EDDL arrays describe communication array objects. Therefore,
from a communication perspective, the individual elements of the array are not treated as
individual variables, but simply as individual values.

Syntax

ARRAY nanme

attribute attribute

where:

name is the name of the array. Every array must have a name which may be used in the device
description to refer to it.

attribute is one of the following array attributes (descriptions of each attribute follow):

. Required Attributes
- Type
— Number of Elements
- Label

. Optional Attributes
- Help
- Response Codes

4.14.1 Type-Array Attribute
Purpose

The type array attribute specifies the data type and attributes of each of the elements. Therefore,
the type is a reference to an EDDL variable.

Syntax

TYPE vari abl e- nane;

4.14.2 Number of Elements-Array Attribute
Purpose

The number of elements array attribute specifies the number of elements in the array as an
integer constant greater than zero.

Syntax

NUVBER_OF _ELEMENTS i nt eger - const ant ;

© Copyright by PNO 2001 - All rights reserved Page: 61

EDDL Specification for PROFIBUS Version 1.1, January 2001

4.14.3 Help-Array Attribute
Purpose

Help specifies text which provides a moderately extensive description of the array. This text is
intended to be used by host devices as on-line help.

Syntax

HELP stri ng;

4.14.4 Label-Array Attribute
Purpose

An array's label specifies text that host devices will display as the name of the array.
Syntax

LABEL string;

4.14.5 Response Codes-Array Attribute

Purpose

Response codes specify the error values that are returned from the FMS read and write services
(see "Response Code Types" later in this section). Each array may have it's own set of response
codes because each array is eligible for reading and writing.

Syntax

RESPONSE_CODES r esponse- code- nane;

©Copyright by PNO 2001 - All rights reserved Page: 62

EDDL Specification for PROFIBUS Version 1.1, January 2001

4.15 Variable Lists

Purpose

A variable list is a logical group of EDDL communication objects (variables, arrays, or records).
Each item in the group is assigned a name. The items may be referenced from elsewhere in the

device description via the variable list name and the item name. EDDL variable lists describe
predefined communication variable lists.

Syntax

VARI ABLE_LI ST nane

attribute attribute ...

where:

name is the name of the variable list. Every variable list must have a name which may be used in
the device description to refer to it.

attribute is one of the following variable list attributes (descriptions of each attribute follow):
. Required Attributes
- Members
. Optional Attributes
- Help
- Label
- Response Codes

Variable lists can contain only variables, arrays, or records that appear as block parameters.

4.15.1 Members-Variable List Attribute
Purpose
The members variable list attribute defines the members of a variable list. Each variable list

member specifies one item (variable or record) in the group, and is defined by a group of four
parameters (name, item, description, help).

Syntax

MEMBERS
{

nanme, item description, help;
name, item description, help;

}

where:
name (Required) specifies the name by which the item may be referenced.

item (Required) is the name of the EDDL item associated with the name value. It is possible to
define items of different item-types. It is not allowed to define an item more than once.
Using conditional expressions in the Members-list, you have to pay attention that the name
may refer to different item-types during the execution.

description (Optional) is a short description of the item.

help (Optional) specifies help text for the item.

© Copyright by PNO 2001 - All rights reserved Page: 63

EDDL Specification for PROFIBUS Version 1.1, January 2001

4.15.2 Help-Variable List Attribute
Purpose

Help specifies text which provides a moderately extensive description of the variable list. This
text is intended to be used by host devices as on-line help.

Syntax

HELP stri ng;

4.15.3 Label-Variable List Attribute

Purpose
A variable list's label specifies text that host devices will display as the name of the variable list.
Syntax

LABEL string;

4.15.4 Response Codes-Variable List Attribute

Purpose

Response codes specify the error values that are returned from the FMS read and write services
(see "Response Code Types" later in this section). Each variable list may have it's own set of
response codes because each variable list is eligible for reading and writing.

Syntax

RESPONSE_CODES r esponse- code- nane;

©Copyright by PNO 2001 - All rights reserved Page: 64

EDDL Specification for PROFIBUS Version 1.1, January 2001

4.16 Command
Purpose
Each device variable has to be adressed within a command structure. The operation of a

command determines wether a variable is read or written from host to device. Furthermore the
absolute or relative adressing scheme is specified by the command structure.

Syntax

COMMAND Nane

attribute; attribute;

where:
name is the name of the command. Every command must have a hame.
attribute is one of the following variable attributes:
» Block
* Slot
* Index
» Operation
» Connection
* Module
» Response Codes
* Transaction

4.16.1 Block Command Attribute
Purpose

The block command attribute specifies the name of the block which is a reference to the block
type (see also the chapter Block). Adressing variables using the block attribute is designated as
relative adressing.

Syntax

BLOCK nane;

4.16.2 Slot Command Attribute
Purpose

The slot command attribute specifies the number of the slot. The variables of a PROFIBUS-
Device are allocated to different slots. Adressing variables using the slot attribute is designated
as absolute adressing.

Syntax

SLOT nunber
SLOT name

where:

number is the number of the slot.

© Copyright by PNO 2001 - All rights reserved Page: 65

EDDL Specification for PROFIBUS Version 1.1, January 2001

name is the value of the variable name.

4.16.3 Index Command Attribute
Purpose

A block or a slot are devided in groups. These groups are referenced with the index attribute.
Syntax

| NDEX number ;
| NDEX nanme

where:
number is the number of the slot.

name is the value of the variable name.

4.16.4 Operation Command Attribute
Purpose

The operation command specifies the action the host initiate to the field device. There are three
possible operations: read, write and command.

Syntax

OPERATI ON attri bute;
where:
attribute can be one of the following:

READ Receiving the read command, the field device sends back the values of the variables
listed in the transaction attribute.

WRITE Receiving the write command, the field device sets the values of the variables to
the values coming from the host device.

DATA_EXCHANGE declares cyclic communication as defined in the Profibus specification.
Using this type of operation you have to list the input parameter in the reply attribut
and the output parameter in the request attribut of the transaction. In this operation
mode the definition of slot and index are not necessary but the module reference has
to be specified.

COMMAND Upon receiving a command command, the field device performs a device-
specific set of actions. In methods the description are specified how these commands
are to be used by host devices.

4.16.5 Connection Command Attribute
Purpose

The connection command attribute specifies the name of the connection object which is a
reference to the connection type (see also the chapter Connection).

Syntax

CONNECTI! ON nane;

©Copyright by PNO 2001 - All rights reserved Page: 66

EDDL Specification for PROFIBUS Version 1.1, January 2001

4.16.6 Module Command Attribute

Purpose

The module command attribute specifies the name of the module which is a reference to the
module type specified in the GSD. The module contains the set of parameters which may be
communicated within a cyclic channel.

Syntax

MODULE nane;

4.16.7 Response Code Command Attribute

Purpose

The Response code may return values from the field device which represents status messages.

Syntax
RESPONSE_ CODES
{
val ue, type, description, help ;
val ue, type, description, help ;
}
where:

value is an integer type and specifies the respond code value. Equal values are not allowed.
type can be one of the following:
SUCCESS The action, initiated by the command was accepted.

MISC_WARNING The action was accepted and processed by the field device but there are
additional information, disconnected to the command action.

DATA_ENTRY_WARNING The action was accepted but with a slightly modified version of
the data sent.

DATA_ENTRY_ERROR The action was denied because of invalid data.

MODE_ERROR The action was denied because the field device was in a mode in which the
action cannot executed.

PROCESS_ERROR The action was denied because the field device was an invalid type.
MISC_ERROR The action was denied.

description is a string that specifies the displayed message when the response code is returned
from the field device.

help is a text which can be used by the host device as an online help.

4.16.8 Transaction Command Attribute

Purpose

The transactions define the data set in the request and reply directive. It is possible to define
more than one transaction by appending an integer to the keyword TRANSACTION (e.g.

TRANSACTION2). But it is not allowed to define transactions with equal numbers or more than
one transaction without a number.

©Copyright by PNO 2001 - All rights reserved Page: 67

EDDL Specification for PROFIBUS Version 1.1, January 2001

Syntax

OPERATI ON WRI TE

TRANSACTI ON
REQUEST
data-item, data-item,
}
REPLY
{
}
}
OPERATI ON READ:
TRANSACTI ON
REQUEST
{
}
REPLY
data-item, data-item,
}
}
where:

data-item is either a variable or the name of a variable. The download variables are found under
REQUEST, the upload variables are found under REPLY.

4.16.8.1 Data Iltem Mask
Purpose

An integer variable in a request or replay may also contain a bit mask. The mask defines in which
way the bits of the integer are assigned to the corresponding variables.

Syntax

OPERATI ON WRI TE
TRANSACTI ON

REQUEST

{
data-item <i nt eger >,
data-item <i nt eger >,

}

REPLY

{

}

}

OPERATI ON READ;
TRANSACTI ON

?EQUEST

©Copyright by PNO 2001 - All rights reserved Page: 68

EDDL Specification for PROFIBUS Version 1.1, January 2001

}
REPLY
data-item <i nteger >,
data-item <i nteger >,
}
}
where:

integer presents the bit mask. When the LSB is set in the bit mask, the pointer shows to the next
byte of the data set. The masks may contain gaps. Furthermore the data-item list may be
conditioned.

4.16.8.2 Data Item Qualifier
Purpose

Variables listed in a request or reply may be qualified with the INDEX and INFO. INDEX specifies
that the variable is used in the request or reply as an index into an array. INFO specifies that the
variable is not actually stored in the device. The variable has an informal meaning. A variable
may be qualified with INDEX and INFO. It is called a local index variable.

Syntax
TRANSACTI ON
REQUEST
data-item (I NFO
}
REPLY
{
}
}
TRANSACTI ON
REQUEST
data-item (| NDEX)
}
REPLY
{
}
}
TRANSACTI ON
REQUEST
data-item (1 NDEX, | NFO)
}
REPLY
{
}
}

4.16.9 Upload-/Download-Menu
Purpose

©Copyright by PNO 2001 - All rights reserved Page: 69

EDDL Specification for PROFIBUS Version 1.1, January 2001

The Upload-/Download-Menu is an EDDL construct to specify which parameters are read or
written from the host to the device. These menu definitions are always top level objects.

Syntax

MENU downl oad_vari abl es

LABEL name;
| TEMS
vari abl e, vari abl e,
}
}
MENU upl oad_vari abl es
LABEL name;
| TEMS
vari abl e, vari abl e,
}
}
where:

download_variables is the name of the download menu. The item list specifies the variables
which are sent from the field device to the host. If this menu does not exist, all variables
defined in the EDD are sent from the field device to the host.

upload_variables is the name of the upload menu. The item list specifies the variables which are
sent from the host to the field device. If this menu does not exist, all variables defined in
the EDD are sent from the host to the field device.

©Copyright by PNO 2001 - All rights reserved Page: 70

EDDL Specification for PROFIBUS Version 1.1, January 2001

4.17 Programs
Purpose
Programs can be used to specify device actions that can be initiated by a host. Examples of

programs include "perform self test," "Go to save state," and "go to initialized state." The program
description describes a program invocation object created in the device.

Syntax

PROGRAM nane

attribute attribute

where:

name is the name of the program. Every program must have a name which may be used in the
device description to refer to it.

attribute is one of the following program attributes (descriptions of each attribute follow):
* Optional Attributes

- Arguments
- Response Codes

4.17.1 Arguments-Program Attribute

Purpose

Arguments can be sent to the program during start and resume operations. The program
arguments are described by the ARGUMENT attribute. An octet string containing the values of all

of the arguments will be sent to the program invocation object when it is started or resumed by
the application.

Syntax

ARGUNMENT

data-item data-item...

}

where:
data-item is either an unsigned integer constant or a variable.

e If a data item is an unsigned integer constant, the value of the constant appears at
that position in the data field. Constant data items occupy two octets of the data field
and therefore must be in the range 0 through 65535 inclusive.

« If a data item is a variable, the value of the variable appears at that position in the
data field.

« If the data field of the program service is empty, the arguments can be omitted, or
specified as follows:

ARGUMENT { }

© Copyright by PNO 2001 - All rights reserved Page: 71

EDDL Specification for PROFIBUS Version 1.1, January 2001

4.17.2 Response Codes-Program Attribute
Purpose

Response codes specify the values a field device may return as program errors (see "Response
Code Types" later in this section).

Syntax

RESPONSE_CODES r esponse-code- nanme

©Copyright by PNO 2001 - All rights reserved Page: 72

EDDL Specification for PROFIBUS Version 1.1, January 2001

4.18 Domains
Purpose

Domains can be used to download and upload moderately large amounts of data to and from a
device. The domain description describes a domain object created in the device.

Syntax

DOVAI N nane

attribute attribute ...

where:

name is the name of the domain. Every domain must have a name which may be used in the
device description to refer to it.

attribute is one of the following domain attributes (descriptions of each attribute follow):
e Optional Attributes

- Handling
- Response Codes

4.18.1 Handling-Domain Attribute

Purpose

Handling specifies the operations host devices may perform on the domain. There are two
operations:

. The read operation indicates host devices may upload the domain chunk of memory from
the device.

. The write operation indicates host devices may download the domain chunk of memory
to the device. A domain without a handling attribute may be read and written by host
devices.

Syntax

HANDLI NG handl i ng & handl i ng;
where:
handling is one of the following keywords:

« READ
« WRITE

The read and write operations are orthogonal, that is, each operation is independent of the other.

Therefore, a variable may be read but not written, written but not read, both read and written, or
neither read nor written. If both keywords are used then they are linked with the ampersand &.

4.18.2 Response Codes-Domain Attribute
Purpose

Response codes specify the values a field device may return as domain download/upload errors
(see "Response Code Types" later in this section).

© Copyright by PNO 2001 - All rights reserved Page: 73

EDDL Specification for PROFIBUS Version 1.1, January 2001

Syntax

RESPONSE_CODES r esponse- code- naneg;

©Copyright by PNO 2001 - All rights reserved Page: 74

EDDL Specification for PROFIBUS Version 1.1, January 2001

4.19 Response Codes
Purpose
Response codes specify the values a field device may return as application specific errors. Each

variable, record, array, variable list, program, or domain can have its own set of response codes,
because each one is eligible for FMS services.

Syntax

RESPONSE_CODES r esponse- code- name

val ue, type, description, help;
val ue, type, description, help;

}

where:
value (Required) specifies response code value. Equal values are not allowed.

type (Required) specifies the type of the response code. Response code types specify the
reasons response codes are returned. See the following table (response) for allowed
response code types.

description (Required) is a short description of the response code.

help (Optional) specifies help text for the response code.

Type Description

SUCCESS The application layer service was accepted and processed as
specified.

DATA ENTRY The application layer service was accepted and processed with a

WARNING slightly modified version of the data sent.

MISC WARNING The application layer service was accepted and processed as

specified and there is additional information, unrelated to the
application layer service, in which the user might be interested.

DATA ENTRY The application layer service was rejected because the data sent

ERROR was invalid.

MODE ERROR The application layer service was rejected because the field device
was in a mode in which the application layer service could not be
executed.

PROCESS ERROR The application layer service was rejected because a process
applied to the field device was invalid.

MISC ERROR The application layer service was rejected.

Table 4: Response Code Types

© Copyright by PNO 2001 - All rights reserved Page: 75

EDDL Specification for PROFIBUS Version 1.1, January 2001

4.20 Device Description Information

Purpose

The device description information attributes identify a specific device description. Electronic
device description information attributes include the following:

. Manufacturer

. Device Type

. Device Revision

. EDD Revisions

Syntax

MANUFACTURER i nt eger,
DEVI CE_TYPE i nteger,
DEVI CE_REVI SI ON i nt eger,
EDD_REVI SI ON i nt eger

© Copyright by PNO 2001 - All rights reserved Page: 76

EDDL Specification for PROFIBUS Version 1.1, January 2001

4.21 Output Redirection (OPEN and CLOSE Keywords)

Purpose

The output of the EDDL-Compiler is a set of objects. The OPEN and CLOSE keywords allow the
developer to create various subsets of object files.

e The OPEN keyword opens an output file. Each time an OPEN keyword is processed, a
new output file is opened (and created if necessary). All objects generated are written to
all open files.

e The CLOSE keyword prevents further output to an open file. If a file is reopened after
closing, then any following objects are appended to the file (rather than overwriting the
file).

Syntax

OPEN fi |l enane;
construct construct
CLOSE fil enane;

where:

filename is a string of letters or digits which provides the file system name.

© Copyright by PNO 2001 - All rights reserved Page: 77

EDDL Specification for PROFIBUS Version 1.1, January 2001

4.22 Creating Similar Items (LIKE Keyword)
Purpose

When a new EDD item resembles an existing item, (possibly from an imported file), then the new
item may be defined as "like" the first. Selected attributes of the first item may be redefined in the
second.

Syntax

item1l LIKE itemtype item2

attribute attribute ...

where:
item-1 is the new item being defined.

item-2 is the name of a previously defined item. The location of item-2 in the EDD does not
matter.

item_type is one of the following types:

* VARIABLE

« MENU

« METHOD

* ITEM_ARRAY
* ARRAY

e COLLECTION
« RECORD

* VARIABLE_LIST
« COMMAND

« CONNECTION

+« PROGRAM

« DOMAIN
+ RESPONSE_CODES
« BLOCK

attribute is an attribute of the newly defined item. Attributes that differ from those of the
previously defined item are described using the appropriate syntax for redefining or deleting
item attributes. To redefine an attribute of the item_type the keyword REDEFINE is used as
shown in the following example:

REDEFI NE LABEL "new | abel ";
REDEFI NE DEFAULT_VALUE 0;

Redefined attributes which are not present in the original definition, are merged. It is

possible to redefine all specified attributes for the item_type. See "lItem Redefinitions" later
in this section.

© Copyright by PNO 2001 - All rights reserved Page: 78

EDDL Specification for PROFIBUS Version 1.1, January 2001

4.23 Importing Device Descriptions
Purpose

The Electronic Device Description Language constructs previously described in this section are
sufficient for describing any single field device. However, additional mechanisms are required to
describe multiple revisions of a field device or standard field devices which may be used by
various manufacturers to develop compatible field devices.

To provide this type of functionality, one device description must be referenced by another. That
is, the developer must be able to import into one device description the items (such as variables
and blocks) from another device description. However, simply importing items is not sufficient.
The developer must also be able to alter the definitions of the items once they are imported.

With these mechanisms the description of a new revision of a field device can often be specified
by simply importing the device description of the old revision of the device, and specifying
changes to a few items. This type of device description is sometimes called a delta description,
because the entire device description is specified as changes to an existing device description.

Syntax

I MPORT MANUFACTURER i nt eger,
DEVI CE_TYPE i nt eger,

DEVI CE_REVI SI ON i nt eger,
EDD_REVI SI ON i nt eger

{
i mport-keywords
itemredefinitions
}
where:

MANUFACTURER integer
DEVICE_TYPE integer
DEVICE_REVISION integer

EDD_REVISION integer specify the device description from which items will be imported. There
can be multiple device descriptions for a particular revision of a particular device, in which
case the EDD revision distinguishes them.

import-keywords specify which items of the device description are to be imported. Only those
items specified by the import keywords are actually imported. The values for the import
keywords are described in the following subsection.

item-redefinitions specify how, if at all, the imported items are to be altered. An imported item
may be deleted or redefined, or the attributes of an imported item may be deleted or
redefined.

4.23.1 Import Keywords
Purpose
An import keyword is specified in the syntax for importing device description, and takes one of

three forms, depending on what is imported. Only types and items can be imported which are
defined in the imported device description.

¢ Importing all items, where all items of the external device description are imported. If this
form is used, no other import keywords are allowed, that is, if this keyword is used, it is the
one and only keyword.

©Copyright by PNO 2001 - All rights reserved Page: 79

EDDL Specification for PROFIBUS Version 1.1, January 2001

« Importing items of a specified type, where only the items of the specified types are
imported. If a specified type is imported, further imports of specific items of the same type
are not allowed.

e Importing a specific item.
Syntax
The syntax for the import keywords is as follows:
Importing All Iltems
EVERYTHI NG,
Importing Items of a Specified Type

itemtype & itemtype & ... ;
where:
item-type is one of the following keywords:

. VARIABLES

. MENUS

. METHODS

. ITEM_ARRAYS

. ARRAYS

. COLLECTIONS

. RECORDS

. VARIABLE_LISTS
. COMMANDS

. PROGRAMS

. DOMAINS
. RESPONSE_CODES
. BLOCKS

. RELATIONS
. CONNECTIONS

Example

The following import keyword specifies that all the variables, commands, and methods are to be
imported. Every item-type may be defined only once:

VARI ABL ES&COMVANDS&METHODS;

Importing a Specific Item

itemtype item nane;

where:

item-type is one the keywords listed in the syntax for importing items of a specific type.

item-name is the name assigned to the item when it was defined.

Example

©Copyright by PNO 2001 - All rights reserved Page: 80

EDDL Specification for PROFIBUS Version 1.1, January 2001

The following import keyword specifies that variable pv_units is imported:
VARI ABLE pv_units;

4.23.2 ltem Redefinitions

This subsection describes how imported items can be redefined. Only items and their attributes
which are imported may be redefined or deleted. Only items which are deleted or not defined in
the imported EDD may be added. Only if the imported device description contains redefined
items, it is possible to redefine these items in the EDD.

4.23.2.1 Redefining Imported Blocks

This subsection describes how imported blocks may be redefined.

Deleting Blocks
An imported block may be deleted with:
DELETE BLOCK narne;

Redefining Blocks
An imported block may be redefined with:
REDEFI NE BLOCK namne

attribute attribute ...

}

All attributes of the imported block are discarded and replaced with those specified.

Deleting/Redefining Block Attributes

The attributes of an imported block may be deleted or redefined with:
BLOCK nane

DELETE keywor d;
REDEFI NE keyword definition;

}

where:
keyword is one of the keywords that introduces a block attribute.

definition is the new definition of the block attribute. The format of the definition depends on the
attribute being redefined.

4.23.2.2 Redefining Imported Variables
This subsection describes how imported variables may be redefined.

Deleting Variables
An imported variable may be deleted with:
DELETE VARI ABLE nane;

Redefining Variables
An imported variable may be redefined with:
REDEFI NE VARI ABLE nane

attribute attribute ...

©Copyright by PNO 2001 - All rights reserved Page: 81

EDDL Specification for PROFIBUS Version 1.1, January 2001

}

All attributes of the imported variable are discarded and replaced with those specified.

Deleting/Redefining Attributes of Imported Variables
The attributes of an imported variable may be deleted or redefined with:
VARI ABLE nane

DELETE keywor d;
REDEFI NE keyword definition

}

where:
keyword is one of the keywords that introduces a variable attribute.

definition is the new definition for the variable attribute. The format of the definition depends on
the attribute being redefined.

The following syntax specifications show how attributes of imported variables can be altered.

Class Variable Attribute

The class of an imported variable may be redefined with:
REDEFI NE CLASS cl ass-name & class-nanme & ... ;

Constant Unit Variable Attribute

The constant unit of an imported variable may be deleted with:
DELETE CONSTANT_UNI T;

The constant unit of an imported variable may be redefined with:
REDEFI NE CONSTANT_UNIT stri ng;

Handling Variable Attribute

The handling of an imported variable may be deleted with:
DELETE HANDLI NG,

The handling of an imported variable may be redefined with:
REDEFI NE HANDLI NG handl i ng&handl i ng& . ..

Help Variable Attribute

The help of an imported variable may be deleted with:
DELETE HELP;

The help of an imported variable may be redefined with:
REDEFI NE HELP stri ng;
Label Variable Attribute

The label of an imported variable may be deleted with:
DELETE LABEL;

The label of an imported variable may be redefined with:
REDEFI NE LABEL string;

Pre/Post Edit Actions Variable Attributes

©Copyright by PNO 2001 - All rights reserved Page: 82

EDDL Specification for PROFIBUS Version 1.1, January 2001

The pre/post edit actions of an imported variable may be deleted with:

DELETE PRE_EDI T_ACTI ONS;
DELETE POST_EDI T_ACTI ONS;

The pre/post edit actions of an imported variable may be redefined with:
REDEFI NE PRE_EDI T_ACTI ONS

met hod, met hod,

}
REDEFI NE POST_EDI T_ACTI ONS

met hod, met hod,

}

Pre/Post Read Actions Variable Attributes

The pre/post read actions of an imported variable may be deleted with:

DELETE PRE_READ_ACTI ONS;
DELETE POST_READ_ACTI ONS;

The pre/post read actions of an imported variable may be redefined with:
REDEFI NE PRE_READ_ACTI ONS

met hod, nmet hod,

}
REDEFI NE POST_READ_ACTI ONS

met hod, met hod,

}

Pre/Post Write Actions Variable Attributes

The pre/post write actions of an imported variable may be deleted with:
DELETE PRE_WRI TE_ACTI ONS;

The pre/post write actions of an imported variable may be redefined with:

DELETE POST_WRI TE_ACTI ONS;
REDEFI NE POST_WRI TE_ACTI ONS

met hod, met hod,

}

Read/Write Time-outs Variable Attributes

The time-outs of an imported variable may be deleted with:
DELETE READ_TI MEQUT;

DELETE WRI TE_TI MEOUT,;

The time-outs of an imported variable may be redefined with:
REDEFI NE READ_TI MEOUT expressi on;

REDEFI NE WRI TE_TI MEOUT expr essi on;

Deleting/Redefining Arithmetic Options

If the type of an imported variable is arithmetic (integer, unsigned integer, float, or double), the
arithmetic options (display/edit formats, scaling factor, min/max values) of the type can be
deleted and redefined with:

©Copyright by PNO 2001 - All rights reserved Page: 83

EDDL Specification for PROFIBUS Version 1.1, January 2001

TYPE type
DELETE keywor d;

REDEFI NE keyword definition;
}

where:

keyword is one of the keywords introducing an arithmetic option.

definition is the new definition for the arithmetic option. The format of the definition depends on
the option being redefined.

Deleting/Redefining/Adding Enumeration Values

If the type of an imported variable is enumerated (enumerated or bit enumerated), the
enumeration values of the type can be deleted, redefined, and extended. Only values which are
defined in the imported EDD may be deleted or redefined. Furthermore only values may be added
which are not yet defined in the imported EDD. The type of the added value and the imported
variable must be the same.

TYPE type
DELETE val ue;
REDEFI NE val ue-definition;

ADD val ue-definition;

}

where:

value is one of the values of the imported variable.

value-definition is a definition of an enumeration or bit-enumeration, (see the discussion of
"Enumeration Types" in "Variables" earlier in this section).

Validity Variable Attribute

The validity of an imported variable may be deleted with:

DELETE VALI DI TY;

The validity of an imported variable may be redefined with:

REDEFI NE VALI DI TY bool ean;

Response Codes Variable Attribute

The response codes of an imported variable may be deleted with:
DELETE RESPONSE_CODES;

The response codes of an imported variable may be redefined with:
REDEFI NE RESPONSE_CODES r esponse- code- nane;

4.23.2.3 Redefining Imported Records
This subsection describes how to redefine imported records.

Deleting Records

An imported record may be deleted with:
DELETE RECORD nare;

©Copyright by PNO 2001 - All rights reserved Page: 84

EDDL Specification for PROFIBUS Version 1.1, January 2001

Redefining Records
An imported record may be redefined with:
REDEFI NE RECORD nane

attribute attribute ...

}

All attributes of the imported record are discarded and replaced with those specified.

Deleting/Redefining Record Attributes
The attributes of an imported record may be deleted or redefined with:
RECORD nane

DELETE keywor d;
REDEFI NE keyword definition;

}

where:
keyword is one of the keywords that introduces a record attribute.

definition is the new definition of the record attribute. The format of the definition depends on the
attribute being redefined.

The following syntax specifications show how attributes of imported records can be altered.

Members Record Attribute

There are several ways to alter the members of an imported record.

Redefining Members

The record members may be redefined with:
REDEFI NE MEMBERS

{

record- nember, recor d- nember,

}

All members of the imported record are discarded and replaced with those specified.

Deleting/Redefining/Adding Members
The members of an imported record can be deleted, redefined, and extended with:
MEMBERS

DELETE nane;

REDEFI NE r ecor d- menber ;

ADD record- menber;
}

Help Record Attribute

The help of an imported record may be deleted with:
DELETE HELP;

The help of an imported record may be redefined with:
REDEFI NE HELP stri ng;

©Copyright by PNO 2001 - All rights reserved Page: 85

EDDL Specification for PROFIBUS Version 1.1, January 2001

Label Record Attribute

The label of an imported record may be deleted with:
DELETE LABEL;

The label of an imported record may be redefined with:
REDEFI NE LABEL stri ng;

Response Codes Record Attribute

The response codes of an imported record may be deleted with:
DELETE RESPONSE_CODES ;

The response codes of an imported record may be redefined with:
REDEFI NE RESPONSE_CODES r esponse-code- nane;

4.23.2.4 Redefining Imported Item Arrays

This subsection describes how to redefine imported item arrays. The item-types of the imported
EDD and

Deleting Item Arrays

An imported item array may be deleted with:

DELETE | TEM_ARRAY nane;

Redefining Item Arrays
An imported item array may be redefined with:
REDEFI NE | TEM_ARRAY nane

attribute attribute ...

}

All the attributes of the imported item array are discarded and are replaced with those specified.

Deleting/Redefining Item Array Attributes
The attributes of an imported item array may be deleted or redefined with:
| TEM_ARRAY nane

DELETE keywor d;

REDEFI NE keyword definition;
}

where:
keyword is one of the keywords that introduces an item array attribute.

definition is the new definition of the item array attribute. The format of the definition depends on
the attribute being redefined.

The following syntax diagrams show how attributes of imported item arrays can be altered.

Elements Iltem Array Attribute

There are several ways to alter the elements of an imported item array.

Redefining the Elements

The item array elements may be redefined with:

©Copyright by PNO 2001 - All rights reserved Page: 86

EDDL Specification for PROFIBUS Version 1.1, January 2001

REDEFI NE ELEMENTS
{

}

All elements of the imported item array are discarded and replaced with those specified.

itemarray-elenent,itemarray-el ement,

Restriction

The type of the elements cannot be changed when redefining an item array. That is, an item
array of variables cannot be redefined as an item array of collections.

Deleting/Redefining/Adding Elements

The elements of an imported item array can be deleted, redefined, and extended with:

ELEMENTS

DELETE i ndex;
REDEFI NE item array- el ement
ADD item array-el ement

}

Help Item Array Attribute

The help of an imported item array may be deleted with:
DELETE HELP;

The help of an imported item array may be redefined with
REDEFI NE HELP stri ng;

Label Item Array Attribute

The label of an imported item array may be deleted with:
DELETE LABEL;

The label of an imported item array may be redefined with:
REDEFI NE LABEL string;

4.23.2.5 Redefining Imported Menus
This subsection describes how imported menus may be redefined.

Deleting Menus
An imported menu may be deleted with:
DELETE MENU name;

Redefining Menus
An imported menu may be redefined with:
REDEFI NE MENU namne

attribute attribute ...

}

All the attributes of the imported menu are discarded and are replaced with those specified.

Deleting/Redefining Menu Attributes

The attributes of an imported menu may be deleted or redefined with:

©Copyright by PNO 2001 - All rights reserved Page: 87

EDDL Specification for PROFIBUS Version 1.1, January 2001

MENU nane

DELETE keywor d;
REDEFI NE keyword definition;

}

where:
keyword is one of the keywords introducing a menu attribute.

definition is the new definition for the menu attribute. The format of the definition depends on the
attribute being redefined.

The following syntax specifications show how to alter the attributes of imported menus.

Label Menu Attribute

The label of an imported menu may be redefined with:
REDEFI NE LABEL string;

Items Menu Attribute
The items of an imported menu may be redefined with:

REDEFI NE | TEMS
{

}

menu-item menu-item

4.23.2.6 Redefining Imported Methods
This subsection describes how imported methods may be redefined.

Deleting Imported Methods
An imported method may be deleted with:
DELETE METHOD nane;

Redefining Imported Methods
An imported method may be redefined with:
REDEFI NE METHOD nane

attribute attribute ...

}

All the attributes of the imported method are discarded and are replaced with those specified.

Deleting/Redefining Attributes of an Imported Method
The attributes of an imported method may be deleted or redefined with:
METHOD name

DELETE keywor d;

REDEFI NE keyword definition;
}

where:
keyword is one of the keywords that introduces a method attribute.

definition is the new definition for the method attribute. The format of the definition depends on
the attribute being redefined.

©Copyright by PNO 2001 - All rights reserved Page: 88

EDDL Specification for PROFIBUS Version 1.1, January 2001

The following syntax specifications show how attributes of imported methods can be altered.

Class Method Attribute

The class of an imported method may be redefined with:
REDEFI NE CLASS cl ass-nameé&cl ass-name& ... ;

Definition Method Attribute

The definition of an imported method may be redefined with:
REDEFI NE DEFI NI TI ON c- compound- st at ement

Help Method Attribute

The help of an imported method may be deleted with:
DELETE HELP;

The help of an imported method may be redefined with:
REDEFI NE HELP stri ng;

Label Method Attribute

The label of an imported method may be redefined with:
REDEFI NE LABEL string;

Validity Method Attribute

The validity of an imported method may be deleted with:
DELETE VALI DI TY;

The validity of an imported method may be redefined with:
REDEFI NE VALI DI TY bool ean;

4.23.2.7 Redefining Imported Relations
This subsection describes how to redefine imported refresh, unit, and write-as-one relations.

Deleting Relations

An imported refresh relation may be deleted with:
DELETE REFRESH nane;

An imported unit relation may be deleted with:
DELETE UNI T narme;

An imported write-as-one relation may be deleted with:
DELETE WRI TE_AS_ONE nane;

Redefining Relations
An imported refresh relation may be redefined with:
REDEFI NE REFRESH name

vari abl e, vari able, ...
vari abl e, vari abl e,

}

An imported unit relation may be redefined with:

©Copyright by PNO 2001 - All rights reserved Page: 89

EDDL Specification for PROFIBUS Version 1.1, January 2001

REDEFI NE UNI T name
{

}

An imported write-as-one relation may be redefined with:
REDEFI NE WRI TE_AS_ONE nane

vari abl e: vari abl e, vari abl e,

vari abl e, vari abl e,

4.23.2.8 Redefining Imported Arrays
This subsection describes how imported arrays may be redefined.

Deleting Arrays
An imported array may be deleted with:
DELETE ARRAY nane,

Redefining Arrays
An imported array may be redefined with:
REDEFI NE ARRAY nane

attribute attribute ...

All the attributes of the imported array are discarded and are replaced with those specified.

Deleting / Redefining Array Attributes

The attributes of an imported array may be deleted or redefined with:
ARRAY narme

DELETE keywor d;
REDEFI NE keyword definition;

}

where:
keyword is one of the keywords that introduces an array attribute.

definition is the new definition of the array attribute. The format of the definition depends on the
attribute being redefined.

The following syntax specifications show how attributes of imported arrays can be altered.

Help Array Attribute

The help of an imported array may be deleted with:
DELETE HELP;

The help of an imported array may be redefined with:
REDEFI NE HELP stri ng;

Label Array Attribute

The label of an imported array may be deleted with:
DELETE LABEL;
The label of an imported array may be redefined with:

©Copyright by PNO 2001 - All rights reserved Page: 90

EDDL Specification for PROFIBUS Version 1.1, January 2001

REDEFI NE LABEL string;

Type Array Attribute

The type of an imported array may be redefined with:
REDEFI NE TYPE vari abl e- nane;

Number of Elements Array Attribute
The number of elements of an imported array may be redefined with:
REDEFI NE NUMBER_OF_ELEMENTS i nt eger - const ant ;

Response Codes Array Attribute

The response codes of an imported array may be deleted with:
DELETE RESPONSE_CODES;

The response codes of an imported array may be redefined with:
REDEFI NE RESPONSE_CODES r esponse- code- hane;

4.23.2.9 Redefining Imported Collections
This subsection describes how to redefine imported collections.

Deleting Collections
An imported collection may be deleted with:
DELETE COLLECTI ON narme;

Redefining Collections
An imported collection may be redefined with:
REDEFI NE COLLECTI ON nane

attribute attribute ...

All attributes of the imported collection are discarded and are replaced with those specified.

Deleting/Redefining Collection Attributes
The attributes of an imported collection may be deleted or redefined with:
COLLECTI ON nane

DELETE keywor d;
REDEFI NE keyword definition;

}

where:
keyword is one of the keywords that introduces a collection attribute.

definition is the new definition of the collection attribute. The format of the definition depends on
the attribute being redefined.

The following syntax specification show how attributes of imported collections can be altered.

Members Collection Attribute

There are several ways to alter the members of an imported collection.

©Copyright by PNO 2001 - All rights reserved Page: 91

EDDL Specification for PROFIBUS Version 1.1, January 2001

Redefining Members
The collection members may be redefined with:
REDEFI NE MEMBERS

col |l ecti on-menber, col | ecti on- mrenber,

}

All members of the imported collection are discarded and replaced with those specified.

Restriction
The type of the members cannot be changed when redefining a collection, that is, a collection of
variables cannot be redefined as a collection of item arrays.
Deleting/Redefining/Adding Members
The members of an imported collection can be deleted, redefined, and extended with:
VMEMBERS
DELETE nane;
REDEFI NE col | ecti on- menber ;

ADD col | ecti on- menber

}

Help Collection Attribute

The help of an imported collection may be deleted with:
DELETE HELP;

The help of an imported collection may be redefined with:
REDEFI NE HELP stri ng;

Label Collection Attribute

The label of an imported collection may be deleted with:
DELETE LABEL;

The label of an imported collection may be redefined with:
REDEFI NE LABEL string;

4.23.2.10 Redefining Imported Variable Lists
This subsection describes how imported variable lists may be redefined.

Deleting Variable Lists

An imported variable list may be deleted with:
DELETE VARI ABLE_LI ST nane;
Redefining Variable Lists

An imported variable list may be redefined with:
REDEFI NE VARI ABLE_LI ST nane

attribute attribute ...

©Copyright by PNO 2001 - All rights reserved Page: 92

EDDL Specification for PROFIBUS Version 1.1, January 2001

All the attributes of the imported variable list are discarded and are replaced with those specified.

Deleting/Redefining Variable List Attributes
The attributes of an imported variable list may be deleted or redefined with:
VARI ABLE_LI ST nane

DELETE keywor d;
REDEFI NE keyword definition

}

where:
keyword is one of the keywords that introduces an variable list attribute.

definition is the new definition of the variable list attribute. The format of the definition depends
on the attribute being redefined.

The following syntax specifications show how the attributes of imported variable lists can be
altered.

Members Variable List Attribute

There are several ways to alter the members of an imported variable list.

Redefining Members
The variable list members may be redefined with:

REDEFI NE MEMBERS
{

}

All members of the imported variable list are discarded and replaced with those specified.

vari abl e-li st-menber, record-menber , ...

Deleting/Redefining/Adding Members
The members of an imported variable list can be deleted, redefined, and extended with:
MVEMBERS

DELETE nane ;

REDEFI NE vari abl e-1i st-menmber

ADD vari abl e-1i st-nember
}

Help Variable List Attribute

The help of an imported variable list may be deleted with:
DELETE HELP;

The help of an imported variable list may be redefined with:
REDEFI NE HELP string ;

Label Variable List Attribute

The label of an imported variable list may be deleted with:
DELETE LABEL;

The label of an imported variable list may be redefined with:
REDEFI NE LABEL string;

©Copyright by PNO 2001 - All rights reserved Page: 93

EDDL Specification for PROFIBUS Version 1.1, January 2001

Response Codes Variable List Attribute

The response codes of an imported variable list may be deleted with:
DELETE RESPONSE_CODES;

The response codes of an imported variable list may be redefined with:
REDEFI NE RESPONSE_CODES r esponse-code- nane;

4.23.2.11 Redefining Imported Programs

This subsection describes how to redefine an imported program.

Deleting Programs
An imported program may be deleted with:
DELETE PROGRAM nane;

Redefining Programs
An imported program may be redefined with:
REDEFI NE PROGRAM nane

attribute attribute ...

}

All the attributes of the imported program are discarded and are replaced with those specified.

Deleting/Redefining Program Attributes
The attributes of an imported program may be deleted or redefined with:
PROGRAM namne

DELETE keywor d;

REDEFI NE keyword definition;
}

where:

keyword is one of the keywords that introduces a program attribute.

definition is the new definition of the program attribute. The format of the definition depends on
the attribute being redefined.

Arguments Program Attribute

There are several ways to alter the arguments of an imported program. The program arguments
may be redefined with:

REDEFI NE ARGUMENTS

data-itemdata-item. ..

All arguments of the imported program are discarded and replaced with those specified. The
arguments of an imported program can be deleted, redefined, and extended with:

ARGUMENTS
DELETE data-itemn
REDEFI NE dat a-iten

©Copyright by PNO 2001 - All rights reserved Page: 94

EDDL Specification for PROFIBUS Version 1.1, January 2001

ADD data-item
}

Response Codes Program Attribute

The response codes of an imported program may be deleted with:
DELETE RESPONSE_CODES;

The response codes of an imported program may be redefined with:
REDEFI NE RESPONSE_CODES r esponse-code- nane;

4.23.2.12 Redefining Imported Domains
This subsection describes how to redefine an imported domain.

Deleting Domains
An imported domain may be deleted with:
DELETE DOMAI N narme;

Redefining Domains
An imported domain may be redefined with:
REDEFI NE DOMAI N nane

attribute attribute ...

}

All attributes of the imported domain are discarded and replaced with those specified.

Deleting/Redefining Domain Attributes
The attributes of an imported domain may be deleted or redefined with:
DOMAI N name

DELETE keywor d;

REDEFI NE keyword definition;
}

where:

keyword is one of the keywords that introduces a domain attribute.

definition is the new definition of the domain attribute. The format of the definition depends on
the attribute being redefined.

Handling Domain Attribute

The handling of an imported domain may be deleted with:

DELETE HANDLI NG,

The handling of an imported domain may be redefined with:

REDEFI NE HANDLI NG handl i ng&handl i ng& .. .;

Response Codes Domain Attribute

The response codes of an imported domain may be deleted with:
DELETE RESPONSE_CODES;

©Copyright by PNO 2001 - All rights reserved Page: 95

EDDL Specification for PROFIBUS

Version 1.1, January 2001

The response codes of an imported domain may be redefined with:
REDEFI NE RESPONSE_CODES r esponse-code- nanme;

4.23.2.13 Redefining Imported Response Codes

This subsection describes how to redefine imported response codes.

Deleting Response Codes
Imported response codes may be deleted with:
DELETE RESPONSE_CODES nane;

Redefining Response Codes

Imported response codes may be redefined with:
REDEFI NE RESPONSE_CODES nane

{

val ue, type, descri ption, hel p;
val ue, type, descri ption, hel p;
}
Deleting/Redefining/Adding Response Codes
The response codes can be deleted, redefined, and extended with:
RESPONSE_CODES nane
DELETE val ue;

REDEFI NE val ue, type, descri ption, hel p;
ADD val ue, type, descri ption, hel p;

©Copyright by PNO 2001 - All rights reserved

Page: 96

EDDL Specification for PROFIBUS Version 1.1, January 2001

4.24 Preprocessor Directives

Purpose

The EDDL has a number of control line commands which initiate the compiler to include files, do macro
substitutions, and do conditional compilations. Preprocessing directives are lines in the EDD which start
with #. The # is followed by an identifier, "the "directive name". Whitespace is also allowed before and

after the # . If a #define is sufficiently long to warrant continuation on the next line, the backslash \ may be
used to continue the definition.

4.24.1 Header Files

Purpose

A header file is a file containing declarations and macro definitions to be shared between several source
files. Header files serve two kinds of purposes.

» System header files declare the interfaces to parts of the operating system. They are included in
the EDD to supply the definitions and declarations needed to invoke system calls and libraries.

* Own header files contain declarations for interfaces between the source files of the EDD.
Each time having a group of related declarations and macro definitions all or most of which are needed in
several different source files, it is a good possibility to create a header file for them.
Syntax
#i ncl ude <FI LE>
#i ncl ude "FI LE"
where:

<FILE> is the variant used for system header files. You specify directories to search for header files with
the command option.

"FILE" is the variant used for header files of own programs.

Both user and system header files are included in using the preprocessing directive.

4.24.2 Macros
Purpose
A macro is a sort of abbreviation which can be defined once and then be used later for several times.

#define is the directive that defines a macro. There exist several possibilities how to use the #define
preprocessor.

Syntax

#defi ne Def Synb
#def i ne Def Synb NewSynb
##defi ne Def Macro(Varl, Var2

where:
DefSymb defines a symbol. The existence of the symbol is checked with

#ifdef name If the symbolic name is defined (e.g. #define NAME or #define NAME Smith), from this
point the followed code up to #endif is compiled.

#ifndef name If the symbolic name is not defined, the followed code up to #endif is compiled.

©Copyright by PNO 2001 - All rights reserved Page: 97

EDDL Specification for PROFIBUS Version 1.1, January 2001

NewSymb is the substitute for DefSymb wherever it finds DefSymb in the EDD.

DefMacro is the name of the function with the parameters Varl and Var2. For further information see the
example in the appendix.

4.25 Conditional Expressions
Purpose

Conditional expressions are commands to declare parts of the EDD as valid or invalid during execution
time. These decision depends on the values of a variable.

4.25.1 If Conditional
Purpose

An if conditional is used for specifying an attribute that has two alternative definitions. The expression
specified in the if conditional is evaluated. If the result is non-zero, the attribute is specified by a then
clause; otherwise, it is specified by an else clause.

Syntax

IF (expression)
t hen-cl ause

}

ELSE

{

}

where:

el se-cl ause

expression is the which is evaluated to determine whether the then-clause or else-clause is used to
define the attribute.

then-clause is the definition for the attribute if the value of expression is non-zero. The clause structure
depends on the attribute being defined. It can also take the form of another conditional.

else-clause is the definition for the attribute if the value of expression is zero. The clause structure
depends on the attribute being defined. It can also take the form of another conditional.

4.25.2 Select Conditional

Purpose

A select conditional is used for specifying an attribute that has several alternative definitions. The
expression in parentheses is evaluated. Then each expression following a CASE is evaluated, in order,
until one evaluates to the same value as the controlling expression. If a match is found, the attribute is
specified by the clause following the matching expression; otherwise, it is specified by the clause following
DEFAULT.

Syntax

SELECT (expression)

CASE expression:
cl ause

©Copyright by PNO 2001 - All rights reserved Page: 98

EDDL Specification for PROFIBUS Version 1.1, January 2001

CASE expression:

cl ause
DEFAULT:
cl ause
}
where:

(expression) is the controlling expression against which expressions in the alternative CASE structures
are evaluated.

expression is an expression which is matched against the expression in parentheses.

clause is the definition for the attribute for each case, and the default definition. The structure of each
clause depends on the attribute being defined. Regardless of the attribute, each clause can also
take the form of another conditional.

4.26 References
Purpose
References are used throughout a device description by items to refer to other items. For example, the

pre-edit actions of a variable refers to methods defined elsewhere in the device description.
The following subsections describe conventions and syntax for references in a device description.

4.26.1 Referencing Items

The most common type of reference is simply the name of an item. A simple reference is expressed as
follows:

i tem nane

4.26.2 Referencing Elements of a Record
The elements of a record may be referenced as:
record-nane . menber - nane

where:

record-name is the name of a record.

member-name is one of the names associated with the elements of the record.

4.26.3 Referencing Elements Of An Array
The elements of an array may be referenced as:
array-name [expression]

where:

array-name is the name of an array.

4.26.4 Referencing Members of a Collection
The member of a collection may be referenced as:
col l ection-reference . nenber-name
where:

collection-reference is a reference to a collection. This reference need not be the name of a collection,
only a reference to a collection. That is, collection references can be nested.

©Copyright by PNO 2001 - All rights reserved Page: 99

EDDL Specification for PROFIBUS Version 1.1, January 2001

member-name is one of the names associated with the members of the collection.

4.26.5 Referencing Elements of an Item Array
The elements of an item array may be referenced as:
itemarray-reference [expression]
where:

item-array-reference is a reference to an item array. The item-array-reference need not be the name of
an item-array, only a reference to an item array, that is, item array references can be nested.

4.26.6 Referencing Members of a Variable List
The members of a variable list may be referenced as:
vari abl e-1ist-nane . nenber-nane

where:

variable-list-name is the name of a variable list.

member-name is one of the names associated with the members of the variable list.

When a Variable List Member is a Record

If a member of a variable list is a record, the elements of the record may be referenced as:

vari abl e-list-name . nenber-nane . record-nenber

where:

variable-list-name is the name of a variable list.

member name is one of the names associated with the members of the variable list.

record-member is one of the names associated with the members of the record specified by member-
name.

When a Variable List Member is an Array

If a member of a variable-list is an array, the element of the array may be referenced as:

variable-list-name . nenber-name [expression]

where:

variable-list-name is the name of a variable list.

member-name is one of the names associated with the members of the variable list.

4.27 EXxpressions
Purpose

An expression specifies the computation of a numeric value. There are three types of expressions:

1. Primary Expressions
2. Unary Expressions
3. Binary Expressions

©Copyright by PNO 2001 - All rights reserved Page: 100

EDDL Specification for PROFIBUS Version 1.1, January 2001

4.27.1 Primary Expressions
Table 4 summarizes the primary expressions in the EDDL.

Primary Expression Description

Constant An expression whose value is identical to the
value of the constant.

Parenthesized expression An expression whose value is identical to the
value of the enclosed expression.

Variable reference An expression whose value is the value of the

referenced variable. Because a variable
reference may require a value read from a
device, use variable references with care.

Minimum and maximum values of device|These primary expressions take the following
variables form:

vari abl e- name. M N_VALUE
vari abl e- name. MAX_VALUE

For example, the following expression
specifies the maximum value of the variable
upper_range_value:

upper _range_val ue. MAX VALUE

Table 5: Primary Expressions

4.27.2 Unary Expressions

A unary expression consists of an operand, an expression, preceded by a unary operator. Table 5
describes the unary expressions in the EDDL.

Unary Expression What It Specifies
- The arithmetic negation of its operand.
O The bitwise negation of its operand, that is,

each bit of the result is the inverse of the
corresponding bit of the operand. The
operand of the 0O operator must have an
integral value.

! The logical negation of its operand.

Table 6:Unary Expressions

4.27.3 Binary Expressions

A binary expression consists of two operands or expressions, separated by a binary operator. If either
operand has a floating point value, the other operand is converted (promoted) to a floating point value.
This subsection describes the following types of binary expressions:

» Multiplicative

» Additive
» Shift
* Relational

©Copyright by PNO 2001 - All rights reserved Page: 101

EDDL Specification for PROFIBUS Version 1.1, January 2001

» Equality

» Bitwise AND (&)
» Bitwise XOR ()

» Bitwise OR (|)

* Logical AND (&&)
* Logical OR (||)

4.27.3.1 Multiplicative Operators

Multiplicative operators specify multiplication and division of operands. Table 6 describes the multiplicative
operators.

Operator What It Does
* Specifies the multiplication of its operands.
/and% Specifies the division of the first operand by

the second operand. The result of the /
operator is the quotient of the division. The
result of the % operator is the remainder.

Table 7: Multiplicative Operators

4.27.3.2 Additive Operators

Additive operators specify the addition and subtraction of operands. Table 7 describes additive operators.

Operator What It Does

+ Specifies the addition of its operands.

- Specifies the subtraction of the second
operand from the first.

Table 8: Additive Operators

4.27.3.3 Shift Operators

The << and >> operators specify a shift of the first operand by the number of bits specified by the second
operand. The operands of the << and >> operators must have integral values. Table 8 describes the shift
operators.

Operator What It Does

<< Shifts the first operand to the left. The bits
shifted off are discarded, and the vacated bits
are zero filled.

>> Shifts the first operand to the right. The bits
shifted off are discarded. If the first operand is
less than 0, the vacated bits are one filled;
otherwise they are zero filled.

Table 9: Shift Operators

4.27.3.4 Relational Operators

Relational operators (<, <=, >, >=) specify a comparison of its operands. The result of this type of an
expression is 1 if the tested relationship is true, otherwise the result is 0. Table 9 describes the relational
operators.

©Copyright by PNO 2001 - All rights reserved Page: 102

EDDL Specification for PROFIBUS Version 1.1, January 2001

Operator What It Does

< Tests for the relationship ,less than".

<= Tests for the relationship ,less than or equal”.

> Tests for the relationship ,greater than”.

>= Tests for the relationship ,greater than or
equal“.

Table 10: Relational Operators

4.27.3.5 Equality Operators

The equality operators are == and !=. The result of this type of an expression is 1 if the tested relationship
is true, otherwise the result is 0. Table 10 describes the equality operators.

Operator What It Does

== Tests for the relationship ,equals”.

I= Tests for the relationship ,does not equal*.

Table 11: Equality Operators

4.27.3.6 Bitwise AND Operator (&)

The & operator specifies the bitwise AND of its operands, that is, each bit of the result is set if each of the
corresponding bits of the operands is set. The operands of the & operator must have integral values.

4.27.3.7 Bitwise XOR Operator (0

The Ooperator specifies the bitwise exclusive OR of its operands, that is, each bit of the result is set if only
one of the corresponding bits of the operands is set. The operands of the OJoperator must have integral
values.

4.27.3.8 Bitwise OR Operator (|)

The | operator specifies the bitwise inclusive OR of its operands, that is, each bit of the result is set if
either of the corresponding bits of the operands is set. The operands of the | operator must have integral
values.

4.27.3.9 Logical AND Operator (&&)

The && operator specifies the boolean AND evaluation of its operands. The result of this type of
expression is 1 if both of the operands are not equal to 0, otherwise the result is 0. If the first operand is
equal to 0, the second operand is not evaluated.

4.27.3.10 Logical OR Operator (]|)

The || operator specifies the boolean OR evaluation of its operands. The result of this type of expression is
1 if either of the operands is not equal to 0, otherwise the result is 0. If the first operand is not equal to 0,
the second operand is not evaluated.

4.28 Strings
There are several ways to specify a string:

» As astring literal
* As an enumeration value string

©Copyright by PNO 2001 - All rights reserved Page: 103

EDDL Specification for PROFIBUS Version 1.1, January 2001

e As astring variable
» As adictionary reference

4.28.1 Specifying a String as a String Literal

A text string can be specified as a string literal (see "String Literals" in "Lexical Conventions" later in this
section). Adjacent string literals are concatenated to form a single string literal.

4.28.2 Specifying a String as a String Variable
A string specified as a string variable is the value of the string variable.

4.28.3 Specifying a String as a Enumeration Value
Purpose

An enumeration value string is a string associated with one of the values of an enumeration variable.
Syntax

name (val ue)
where:

name is the name of an enumeration variable and its values.

Example

The following enumeration value string specifies the string associated with the value 4 of the variable
units_code:

units_code (4)

4.28.4 Specifying a String as a Dictionary Reference
Purpose

A dictionary reference specifies a string in the standard text dictionary.
Syntax

[name]

where:

name is the name of a string in the standard text dictionary (see "Standard Dictionary" later in this
section).

Example

The following dictionary reference specifies the string associated with the name invalid_selection in the
standard text dictionary:

[invalid_selection]

©Copyright by PNO 2001 - All rights reserved Page: 104

EDDL Specification for PROFIBUS Version 1.1, January 2001

4.29 Lexical Conventions

This section describes the lexical conventions of the language.

4.29.1 Integer Constants

An integer constant may be specified in binary, octal, decimal, or hexadecimal notation. Table 11
shows the conventions for each type of notation.

Integer Conventions

ConstantType

Binary A non-empty sequence of the binary digits 0 and 1 preceded by
either Ob or 0B.

Octal A non-empty sequence of the digits 0 through 7 beginning with a 0.

Decimal A non-empty sequence of the decimal digits 0 through 9, not
beginning with 0.

Hexadecimal A non-empty sequence of hexadecimal digits preceded by either 0x
or 0X. The hexadecimal digits are the digits 0 through 9 and the
letters a through f (or A through F) with the values 10 through 15,
respectively.

Table 12: Lexical Conventions for Integer Constants

4.29.2 Floating Point Constants
Syntax

A floating point constant has four parts:

1. Aninteger part, a sequence of decimal digits.
2. A decimal point (.).

3. A fraction part, a sequence of decimal digits.
4

An exponent part, a possibly signed sequence of decimal digits preceded by one of the
letters e or E.

Rules The following rules apply to using floating point constants:
. Either the integer part or the fraction part can be omitted, but not both.

. Either the decimal point or the exponent part can be omitted, but not both.

Example Following are examples of floating point constants:

59.

. 87
48. 93
4.8el2

4.29.3 String Literals

A string literal is a possibly empty sequence of characters enclosed in double quotes ("). The
enclosed characters can be any ISO Latin—1 (ISO 8859-1) character except the following:

. Double quote (")
. Backslash (\)
. New line

Using Escape Sequences in String Literals

© Copyright by PNO 2001 - All rights reserved Page: 105

EDDL Specification for PROFIBUS Version 1.1, January 2001

A string constant can also contain escape sequences that represent an ISO Latin-1 character.
Table 12 shows the escape sequences and their results.

Escape Code Result

' Single quote

" Double quote

| Vertical bar

? Question mark
\ Backslash

\a Alert

\f Form feed

\n Newline

\r Carriage return
\t Horizontal tab
\v Vertical tab

Table 13: Using Escape Sequences in String Literals

4.29.4 Using Language Codes in String Constants

There is another escape sequence called a language code. A language code consists of a
vertical bar (|) followed by three decimal digits. The three digits are the same as the telephone
country code.

This language code escape sequence specifies the language of the string up to the next
language code. Therefore, a string literal can encapsulate all the translations of a given phrase.
A string literal containing no language code is an English string. If a string literal does not contain
translations for all the languages, English will be used for the unspecified languages. The table
language shows the language codes that can be used in string literals.

Language Code Language
English

|[de| German

[fr] French

lit| Italian

[sp| Spanish

Table 14: Using Language Codes in String Literals

Example The following string literal specifies the English phrase "Invalid Selection" in English and
German:

"lInvalid Sel ection"
"| de| Unzul &ssi ge Auswahl "

4.30 Standard Text Dictionary

The standard text dictionary provides a standard vocabulary for describing field devices. The
dictionary is a collection of standard text strings that can be used in device descriptions.
The standard text dictionary provides the following advantages:

. The standard dictionary specifies each of the standard text strings in each of the
supported languages. This provides motivation for field device developers to use the
text dictionary. If field device developers use the standard text dictionary, they need
not translate their text strings to any foreign languages because the text dictionary
contains definitions of the text strings for all the supported languages.

©Copyright by PNO 2001 - All rights reserved Page: 106

EDDL Specification for PROFIBUS Version 1.1, January 2001

. If field device developers make extensive use of the dictionary, which they will if the

dictionary is complete enough, a degree of consistency across different product lines
will be created. This consistency, due to the common vocabulary, will be especially
apparent across similar types of field devices.
For example, many pressure transmitters, temperature transmitters, and flow meters
will use the same terminology and therefore appear similar to the users. This
consistency is accomplished because a common vocabulary is used by all field device
developers.

Form of the Standard Text Dictionary

The standard text dictionary takes the form of a text file. The text file consists of phrase
definitions and comments. Each phrase definition is made up of three or more fields, separated
by commas. The following example shows an dictionary entry:
[0,0] cb_tine

"Check-Back Tinme"

"| de| Rucknel dezei t"

©Copyright by PNO 2001 - All rights reserved Page: 107

EDDL Specification for PROFIBUS Version 1.1, January 2001

5 EDDL Method Built-ins Library

This appendix describes the library of built-in functions that are available to be used within EDDL
methods.

5.1 ABORT_ON_ALL_COMM_STATUS
Syntax
voi d ABORT_ON_ALL_COMM STATUS()

Purpose

ABORT_ON_ALL_COMM_STATUS will set all of the bits in the comm status abort mask. This will
cause the system to abort the current method if the device returns any comm status value.
The retry and abort masks are reset to their default values at the start of each method, so the

new mask value will only be valid during the current method. See
ABORT_ON_RESPONSE_CODE for default values.
See also:

ABORT_ON_COMM_STATUS, RETRY_ON_COMM_STATUS, IGNORE_COMM_STATUS,
RETRY_ON_ALL_COMM_STATUS, IGNORE_ALL_COMM_STATUS.

5.2 ABORT_ON_ALL_RESPONSE_CODES
Syntax
voi d ABORT_ON_ALL_RESPONSE_CODES()

Purpose

ABORT_ON_ALL_RESPONSE_CODES will set all of the bits in the response code abort mask.
This will cause the system to abort the current method if the device returns any response code
value.

The retry and abort masks are reset to their default values at the start of each method, so the
new mask value will only be valid during the current method. See
ABORT_ON_RESPONSE_CODE for default values.

See also:

ABORT_ON_RESPONSE_CODE, RETRY_ON_RESPONSE_CODE,
IGNORE_RESPONSE_CODE,

RETRY_ON_ALL_RESPONSE_CODES, IGNORE_ALL_RESPONSE_CODES.

5.3 ABORT_ON_COMM_STATUS
Syntax

voi d ABORT_ON_COWVM STATUS(comm st at us)
int comm status;

Purpose

ABORT_ON_COMM_STATUS will set the correct bit(s) in the comm status abort mask such that
the specified comm status value will cause the method to abort.

The retry and abort masks are reset to their default values at the start of each method, so the
new mask value will only be valid during the current method. See
ABORT_ON_RESPONSE_CODE for default values.

See also:

RETRY_ON_COMM_STATUS, IGNORE_COMM_STATUS, ABORT_ON_ALL COMM_STATUS,
RETRY_ON_ALL COMM_STATUS, IGNORE_ALL_COMM_STATUS.

© Copyright by PNO 2001 - All rights reserved Page: 108

EDDL Specification for PROFIBUS Version 1.1, January 2001

5.4 ABORT_ON_NO_DEVICE
Syntax
voi d ABORT_ON_NO_DEVI CE()

Purpose

ABORT_ON_NO_DEVICE will set the no devices mask such that the method will be aborted if no
device is found while sending a transaction.

The retry and abort masks are reset to their default values at the start of each method, so the
new mask value will only be valid during the current method. See
ABORT_ON_RESPONSE_CODE for default values.

See also:

RETRY_ON_NO_DEVICE, IGNORE_NO_DEVICE.

5.5 ABORT_ON_RESPONSE_CODE
Syntax

voi d ABORT_ON RESPONSE_ CODE(r esponse_code)
int response_code;

Purpose

ABORT_ON_RESPONSE_CODE will set the correct bit(s) in the response code abort mask such
that the specified response code value will cause the method to abort.

The retry and abort masks are reset to their default values at the start of each method, so the
new mask value will only be valid during the current method.

See also:

RETRY_ON_RESPONSE_CODE, IGNORE_RESPONSE_CODE,
ABORT_ON_ALL_RESPONSE_CODES,

RETRY_ON_ALL_RESPONSE_CODES, IGNORE_ALL_RESPONSE_CODES.

5.6 DELAY
Syntax

voi d DELAY(delay_time, pronmpt)
int delay_tine;
char *pronpt;

Purpose

DELAY displays the prompt and pauses for the specified humber of seconds. The prompt may
contain local variable values (see put_message for syntax). The delay time must be a positive
number.

See also:

delay, DELAY_TIME.

5.7 DELAY_TIME
Syntax

voi d DELAY_TI ME(del ay_ti ne)
int delay_tinme;

Purpose

DELAY_TIME pauses for the specified number of seconds. The delay time must be a positive
number.

©Copyright by PNO 2001 - All rights reserved Page: 109

EDDL Specification for PROFIBUS Version 1.1, January 2001

See also:
delay, DELAY.

5.8 IGNORE_ALL_COMM_STATUS
Syntax
voi d | GNORE_ALL_COWM STATUS()

Purpose

IGNORE_ALL_COMM_STATUS will clear all of the bits in the comm status retry and abort
masks. This will cause the system to ignore all bits in the comm status value.

The retry and abort masks are reset to their default values at the start of each method, so the
new mask value will only be valid during the current method. See
ABORT_ON_RESPONSE_CODE for default values.

See also:

ABORT_ON_COMM_STATUS, RETRY_ON_COMM_STATUS, IGNORE_COMM_STATUS,
ABORT_ON_ALL _COMM_STATUS, RETRY_ON_ALL_COMM_STATUS.

5.9 IGNORE_ALL_RESPONSE_CODES
Syntax
voi d | GNORE_ALL_RESPONSE_CODES()

Purpose

IGNORE_ALL_RESPONSE_CODES will clear all of the bits in the response code retry and abort
masks. This will cause the system to ignore all response code values returned from the device.
The retry and abort masks are reset to their default values at the start of each method, so the
new mask value will only be valid during the current method. See
ABORT_ON_RESPONSE_CODE for default values.

See also:

ABORT_ON_RESPONSE_CODE, RETRY_ON_RESPONSE_CODE,
IGNORE_RESPONSE_CODE,

ABORT_ON_ALL_RESPONSE_CODES, RETRY_ON_ALL_RESPONSE_CODES.

5.10 IGNORE_COMM_STATUS
Syntax

voi d | GNORE_COWVM STATUS(comm st at us)
int comm status;

Purpose

IGNORE_COMM_STATUS will clear the correct bit(s) in the comm status abort and retry mask
such that the specified bits in the comm status value will be ignored.

The retry and abort masks are reset to their default values at the start of each method, so the
new mask value will only be valid during the current method. See
ABORT_ON_RESPONSE_CODE for default values.

See also:

ABORT_ON_COMM_STATUS, RETRY_ON_COMM_STATUS,

ABORT_ON_ALL COMM_STATUS,

RETRY_ON_ALL COMM_STATUS, IGNORE_ALL_COMM_STATUS.

©Copyright by PNO 2001 - All rights reserved Page: 110

EDDL Specification for PROFIBUS Version 1.1, January 2001

5.11 IGNORE_NO_DEVICE
Syntax
voi d | GNORE_NO_DEVI CE()

Purpose

IGNORE_NO_DEVICE will set the no device mask to show that the no device condition should be
ignored while sending a transaction.

The retry and abort masks are reset to their default values at the start of each method, so the
new mask value will only be valid during the current method. See
ABORT_ON_RESPONSE_CODE for default values.

See also:

ABORT_ON_COMM_STATUS, RETRY_ON_NO_DEVICE.

5.12 IGNORE_RESPONSE_CODE
Syntax

voi d | GNORE_RESPONSE_CODE(r esponse_code)
int response_code;

Purpose

IGNORE_RESPONSE_CODE will clear the correct bit(s) in the response code masks such that
the specified response code value will be ignored.

The retry and abort masks are reset to their default values at the start of each method, so the
new mask value will only be valid during the current method. See
ABORT_ON_RESPONSE_CODE for default values.

See also:

ABORT_ON_RESPONSE_CODE, RETRY_ON_RESPONSE_CODE,
ABORT_ON_ALL_RESPONSE_CODES,

RETRY_ON_ALL_RESPONSE_CODES, IGNORE_ALL_RESPONSE_CODES.

5.13 METHODID

Syntax

int METHODI D(et hod_nane)
char *met hod_nare;

Purpose

METHODID will return the identifier for the method specified. A valid method name must be
provided. Each method in the device description is assigned a unique identifier. This routine is
used when the identifier of a method needs to be passed to the abort processing built-in
functions.

Will return method identifier.

5.14 PROGID

Syntax

int PROG D(progname)
char *prognane;
Purpose

PROGID will return the identifier for the program specified. A valid program name must be
provided. The ID needs to be saved in a temporary buffer for use as a parameter to another built-

©Copyright by PNO 2001 - All rights reserved Page: 111

EDDL Specification for PROFIBUS Version 1.1, January 2001

in.
PROGID will return program identifier.

5.15 RETRY_ON_ALL_COMM _STATUS
Syntax
voi d RETRY_ON_ALL_COWM STATUS()

Purpose

RETRY_ON_ALL_COMM_STATUS will set all of the bits in the comm status retry mask.This will
cause the system to retry the current transaction if the device returns any comm status value.
The retry and abort masks are reset to their default values at the start of each method, so the
new mask value will only be valid during the current method. See
ABORT_ON_RESPONSE_CODE for default values.

See also:

ABORT_ON_COMM_STATUS, RETRY_ON_COMM_STATUS, IGNORE_COMM_STATUS,
ABORT_ON_ALL_COMM_STATUS, IGNORE_ALL_COMM_STATUS.

5.16 RETRY_ON_ALL_RESPONSE_CODES
Syntax
voi d RETRY_ON_ALL_RESPONSE_CODES()

Purpose

RETRY_ON_ALL_RESPONSE_CODE will set all of the bits in the response code retry mask. This
will cause the system to retry the current transaction if the device returns any response code
value.

The retry and abort masks are reset to their default values at the start of each method, so the
new mask value will only be valid during the current method. See
ABORT_ON_RESPONSE_CODE for default values.

See also:

ABORT_ON_RESPONSE_CODE, RETRY_ON_RESPONSE_CODE,
IGNORE_RESPONSE_CODE,

ABORT_ON_ALL_RESPONSE_CODES, IGNORE_ALL_RESPONSE_CODES.

5.17 RETRY_ON_COMM_STATUS
Syntax

voi d RETRY_ON_COWMM STATUS(comm st at us)
int conmm status;

Purpose

RETRY_ON_COMM_STATUS will set the correct bit(s) in the comm status retry mask such that
the specified comm status value will cause the current transaction to be retried.

The retry and abort masks are reset to their default values at the start of each method, so the
new mask value will only be valid during the current method. See
ABORT_ON_RESPONSE_CODE for default values.

See also:

ABORT_ON_COMM_STATUS, IGNORE_COMM_STATUS, ABORT_ON_ALL_COMM_STATUS,
RETRY_ON_ALL COMM_STATUS, IGNORE_ALL_COMM_STATUS.

©Copyright by PNO 2001 - All rights reserved Page: 112

EDDL Specification for PROFIBUS Version 1.1, January 2001

5.18 RETRY_ON_NO_DEVICE
Syntax
voi d RETRY_ON_NO_DEVI CE()

Purpose

RETRY_ON_NO_DEVICE will set the no device mask such that the current transaction will be
retried if no device is found while sending a transaction.

The retry and abort masks are reset to their default values at the start of each method, so the
new mask value will only be valid during the current method. See
ABORT_ON_RESPONSE_CODE for default values.

See also:

ABORT_ON_COMM_STATUS, IGNORE_NO_DEVICE.

5.19 RETRY_ON_RESPONSE_CODE
Syntax

voi d RETRY_ON RESPONSE_ CODE(r esponse_code)
int response_code;

Purpose

RETRY_ON_RESPONSE_CODE will set the correct bit(s) in the response code retry mask such
that the specified response code value will cause the current transaction to be retried.

The retry and abort masks are reset to their default values at the start of each method, so the
new mask value will only be valid during the current method. See
ABORT_ON_RESPONSE_CODE for default values.

See also:

ABORT_ON_RESPONSE_CODE, IGNORE_RESPONSE_CODE,
ABORT_ON_ALL_RESPONSE_CODES,

RETRY_ON_ALL_RESPONSE_CODES, IGNORE_ALL_RESPONSE_CODES.

5.20 VARID

Syntax

int VARID(vari abl e_nane)
char *vari abl e_nane;
Purpose

VARID will return the identifier for the variable specified. A valid variable name must be provided.
Each variable in the device description is assigned a unique identifier. This routine is to be used
when the identifier of a variable either needs to be stored in a temporary buffer, or needs to be
sent as a parameter to another built-in.

Will return variable identifier.

5.21 abort
Syntax
voi d abort ()

Purpose

abort will display a message indicating that the method has been aborted and wait for
acknowledgment from the user. Once acknowledgment has been made, the system will execute
any abort methods in the abort method list, and will exit the method process.

©Copyright by PNO 2001 - All rights reserved Page: 113

EDDL Specification for PROFIBUS Version 1.1, January 2001

See also:
add_abort_method(), remove_abort_method() remove_all_abort_methods(), process_abort().

5.22 acknowledge

Syntax

int acknow edge(pronpt)
char *pronpt;

Purpose

acknowledge will display the prompt and wait for the enter key to be pressed. Will return the key
pressed to exit the transaction.

5.23 add_abort_method
Syntax

int add_abort_method(abort_met hod_namne)
char *abort _net hod_nane;

Purpose

add_abort_method will add a method to the abort method list, which is the list of methods to be
executed if the current method is aborted. The abort method list can hold up to twenty methods at
any one time. The methods are run in the order they are added to the list, and the same method
may be added to the list more than once. The list is cleared after each method is executed.

It is important to note that the abort methods are only executed when the method is aborted, and
not when you exit the method, under normal operating conditions. Methods can be aborted due to
an abort mask condition when sending a transaction, or when the abort built-in is called.

Will return TRUE if the method was successfully added to the list, and FALSE if the list was full.
See also:

abort() remove_abort_method(), process_abort().

5.24 assign_str
Syntax

voi d assign_str(device_var, new_string)
char *decice_var;

char *new_string;

Purpose

assign_str will assign the specified string to the device variable. The variable must be valid. If
neccessary, the value is casted to the type of the referenced variable.

5.25 delay
Syntax

voi d del ay(delay_time, pronpt, global _var _ids)
int delay_tine;

char *pronmpt;

int *global _var _ids;

Purpose

Will display the prompt and pause for the specified number of seconds. The prompt may contain
local and/or device variable values (see put_message for syntax). The delay time must be a

©Copyright by PNO 2001 - All rights reserved Page: 114

EDDL Specification for PROFIBUS Version 1.1, January 2001

positive number.
See also:
DELAY, DELAY_TIME.

5.26 display

Syntax

voi d di splay(pronpt, global _var_ids)
char *pronpt;

int *global_var_ids;

Purpose

This routine will display the specified message on the screen, continuously updating the dynamic
variable values used in the string (see put_message for syntax). This updating will continue until
the enter key is pressed.

5.27 display_comm_status

Syntax

voi d di splay_comm status(comm status_val ue)
int commstatus_val ue;

Purpose

Display_comm_status will display the string associated with the specified value of the
comm_status byte.

See also:

display_response_status.

5.28 display_response_status

Syntax

voi d di splay_response_status(response_code_val ue)
int response_code_val ue;

Purpose

Display_response_status will display the string associated with the specified value of the
response_code byte.

See also:

display_comm_status.

5.29 fassign
Syntax

int fassign(target_var_id, new_val ue)
char *target _var _id; double new val ue;

Purpose

Will assign the value specified to the target variable. The variable must be valid, and must
reference a variable of type float.

Will return TRUE if the assignment was successful, and FALSE if the variable identifier was
invalid.

See also:

VARID, vassign.

©Copyright by PNO 2001 - All rights reserved Page: 115

EDDL Specification for PROFIBUS Version 1.1, January 2001

5.30 fvar_value
Syntax

doubl e fvar_val ue(source_var_nane)
char *sour ce_var _nane;

Purpose

Will return the value of the specified variable. The variable must be valid and of type float. Will
return the value of the variable specified. See also:
ivar_value, lvar_value.

5.31 get_dev_var_value
Syntax

int get _dev_var_val ue(pronpt, device_var_nane)
char *pronmpt;
char *devi ce_var _nane;

Purpose

get_dev_var_value will display the specified prompt message, and allow the user to edit the value
of a device variable. If the device variable is dynamic, the value will be continuously updated until
a new value is entered. The edited copy of the device variable value will be updated when the
new value is entered, but will not be sent to the device. This must be done explicitly using one of
the send transaction routines.

The prompt may NOT contain embedded local and/or device variable values. Will return
Bl_SUCCESS if the variable was successfully modified, BI_ABORT if the routine was aborted,
and BI_ERROR if an error occurred entering the new value or accessing the specified variable.
See also:

get_local_var_value.

5.32 get_dictionary_string
Syntax

int get _dictionary_string(dict_string_name, string, max_str_|en)
char *dict_string_name;

char *string;

char *max_str_|en;

Purpose

get_dictionary_string will retrieve the dictionary string associated with the given name in the
current language. If the string is not available in the current language, the English string will be
retrieved. If the string is not defined in either language, an error condition occurs, and the routine
will return FALSE. If the string is longer than the max_str_len, the string will be truncated. Will
return TRUE if successful, FALSE if string could not be found.

5.33 get_local_var_value
Syntax

int get _local _var_val ue(pronpt, |ocal _var_name)
char *pronpt;
char *| ocal _var_nane;

Purpose

©Copyright by PNO 2001 - All rights reserved Page: 116

EDDL Specification for PROFIBUS Version 1.1, January 2001

get_local_var_value will display the specified prompt message, and allow the user to edit the
value of a local variable.

The prompt may NOT contain embedded local and/or device variable values.

Will return Bl_SUCCESS if the variable was successfully modified, and BI_ERROR if an error
occurred entering the new value or accessing the specified variable.

See also:

get_dev_var_value.

5.34 get_status_code_string
Syntax

voi d get status_code_string(var_nanme, status_code, status_string,
status_string_I ength)

char *var _nane;

int status_code;

char *status_string;

int status_string_|ength;

Purpose

Will return the status code string for the variable and status code specified. If the string is longer
than the maximum length defined in status_string_length, the string is truncated. The variable
identifier supplied must be valid, and the status code specified must be valid for that variable.

5.35 GET_TICK_COUNT
Syntax
 ong GET_TI CK_COUNT()

Purpose

returns the time in milliseconds since the last system boot. It can be used for timestamps.
ATTENTION: In order to the Datatype long, the returnvalue of GET_TICK_COUNT will wrap
around and start from zero after a period of 49,71026961806 days.

5.36 ivar_value

Syntax

int ivar_value(source_var_nhanme)
char *source_var_nane;

Purpose

Will return the value of the specified variable. The variable identifier must be valid and of type
integer.

Will return the value of the variable specified.

See also:

fvar_value, Ivar_value.

5.37 lIvar_value
Syntax

int |var_val ue(source_var_nanme)
char *source_var_nane;

Purpose

©Copyright by PNO 2001 - All rights reserved Page: 117

EDDL Specification for PROFIBUS Version 1.1, January 2001

Will return the value of the specified variable. The variable identifier must be valid and of type
long.

Will return the value of the variable specified.

See also:

ivar_value, fvar_value.

5.38 process_abort
Syntax
voi d process_abort ()

Purpose

process_abort will abort the current method, running any abort methods which are in the abort
method list. Unlike the abort transaction, no message will be displayed when this routine is
executed. This built-in transaction may not be run from inside an abort method.

See also:

abort, add_abort_method, remove_abort_method, remove_all_abort_methods.

5.39 put_message

Syntax

voi d put _nessage(nessage)
char *nessage;

Purpose

put_message will display the specified message on the screen.
Embedded device variables are NOT supported in this transaction.

5.40 ReadCommand
Syntax
voi d ReadCommand(nane)

Purpose

ReadCommand reads the variables defined in the COMMAND name.

5.41 remove_abort_method
Syntax

int renmove_abort_met hod(abort _met hod_nane)
char *abort net hod_nane;

Purpose

remove_abort_method will remove a method from the abort method list, which is the list of
methods to be executed if the current method is aborted. This transaction will remove the first
occurrence of the specified method in the list, starting with the first method added. If there are
multiple occurrences of a specific method, only the first one is removed. Abort methods may not
be removed during an abort method.

will return TRUE if the method was successfully removed from the list, and FALSE if either the
method was not in the list or if this transaction was run during an abort method.

See also:

abort, add_abort_method, remove_abort_method, process_abort.

©Copyright by PNO 2001 - All rights reserved Page: 118

EDDL Specification for PROFIBUS Version 1.1, January 2001

5.42 remove_all_abort_methods
Syntax
voi d renove_al | _abort nethods()

Purpose

remove_all_abort_methods will remove all entries in the abort method list, including multiple
entries for the same method. This transaction may not be run from an abort method.

See also:

abort, add_abort_method, remove_abort_method, process_abort.

5.43 rspcode_string
Syntax

void rspcode_string(transacti on, response_code, response_string,
response_string_I ength)

int transaction;

int response_code;

char *response_string;

int response_string_Ilength;

Purpose

Will return the response code string for the transaction and response code specified. If the string
is longer than the maximum length defined in response_string_length, the string is truncated. The
response code specified must be valid for the indicated transaction.

5.44 sassign

Syntax

voi d sassign{destination_variable, string}
char *string;

Purpose

sassign will assign the specified string to the device variable. The variable must be valid. If
necessary, the value is casted to the type of the referenced variable.

5.45 select_from_list
Syntax

int select _fromlist(pronpt, option_list)
char *pronpt;
char *option_list;

Purpose

select_from_list has the same functionality as select_from_list_wvarids, except that device
variables are not allowed in the prompt string. For example:

int result;
result = select_fromlist("ls this correct?","Yes; No");

if (result == 0)
{ ...}

el se
{ ...}

©Copyright by PNO 2001 - All rights reserved Page: 119

EDDL Specification for PROFIBUS Version 1.1, January 2001

This transaction would display the prompt "Is this correct?" and the two options "Yes" and "No".
If "Yes" is selected, a 0 is returned, and the code in the statement is executed. If "No" is
selected, a 1 is returned, and the code in the else-statement executed.

5.46 ShellExecute
Syntax

Shel | Execut e(string)
char *string;

Purpose

Takes the string argument and opens the specified file.

5.47 vassign

Syntax

int vassign(target_var_nane, source_var_id)
char *target_var_nanme;

char *source_var _id;

Purpose

Will assign the value of the source variable to the destination variable. Both variables must be
valid.

Will return TRUE if the assignment was successful, and FALSE if either variable identifier was
invalid.

See also:

VARID, fassign.

5.48 WriteCommand
Syntax
void WiteConmand(nane)

Purpose
WriteCommand writes the variables defined in the COMMAND name to the field device.

©Copyright by PNO 2001 - All rights reserved Page: 120

EDDL Specification for PROFIBUS Version 1.1, January 2001

A Example File

/* Exanple file using El ectronic Device Description (EDD) */
/* lnmportant: This file serves as an exanple only, it is not nornative */
/* File name: exanple.edd */
/* 3.1. The ldentification */

MANUFACTURER 42,
DEVI CE_TYPE 42,
DEVI CE_REVI SI ON 1,
DD_REVI SI ON 1

VARI ABLE | ocal _vari abl e
{
LABEL "Local Variable";
HELP " Hel p";
CLASS LOCAL;
TYPE FLOAT
{
DEFAULT_VALUE 30;
M N_VALUE 10;
MAX_VALUE 200;
SCALI NG_FACTOR 200;
EDI T_FORVAT "5d";
DI SPLAY_FORMAT "5d";
}
HANDLI NG READ & WRI TE;
VALI DI TY TRUE;

BLOCK Bl ockldentifierl
{
TYPE PHYSI CAL;
NUMBER 1;

VARI ABLE | ocal _variable_1
{
LABEL "Local Variable 1";
CLASS LOCAL;
TYPE FLOAT
{
DEFAULT_VALUE 20;
M N_VALUE 10;
MAX_VALUE 200;
}
POST_EDI T_ACTI ONS
{

post scal e_vari abl e

}
HANDLI NG READ & WRI TE;

METHCD post scal e_vari abl e

© Copyright by PNO 2001 - All rights reserved Page: 121

EDDL Specification for PROFIBUS Version 1.1, January 2001

LABEL "Local Method";
DEFI NI TI ON
{

float f;

int i;

f = fvar_val ue(local _variable_1);
i =(f/ 5 + 0.5
assign_int(variable, i);

f =i * b5

assign_float(local variable 1, f);

COWAND r ead_comand
{
SLOT 1;
I NDEX 2;
OPERATI ON READ;
TRANSACTI ON
{
REQUEST
{
}
REPLY
{
vari abl el,
vari abl e2 <0OxFO0>,
vari abl e3 <0x08>,
vari abl e4 <0x07>

BLOCK physi cal _bl ock
{
TYPE PHYSI CAL;
NUMBER 1;

COWAND r ead_phys_bl k
{
BLOCK physi cal _bl ock;
I NDEX O;
OPERATI ON READ;
TRANSACTI ON
{
REQUEST
{

}
REPLY

©Copyright by PNO 2001 - All rights reserved Page: 122

EDDL Specification for PROFIBUS

Version 1.1, January 2001

phys_bl k_reserve, phys_bl k_obj ect,

phys_bl k_parent _cl ass, phys_bl k_cl ass,

phys_bl k_dd_ref erence, phys_bl k_dd_rev,

phys_bl k_profile, phys_blk profile_rev,

phys_bl k_execution_time, phys_bl k_hi ghest_rel _of fset,
phys_bl k_i ndex_vi ew_1, phys_blk_numview |lists

}
}
}
VARI ABLE Vari abl el nCol | ecti onl
{
CLASS LOCAL;
TYPE FLOAT;
HANDLI NG READ;
}
COLLECTI ON OF VARI ABLE Col | ectionldentifierl
{
LABEL "Col | ection 1";
HELP "Hel p for Collection 1";
MEMBERS
{
menber _1, Variabl elnColl ectionl, "description", "help";
}
}
VARI ABLE Vari abl el nArrayl
{
CLASS LOCAL;
TYPE FLOAT;
HANDLI NG READ;
}
| TEM ARRAY OF VARI ABLE Arrayldentifierl
{
LABEL "Array 1";
HELP "Help for Array 1";
ELEVENTS
{
1, VariablelnArrayl, "description", "help";
}
}
VARI ABLE Vari abl eModi fi edl
{
CLASS LOCAL;
TYPE FLOAT;
HANDLI NG READ & W\RI TE;
}

VARI ABLE Vari abl eModi fi ed2
{

©Copyright by PNO 2001 - All rights reserved

Page: 123

EDDL Specification for PROFIBUS

Version 1.1, January 2001

CLASS LOCAL;
TYPE FLOAT;
HANDLI NG READ & WRI TE;

VARI ABLE Vari abl eModi fi ed3
{

CLASS LOCAL;

TYPE FLQOAT,;

HANDLI NG READ & WRI TE;

VARl ABLE Vari abl eToBeRef r eshedl
{

CLASS LOCAL;

TYPE FLOAT;

HANDLI NG READ & WRI TE;

VARI ABLE Vari abl eToBeRef r eshed2
{

CLASS LOCAL;

TYPE FLQOAT;

HANDLI NG READ & WRI TE;

REFRESH Refreshl
{
Vari abl eModi fi edl, Variabl eModi fied2, Variabl eModified3
Vari abl eToBeRef reshedl, Vari abl eToBeRefreshed2

VARI ABLE Vari abl eUni t
{
CLASS LOCAL;
TYPE FLQOAT,;
HANDLI NG READ & WRI TE;

UNIT Unitl
{
Vari abl eUni t
Vari abl eToBeRef reshedl, Vari abl eToBeRefreshed2

VARI ABLE condi tion

{
CLASS LOCAL;
TYPE FLOAT;
HANDLI NG READ & WRI TE;

VARI ABLE Vari abl eFor Condi ti onal

©Copyright by PNO 2001 - All rights reserved

Page: 124

EDDL Specification for PROFIBUS

Version 1.1, January 2001

{
LABEL "Vari abl eFor Condi tional ";
CLASS CONTAI NED;
TYPE | NTEGER (2);
HANDLI NG | F(condi tion == 0x00)
{
READ;
}
ELSE
{
READ & WRI TE
}
}

VARI ABLE identfier_1
{
CLASS LOCAL
TYPE FLQOAT,;
HANDLI NG READ;

VARI ABLE identfier_2

{
CLASS LOCAL;
TYPE FLOAT;
HANDLI NG READ;
}
MENU nanme
{
LABEL "string_A"
HELP "string_B"
ACCESS ONLI NE
STYLE W NDOW
| TEMS
{
identfier_1
identfier_2
}
}

MENU Menu_Mai n_Speci al i st
{

LABEL "mai n nmenu"

| TEMS

{
Menu_Fil e, /* assune to be
Menu_Devi ce, /* assune to be
Menu_Vi ew, /* assune to be
Menu_Opti ons, /* assune to be
Menu_Hel p /* assune to be

}

©Copyright by PNO 2001 - All rights reserved

defined
defi ned
defi ned
defined
defined

somewher e
somewher e
somewher e
somewher e
somewher e

el se
el se
el se
el se
el se

*/
*/
*/
*/
*/

Page: 125

EDDL Specification for PROFIBUS

Version 1.1, January 2001

MENU Menu_Devi ce
{
LABEL "Device";
| TEMS
{
st at us,
di agnosti c,
Onl i ne_Val ue

MENU Onl i ne_Val ue

{
ACCESS ONLI NE;
STYLE Bar G aph;
LABEL "Val ue";
| TEMS
{

meas_val ue

VARI ABLE Vari abl el
{
CLASS LOCAL;
TYPE FLOAT,;
HANDLI NG READ;

VARI ABLE Vari abl e2
{
CLASS LOCAL;
TYPE FLOAT,;
HANDLI NG READ;

VARI ABLE Vari abl e3
{
CLASS LOCAL;
TYPE FLOAT;
HANDLI NG READ;

MENU Tabl e_Mai n_Speci al i st 2

{
LABEL "Test Device";

| TEMS

{
Vari abl el,
Menu

}

©Copyright by PNO 2001 - All rights reserved

Page: 126

EDDL Specification for PROFIBUS

Version 1.1, January 2001

MENU Menu
{
LABEL "Menu";
| TEMS
{
Vari abl e2,
Vari abl e3
}
}

/* Application Context */
VARl ABLE Appl i cati onCont ext

{

LABEL " ApplicationContext";

CLASS LOCAL;

TYPE Bl T_ENUMERATED (4)

{
{0, "reserved"},
{1, "FDT_CONFI GURATI ON'},
{2, "FDT_PARAMETERI ZE"},
{3, "FDT_DI AGNCSI S"},
{4, "FDT_MANAGEMENT"},
{5, "FDT_OBSERVE"},
{6, "FDT_DOCUMENTATI ON'},
{7, "FDT_FORCE"},
{8, "FDT_ASSET_ MANAGEMENT"},
{9, "reserved"},
{10, "reserved"},
{11, "reserved"},
{12, "reserved"},
{13, "reserved"},
{14, "FDT_GVA MAI NTENANCE"},
{15, "FDT_GMVA SPECI ALI ST"},
{16, "DTM and / or vendor specifi
{17, "DTM and / or vendor specifi
{18, "DTM and / or vendor specifi
{19, "DTM and / or vendor specifi
{20, "DTM and / or vendor specifi
{21, "DTM and / or vendor specifi
{22, "DTM and / or vendor specifi
{23, "DTM and / or vendor specifi
{24, "DTM and / or vendor specifi
{25, "DTM and / or vendor specifi
{26, "DTM and / or vendor specifi
{27, "DTM and / or vendor specifi
{28, "DTM and / or vendor specifi
{29, "DTM and / or vendor specifi
{30, "DTM and / or vendor specifi
{31, "DTM and / or vendor specifi

}

}

©Copyright by PNO 2001 - All rights reserved

00 0000000000000 0

e e e e e e e e e e e e e e o o

Page: 127

EDDL Specification for PROFIBUS

Version 1.1, January 2001

B Lexic-Formal Definition

B.1 Operators
! I = % oF
& && = (
) * * — +
++ += , -
- - - = . /
= : : <
<< <<= <= =
== > >= >>
>>= ? [
N N = {
= | | } ~
B.2 Keywords
ACCESS ADD ALARM
ALL AO APPINSTANCE
ARGUMENTS ARRAY ARRAYS
ASCII AUTO BAD
BIT_ENUMERATED BITSTRING BLOCK
BLOCKS break CASE
case char CLASS
COLLECTION COLLECTIONS COMMAND
COMMANDS COMM_ERROR CONNECTION
CONSTANT_UNIT CONTAINED continue
CORRECTABLE DATA DATA_ENTRY_ERROR
DATA _ENTRY_WARNING DATA_EXCHANGE DATE_AND_TIME
DD_REVISION DEFAULT default
DEFAULT_VALUE DEFINITION DELETE
DETAIL DEVICE_REVISION DEVICE_TYPE
DIAGNOSTIC DIALOG DISPLAY_FORMAT
DISPLAY_VALUE do DOMAIN
DOUBLE double DV
DYNAMIC EDD_REVISION EDIT_FORMAT
ELEMENTS ELSE else
ENUMERATED EVENT EVERYTHING
FALSE FLOAT float
for FUNCTION GOOD
HANDLING HARDWARE HELP
HIDDEN IF if
IGNORE_IN_HANDHELD IMPORT INDEX
INFO INITIAL_VALUE INPUT
int INTEGER ITEM_ARRAY
ITEMS LABEL LIKE
LOCAL long MANUAL
MANUFACTURER MAX_VALUE MEMBERS
MENU MENUS METHOD
METHODS MIN_VALUE MISC
MISC_ERROR MISC_WARNING MODE
MODE_ERROR MODULE MORE
NUMBER NUMBER_OF _ELEMENTS OF
OFFLINE ONLINE OPERATE
OPERATION OUTPUT PASSWORD

© Copyright by PNO 2001 - All rights reserved

Page: 128

EDDL Specification for PROFIBUS

Version 1.1, January 2001

PHYSICAL
POST_WRITE_ACTIONS
PRE_WRITE_ACTIONS
PROGRAM
READ_TIMEOUT
REDEFINITIONS
REPLY

return

SELECT

short

SOFTWARE

SUCCESS

TIME

TRUE

TYPE

unsigned

VARIABLE

while

WRITE_AS_ONE

B.3 Terminals

DEFI NE digit ={
bin_digit
non_zero_digit = {
oct_digit
hex_digit

letter

escapes

| SOLatinlchar = - { "

/* I nteger */

(0Ob]OB) bin_digit +
non_zero_digit digit *
"0" oct_digit *

(0x| 0X) hex_digit +

/* real zahl */

IIlI—‘IIIO

POST_EDIT_ACTIONS
PRE_EDIT_ACTIONS
PROCESS

READ

RECORD

REFRESH

REQUEST

REVIEW
SELF_CORRECTING
signed

STATE

SUMMARY
TRANSACTION

TUNE
UNCORRECTABLE
UNSIGNED_INTEGER
VARIABLE_LIST
WINDOW
WRITE_TIMEOUT

} .
01}

C)
0-7}
0- 9abcdef ABCDEF }
a-zA-Z } .
""Rafnrtv'\' } .

} .

/* binaer */
[* dezimal */
/* octal */
/* hexadezi mal */

digit*."digit+((Ele){+\-}2digit+)?

/* string */
\" ISCLatinlchar * *"

/* character */
\' ISQLatinlchar \

/* ldentifier */
letter (letter|digit]_)*

©Copyright by PNO 2001 - All rights reserved

POST_READ_ACTIONS
PRE_READ_ACTIONS
PROCESS_ERROR
READ_ONLY
REDEFINE
RELATIONS
RESPONSE_CODES
SCALING_FACTOR
SERVICE

SLOT

STYLE

switch

TRANSDUCER

TV

UNIT

VALIDITY
VARIABLES

WRITE

Page: 129

EDDL Specification for PROFIBUS

Version 1.1, January 2001

C Syntax-Formal Definition

Cc.1 Device Description Information

devi ce_descri ption
= identification definition_list

identification
= manufacturer ',' device_type ',’

manuf act urer
= ' MANUFACTURER | nt eger

devi ce_type
= 'DEVI CE_TYPE | nteger

devi ce_revi si on
= 'DEVI CE_REVI SION' | nt eger

DD revi sion
= 'DD_REVI SION | nteger
= 'EDD_REVI SION | nt eger

definition_list
definition
definition_list definition

definition

= item
i mported_description
i ke

item
= array
= bl ock
= col lection
= conmmand
= connection
= domain
= itemarray
= nmenu
= met hod
= program
= record
= refresh_rel ation
= response_codes_definition
= unit_relation
= variable
= variable_list
= wite_as_one_relation

© Copyright by PNO 2001 - All rights reserved

device_revision ' DD revi sion

Page: 130

EDDL Specification for PROFIBUS

Version 1.1, January 2001

C.2 Array

array

= "ARRAY' ldentifier '{' array_attribute_list

array_attribute_list
= array_attribute_listR

array_attribute_listR
= array_attribute

= array_attribute_|listR array_attribute

array_attribute
= array_type
= array_si ze
= requi red_| abe
= help
= response_codes

array_type

= '"TYPE variable_reference ';

array_si ze
= ' NUMBER_OF_ELEMENTS' | nt eger

C.3 Block

bl ock

= '"BLOCK Identifier '{' block_ attribute_list

bl ock_attribute_li st
= block_attribute_|listR

bl ock_attribute_|listR
= block_attribute

= block_attribute_|listR block_attribute

bl ock_attribute
= bl ock_type
= bl ock_nunber

bl ock_t ype
= "TYPE 'PHYSICAL' ';
= "TYPE ' TRANSDUCER ' ;'
= '"TYPE 'FUNCTION ;'

bl ock_nunber
= "NUMBER Integer ';'
= "NUMBER expr ';'

©Copyright by PNO 2001 - All rights reserved

[* M*/
[* M*/
[* M*/
[* O*/
/[* O*

[* M*/
[* M*/

Page: 131

EDDL Specification for PROFIBUS

Version 1.1, January 2001

cC.4 C-Grammer

C_primary_expr

='[" ldentifier "]’
I dentifier
c_const ant
string_literal
"('" c_expr ')’

c_const ant
= I nteger
= Real Const
= Char act er Const

c_postfix_expr

= c_primary_expr
c_postfix_expr c_expr ']
c_postfix_expr "(" ")’

1
—

= c_postfix_expr '.' ldentifier
= c_postfix_expr '.' 'DEFAULT_VALUE
= c_postfix_expr "." "IN TIAL_VALUE

c_postfix_expr '++
= c_postfix_expr '--

c_argument _expr_li st
= c_assi gnnment _expr

c_postfix_expr '(' c_argunment_expr_|ist

e

= c_argunment _expr_list '," c_assignnent_expr

c_unary_expr
c_postfix_expr

= "++' c_unary_expr

'--' c_unary_expr
c_unary_operator c_postfix_expr

c_unary_oper at or

c_multiplicative_expr
= c_unary_expr

= c_multiplicative_expr '*' c_unary_expr
= c_multiplicative_expr '/' c_unary_expr
= c_nmultiplicative_expr "% c_unary_expr

c_addi tive_expr
c_multiplicative_expr

©Copyright by PNO 2001 - All rights reserved

c_additive_expr "+ c_nultiplicative_expr

Page: 132

EDDL Specification for PROFIBUS Version 1.1, January 2001

= c_additive_expr '-' c_nmultiplicative_expr

c_shift_expr

c_additive_expr

c_shift_expr '<<' c_additive_expr
= c_shift_expr '>>" c_additive_expr

c_rel ational _expr

c_shift_expr

c_relational _expr '<' c_shift_expr
= c_relational _expr '> c_shift_expr
c_relational _expr '>=" c_shift_expr

= c_relational _expr '<=' c_shift_expr
c_equality_expr

= c_rel ational _expr

= c_equality_expr '==" c_relational _expr

= c_equality_expr '"!'=" c_relational _expr

c_and_expr
= c_equal ity_expr
= c_and_expr '& c_equality_expr

c_excl usi ve_or _expr
= c_and_expr
= c_exclusive_or_expr '~ c_and_expr

c_i ncl usi ve_or _expr
= c_excl usi ve_or _expr
= c_inclusive_or_expr '|"' c_exclusive_or_expr

c_l ogi cal _and_expr
= c_incl usive_or_expr
= c_l ogi cal _and_expr '&& c_inclusive_or_expr

c_| ogi cal _or _expr
= c_| ogi cal _and_expr
= c_logical _or_expr '||' c_logical_and_expr

c_condi ti onal _expr
= c_l ogi cal _or_expr
= c_logical _or_expr '"?" c_logical_or_expr ':' c_conditional _expr
c_assi gnnment _expr
c_condi ti onal _expr
c_unary_expr c_assignnent_operator c_assi gnment_expr

c_assi gnment _oper at or

©Copyright by PNO 2001 - All rights reserved Page: 133

EDDL Specification for PROFIBUS Version 1.1, January 2001

c_expr

c_assi gnment _expr
= c_expr ',' c_assignment_expr
c_const ant _expr

= c_condi tional _expr

c_decl aration
c_declaration_specifiers ';
c_decl aration_specifiers c_declarator_list ';

c_decl aration_specifiers
c_type_specifier
c_type_specifier c_declaration_specifiers

c_declarator_|ist
c_decl arator
c_declarator_list ',' c_declarator

c_decl arator

I dentifier

c_declarator '"[' ']’

c_declarator '[' c_constant_expr ']

c_type_specifier
= 'char’
= 'short
='int'
= 'long
= 'signed
= 'unsi gned
= 'float

" doubl e’

c_statenent
= c_I| abel ed_st at enent
= c_conpound_st at enent
= c_expr_statenent
= c_sel ection_st at ement
= c_iteration_statenent
= c_j unp_st at enent

c_|l abel ed_st at emrent
= 'case' c_constant_expr ':' c_statenent

= 'default' ':' c_statenent

©Copyright by PNO 2001 - All rights reserved Page: 134

EDDL Specification for PROFIBUS

Version 1.1, January 2001

c_conpound

c_decl ar at

c_statenen

_stat enent
oy

ion_list
c_decl aration

c_declaration_list c_declaration

t_list
c_statenent

c_statenment _|ist c_statenent

c_expr_st at enent

c_selectio

c_iteratio

c_expr ';

n_st at enent

ift (" c_expr ')!
it (" c_expr ')’

"switch' '(' c_expr ')’

n_st at enent

"while' "(' c_expr ')’
"while'

'do' c_statenent
"for' ' ('

"for' '
"for' '

(
(
"for' ' (
"for' '"(' c_expr
"for' ' ('
(
(

c_expr

"for' c_expr

"“for' ' (' c_expr

C_j unp_st at enent

‘continue' ';
"break' ';°'

"return' '
"return' c_expr

C.5 Collection

col l ection

= '"COLLECTION ' OF

col l ection

_attribute_list

{' c_statenent_li st
"{' c_declaration_list "}’
{* c_declaration_list c_statenent_li st

3

c_statenent
c_statenent
c_stat enent

c_expr
c_expr

c_expr
c_expr

¥

"el se'

c_statement
c_expr ')’

c_expr

c_expr

c_expr

c_expr

3

c_st at ement

— — — — — — — —

temtype ldentifier '{'

collection_attribute_ listR

collection_attribute_|listR

©Copyright by PNO 2001 - All rights reserved

collection_attribute

c_stat enent
c_statenent
c_statenent
c_stat enent
c_statenent
c_statenent
c_stat enent
c_stat enent

collection_attribute_list

collection_attribute |listR collection_attribute

y

Page: 135

EDDL Specification for PROFIBUS Version 1.1, January 2001

collection_attribute

= nenbers /* M*/
= help [* O*/
= optional _I abel /* O*/

menber s

' MEMBERS' ' {' nenbers_specifier_list '}

menber s_speci fier_|ist
= menbers_specifier_listR

menbers_specifier_listR
= menbers_specifier
= menbers_specifier_|listR menbers_specifier

menbers_specifier

menber _| i st

"IF (0 expr ')t "{' nmenbers_specifier_list '}
="IF "(" expr ") '"{' menbers_specifier_list '}’
"ELSE' '{' nenbers_specifier_list '}

" SELECT' ' (' expr ")' '{' menbers_selection_list '}

menber _|i st
= menber_|istR

menber _|istR
= menber
= nmenber _l i stR nmenber

nmenber
= ldentifier ',' reference ';
= ldentifier ',' reference ',' description_string ';
= ldentifier ','" reference ',' description_string ',' help_string ';

menbers_sel ection_|ist
= menbers_sel ection
= menbers_sel ection_|list menbers_sel ection

menber s_sel ecti on
= 'CASE' expr ':' menbers_specifier_list
= 'DEFAULT" ':' nenbers_specifier_list

C.6 Command

command

' COWAND ldentifier '{' command_attribute_|list '}
" COWMAND I dentifier '{' '}

command_attribute_|ist
= command_attribute_listR

©Copyright by PNO 2001 - All rights reserved Page: 136

EDDL S

pecification for PROFIBUS

Version 1.1, January 2001

comrand_

comrand_

comrand_

comrand_

comand_

comand_

command_

command_

operatio

operatio

operatio

attribute_listR
= conmand_attribute
= conmmand_attribute_listR command_attri bute

attribute

= conmand_addr ess

command_nunber

operation

transaction

' RESPONSE_CODES' ' {' response_codes_specifier_list '}
' CONNECTION' ldentifier ';

' MODULE' Identifier ';'

addr ess

= 'SLOT" Integer ';'

= 'SLOor lIdentifier ';'
"INDEX' Integer ';'

= 'BLOCK' ldentifier ';'

nunber
= 'NUMBER comrand_nunber _specifier ';'

nunber _speci fier

= Integer ';'

"IF (" expr ')t "{' command_nunber_specifier '}' 'ELSE
"{" command_nunber _specifier '}

"SELECT' ' (' expr ")' '{' command_nunber_selection_list '}’

nunber _sel ection_li st
= comuand_nunber_sel ection_listR

nunber _sel ection_listR
= command_nunber _sel ection
= comand_nunber _sel ection_listR comand_nunber_sel ecti on

nunber _sel ecti on

= "CASE' expr ':' command_nunber_specifier
= 'DEFAULT" ':' command_nunber _specifier

n

= ' OPERATI ON' operati on_specifier

n_specifier

= "READ ;'
="WRITE ';

= 'COWAND ;'

= ' DATA_EXCHANGE' ';

="IF "('" expr '")'" '{' operation_specifier '}' 'ELSE '{' operation_specifier '}

= "SELECT" ' (' expr ')' '{' operation_selection_list '}’

n_sel ection_list
= operation_selection_|listR

©Copyright by PNO 2001 - All rights reserved

Page: 137

EDDL Specification for PROFIBUS

Version 1.1, January 2001

operation_selection_listR
= operation_sel ection
= operation_selection_listR operation_sel ection

operation_sel ection
= '"CASE expr ':' operation_specifier
= 'DEFAULT" ':' operation_specifier

transaction
= 'TRANSACTION ' {' transaction_specifier_list '}’
= ' TRANSACTION Integer '{' transaction_specifier_list '}’

transacti on_specifier_list
= transaction_specifier_listR

transaction_specifier_listR
= transaction_specifier
= transaction_specifier_listR transaction_specifier

transacti on_specifier
= request
= reply
' RESPONSE_CODES' ' (' reference ')’

request
= 'REQUEST' '{' data_itens_specifier_list "}’
= ' REQUEST '{' '}’

reply
= "REPLY" '{' data_itens_specifier_list "}’
= "REPLY '{' '}’

data_itens_specifier_list
= data_itens_specifier_listR

data_itens_specifier_listR
= data_itens_specifier
= data_itens_specifier_listR data_itens_specifier

data_itens_specifier

data_itens_|ist

='"IF "('" expr ')" '{' data_itens_specifier_list '}’
"ELSE' '{' data_itenms_specifier_list '}’

"SELECT" ' (' expr ')' '{' data_itens_selection_list '}’

data_itens_list
= data_itens_listR

data_items_|listR
= data_itens
= data_itenms_|listR "',

data_itens

©Copyright by PNO 2001 - All rights reserved

Page: 138

EDDL Specification for PROFIBUS Version 1.1, January 2001

data_itens
= I nteger
= vari abl e_reference
= variable_reference '<' Integer '>
= variable_reference '(' data_itens_qualifiers ')’
= variable_reference '<' Integer '> '(' data_itens_qualifiers ')

data_itens_qualifiers
= data_itens_qualifiers_

data_itenms_qualifiers_
= data_itens_qualifier
= data_itens_qualifiers_',' data_itens_qualifier

data_itens_qualifier
= ' | NDEX
= "I NFO

data_itenms_sel ection_list
= data_itens_selection_listR

data_itens_sel ection_listR
= data_itens_sel ection
= data_itens_selection_listR data_itens_sel ection

data_itens_sel ection
= "CASE' expr ':' data_itens_specifier_list
= 'DEFAULT" ':' data_itens_specifier_list

C.7 Connection
connection

= '"CONNECTION Identifier '{' connection_attribute_list "}’

connection_attribute_list
= connection_attribute_|listR

connection_attribute_|listR
= connection_attribute
= connection_attribute_|istR connection_attribute

connection_attribute

= ' APPI NSTANCE' | nt eger /* M*/

C.8 Domain

donai n
= 'DOMAIN Identifier '{' domain_attribute_ list '}’

domai n_attribute_list
= domain_attribute_|listR

©Copyright by PNO 2001 - All rights reserved Page: 139

EDDL Specification for PROFIBUS

Version 1.1, January 2001

domain_attribute_listR
= donmmi n_attribute
= donmai n_attribute_|listR domain_attribute

domai n_attribute
= handl i ng /* O*/
= response_codes /* O*/

C.9 Expression

pri mary_expr

= reference '.' 'M N_VALUE

= reference '.' ' MAX_VALUE

= reference '.' M N_VALUE_I nteger
= reference '.' MAX_VALUE | nteger
= reference

= Real Const

= I nteger

="'(" expr ")’

post fi x_expr

= primary_expr
postfix_expr '++
postfix_expr '--

unary_expr
= postfix_expr
= "++' unary_expr
= '--' unary_expr

= unary_operator nultiplicative_expr

unary_oper at or

1
+

mul tiplicative_expr
= unary_expr
= multiplicative_expr '*' unary_expr
= multiplicative_expr '/' unary_expr
= multiplicative_expr '% unary_expr

addi ti ve_expr

mul tiplicative_expr

additive_expr '+ nmultiplicative_expr
additive_expr '-' multiplicative_expr

shi ft_expr

= addi tive_expr
shift_expr '<<' additive_expr
shift_expr '>>'" additive_expr

©Copyright by PNO 2001 - All rights reserved

Page: 140

EDDL Specification for PROFIBUS

Version 1.1, January 2001

rel ational _expr
= shift_expr
= relational _expr '<' shift_expr
= relational _expr '>" shift_expr
= rel ational _expr ' shift_expr
= relational _expr '<='" shift_expr

>=

equal i ty_expr
= rel ati onal _expr
= equal ity_expr '==" relational _expr
= equality_expr '!'=" relational _expr
and_expr

= equal ity_expr
and_expr '& equality_expr

excl usi ve_or _expr
= and_expr
excl usive_or_expr '~ and_expr

i ncl usi ve_or _expr
= excl usi ve_or _expr
= inclusive_or_expr '|' exclusive_or_expr

| ogi cal _and_expr
= inclusive_or_expr
= | ogi cal _and_expr '&& inclusive_or_expr

| ogi cal _or _expr
= | ogi cal _and_expr
= logical _or_expr '||' |ogical _and_expr

condi ti onal _expr
= | ogi cal _or _expr
= | ogi cal _or_expr '?' expr

condi ti onal _expr
assi gnnment _expr
= condi ti onal _expr

= unary_expr assi gnment_operator assignment_expr

assi gnment _oper at or

©Copyright by PNO 2001 - All rights reserved

Page: 141

EDDL Specification for PROFIBUS

Version 1.1, January 2001

expr

assi gnnment _expr
expr ',' assignment_expr

C.10 Imported EDD

i mported_description
= "I MPORT' identification '{' inports '}
= "I MPORT' identification '{' inports redefinitions '}’

imports
= 'EVERYTH NG ';'
= item.inport_list

item.inport_list
= iteminport_listR

iteminmport_listR
= item.inport
= iteminport_listR item.inport

item.inport
= item.inport_by type ';
= item.inport_by nanme ';

item.inmport_by_type
= inport_itemtype
= iteminport_by type '& inport_itemtype

import_itemtype

' VARI ABLES

' METHCDS

= ' MENUS

" RELATI ONS

' COLLECTI ONS

' COMVANDS

" ARRAYS

' RESPONSE_CODES
= ' BLOCKS

= ' | TEM_ARRAYS

= ' RECORDS'

= '"VARI ABLE_LI ST
= ' PROGRAMS'

= ' DOMAI NS

= ' CONNECTI ONS'

item.inport_by_ nane
= itemtype ldentifier

redefinitions

©Copyright by PNO 2001 - All rights reserved

Page: 142

EDDL Specification for PROFIBUS

Version 1.1, January 2001

redefiniti

redefiniti

redefiniti

C.11 Ite

itemarray

itemtype

"REDEFINITIONS '{' redefinition_list

on_|ist
redefinition_listR

on_listR
redefinition
redefinition_listR redefinition

on
bl ock_redefinition

vari abl e_redefinition
menu_redefinition

comand_r edefini tion

met hod_r edefinition
wite_as_one_redefinition
refresh_redefinition

unit_redefinition
itemarray_redefinition
collection_redefinition
response_codes_definition_redefinition
record_redefinition

array_redefinition
variable_list_redefinition

program redefinition

domai n_redefinition
connection_redefinition

m array

"I TEM ARRAY' 'OF itemtype Identifier

' VARI ABLE
" MENU

= ' METHOD

' REFRESH

"UNIT

"WRI TE_AS_ONE'

"I TEM ARRAY' 'OF' itemtype
" COLLECTION 'OF' itemtype
' RECORD

" ARRAY'

" VARI ABLE_LI ST

' PROGRAM

' DOVAI N

' RESPONSE_CODES

= ' BLOCK

©Copyright

" COMMAND
" CONNECTI ON

by PNO 2001 - All rights reserved

y

‘{'itemarray_attribute_list

Page: 143

EDDL Specification for PROFIBUS

Version 1.1, January 2001

itemarray_attribute_list
= itemarray_attribute_listR

itemarray_attribute_listR
= itemarray_attribute

= itemarray_attribute_listRitemarray_attribute

itemarray_attribute

= el enents [* M*/
= help [* M*/
= optional _I abel /* O*/
el enent s
= '"ELEMENTS' '{' elenments_specifier_list '}
el ements_specifier_list
= elenments_specifier_listR
el enents_specifier_listR
= el enents_specifier
= elements_specifier_listR el enents_specifier
el enents_specifier
= elenent _Iist
='"IF "(" expr ') '"{' elements_specifier_list '}’
='"IF "(" expr ') '"{' elements_specifier_list '}’
"ELSE' '{' elenments_specifier_list '}’
= "SELECT" '(' expr ')'" '{' elenents_selection_list "}’
el enent _|i st
= element_|istR
element _listR
= el ement
= elenment_|listR el enent
el ement
= Integer ',' reference ';
= Integer ',' reference ',' description_string ';
= Integer ',' reference ',' description_string ',' help_string

el enents_sel ection_|ist
= el ements_sel ection_|listR

el ements_sel ection_listR
= el enents_sel ection
= elenents_selection_listR el enents_sel ection

el enents_sel ection
= "CASE' expr ':' elements_specifier_list
' DEFAULT'" ':' elenments_specifier_list

©Copyright by PNO 2001 - All rights reserved

Page: 144

EDDL Specification for PROFIBUS Version 1.1, January 2001

optional _| abel
= 'LABEL' string_specifier

C.12 Like

l'i ke
1dl: ldentifier 'LIKE 'VAR ABLE 1d2: ldentifier
"{'" variable_attribute_redefinition_list '}’
1dl: Identifier 'LIKE 'MENU 1d2: ldentifier
"{" nmenu_attribute_redefinition_list '}’
1dl: Identifier 'LIKE 'METHOD 1d2: Identifier
"{" nethod_attribute_redefinition_list "}"
1d1l: Identifier 'LIKE 'ITEMARRAY 'OF itemtype 1d2: Identifier
"{" itemarray_attribute_redefinition_|list '}’
1d1l: Identifier 'LIKE 'COLLECTION 'OF itemtype 1d2: Identifier
"{" collection_attribute_redefinition_|list "}’
1dl: Identifier 'LIKE 'RESPONSE_CODES 1d2: Identifier
"{' response_code_redefinition_list '}’
1dl: Identifier 'LIKE 'BLOCK 1d2: Identifier
"{'" block_attribute_redefinition_list "}"
1dl: ldentifier 'LIKE 'RECORD 1d2: Identifier
"{'" record_attribute_redefinition_list "}’
1dl: Identifier 'LIKE 'ARRAY' 1d2: Identifier
"{' array_attribute_redefinition_list "}"
1dl: ldentifier 'LIKE 'VAR ABLE_LIST" 1d2: Identifier
"{" variable_list_attribute_redefinition_|list '}’
1dl: Identifier 'LIKE 'COVMMAND 1d2: Identifier
"{' command_attribute_redefinition_list '}’
1dl: Identifier 'LIKE 'CONNECTION |d2
"{' connection_attribute_redefinition_list '}’
= 1dl: ldentifier 'LIKE 'PROGRAM 1d2: ldentifier
"{' programattribute_redefinition_list "}’
= 1d1l: ldentifier '"LIKE 'DOMAIN 1d2: ldentifier
"{'" domain_attribute_redefinition_list "}’

C.13 Menu

nenu
= '"MENU ldentifier '{' menu_attribute_list '}’

menu_attribute |ist
= menu_attribute_listR

menu_attribute_|istR
= menu_attribute
= menu_attribute_|istR nenu_attribute

menu_attribute

= requi red_|I abel [* M*/
= menu_i tens

©Copyright by PNO 2001 - All rights reserved Page: 145

EDDL Specification for PROFIBUS Version 1.1, January 2001

nmenu_access

= menu_style

hel p [* O*/
validity [* O*/

menu_itens
=" ITEMS '{' '}’
='"ITEMS '{' nmenu_itemlist '}

menu_item|i st
= menu_itemlistR

menu_itemlistR
= menu_i tem
= nmenu_itemlistR"'," nenu_item

menu_item
= menu_item.item
='"IF "(" expr ") '"{" nenu_itemlist '}
="IF "(" expr ")" "{" menu_itemlist "}'" "ELSE '{' nenu_itemlist '}
= '"SELECT" ' (' expr ')' "{'" menu_itemlist_selection_list "}

menu_item.item
= reference
= reference '(' 'REVIEW ")’
= reference '(' variable_qualifier_list ")

vari abl e_qualifier_list
= variable_qualifier
= variable_qualifier_list ',' variable_qualifier

variabl e_qualifier
= ' DI SPLAY_VALUE
= ' READ_ O\LY'
= ' H DDEN

menu_item|ist_selection_list
= menu_itemlist_selection_listR

menu_item|ist_selection_|listR
= menu_itemlist_selection
= nmenu_itemlist_selection_list menu_itemlist_selection

menu_item|ist_selection
= "CASE' expr ':' menu_itemlist
= 'DEFAULT' ':' nenu_itemlist
nenu_access
= '"ACCESS 'ONLINE ';
= 'ACCESS 'OFFLINE ';

menu_style

©Copyright by PNO 2001 - All rights reserved Page: 146

EDDL Specification for PROFIBUS Version 1.1, January 2001

" STYLE' "WNDOW ';'
' STYLE' ' DI ALOG
"STYLE' string ';

C.14 Method

met hod

'METHOD Identifier '{' nethod_attribute_list "}’
"METHOD Identifier method_paraneter_list'{' method_attribute_list '}’

met hod_paraneter_|i st
= '(" method_paraneter_listR ")’

met hod_paraneter _|istR
= et hod_par anet er
= met hod_paraneter_|istR',' nethod_paraneter

met hod_par anet er
= met hod_par anmeter _type Ildentifier

met hod_par anet er _t ype
= 'float'
='int'
= 'long'

met hod_attribute_list
= method_attribute_listR

method_attribute_|listR
= nmethod_attribute

= method_attribute_|listR method_attribute

met hod_attribute

= vari abl e_cl ass /* O*/
= met hod_definition /* M*/
= optional _| abel /* O*/
= met hod_access

= help /* O*/
=validity /* O*/

met hod_access
= '"ACCESS 'OFFLINE ';°*
= 'ACCESS' 'ONLINE ;'

met hod_definition

= '"DEFI NI TION c_conpound_st at enent

C.15 Open-Close

open
= '"OPEN filenane

©Copyright by PNO 2001 - All rights reserved Page: 147

EDDL Specification for PROFIBUS Version 1.1, January 2001

cl ose
= 'CLCSE' fil enane

fil enanme
= ldentifier

C.16 Program

program
= 'PROGRAM ldentifier '{' programattribute_list '}

programattribute_|ist
= programattribute_listR

programattribute_listR
= programattribute
= programattribute_listR programattribute

program attribute
= argunents [* O*/
= response_codes /* O*/

ar gunment s
= ' ARGUMENTS ' {' '}’
= ' ARGUMENTS' '{' argunents_specifier_list '}

argunents_specifier_|ist
= argunents_specifier_listR

argunents_specifier_listR
= arguments_specifier
= argunments_specifier_listR argunments_specifier

argunents_speci fier
= argunent _|i st
='"IF "('" expr ')" '{' argunents_specifier_list '}’
='"IF "('" expr ")" '{' argunents_specifier_list '}’
"ELSE' '{' argunents_specifier_list '}
= "SELECT" ' (' expr ')' '{' argunments_selection_list '}’

argunent _| i st

= argunent _|istR
argunment _| i stR

= argunent

= argunent _|istR"',' argunent

ar gument
= I nteger
= Real Const
= vari abl e_reference

©Copyright by PNO 2001 - All rights reserved Page: 148

EDDL Specification for PROFIBUS

Version 1.1, January 2001

argunents_sel ection_|ist
= argunents_sel ection_listR

argunents_sel ection_listR
= argunents_sel ection
= argunents_sel ection_listR argunents_sel ection

argunents_sel ection
= 'CASE expr ':' argunents_specifier_|ist
= 'DEFAULT" ':' arguments_specifier_list

C.17 Records

record
= 'RECORD ldentifier '{' record_attribute_ list '}’

record_attribute_list
= record_attribute_|listR

record_attribute_listR
= record_attribute
= record_attribute_|listR record_attribute

record_attribute
= nenbers
= requi red_| abe
= help
= response_codes

C.18 Redefinition

comand_r edefini tion
' DELETE' ' COMVAND | dentifier ';
' REDEFI NE' ' COWAND Identifier '{' '}’

command_attribute_redefinition_list
= command_attribute_redefinition

/*
/*
/*
/*

' REDEFI NE' ' COMWWAND |dentifier '{' conmmand_attribute |ist
' COWAND' Identifier '{' command_attribute_redefinition_list '}

M */
M */
O */
O */

y

= command_attribute_redefinition_list comrmand_attribute_redefinition

command_attribute_redefinition
= comuand_address_redefinition
= comand_nunber _redefinition
= command_operation_redefinition
= commuand_transaction_redefinition
= comand_connection_redefinition
= comuand_r esponse_codes_redefinition
= command_nodul e_redefinition

comand_addr ess_redefinition
= 'DELETE 'SLOT" ;'

©Copyright by PNO 2001 - All rights reserved

Page: 149

EDDL Specification for PROFIBUS Version 1.1, January 2001

= 'DELETE" 'INDEX ;'

= 'DELETE ' BLOCK'

= '"REDEFI NE' ' SLOT" | nteger

= 'REDEFINE 'SLOT" ldentifier ';'
= 'REDEFI NE' ' | NDEX | nteger

= 'REDEFI NE' ' BLOCK' Identifier

command_nunber _redefinition
= 'DELETE' 'NUMBER ;'
= ' REDEFI NE' ' NUMBER conmand_nunber _specifier ';*'

command_operati on_redefinition
= 'DELETE' ' OPERATION ';'
= ' REDEFI NE' ' OPERATI ON' operation_specifier ';'

command_t ransaction_redefinition
= 'DELETE ' TRANSACTION ;'
= 'DELETE ' TRANSACTION Integer ';'
= 'REDEFI NE' ' TRANSACTION '{' transaction_specifier_list "'}’
= ' REDEFI NE' ' TRANSACTION Integer '{' transaction_specifier_list '}’

comand_connection_i dentifier_redefinition
= ' DELETE' ' CONNECTION ' ;'
= ' REDEFI NE' ' CONNECTION ldentifier ';'

comand_r esponse_codes_redefinition
= ' DELETE' ' RESPONSE_CODES' ;'
= ' REDEFI NE' ' RESPONSE_CODES' '{' response_codes_specifier_list '}’
= ' RESPONSE_CODES' '{' response_codes_redefinition_list "}’

comand_nodul e_redefinition
= 'DELETE' ' MODULE' ';'
= ' REDEFI NE' ' MODULE' Identifier ' ;'

connection_redefinition
= 'DELETE' ' CONNECTION ldentifier ';'
= 'REDEFI NE' ' CONNECTION ldentifier '{' connection_attribute list '}’

wite_as_one_redefinition
= 'DELETE 'WRITE_AS ONE' ldentifier ';"'
= 'REDEFINE' 'WRITE_AS ONE' Identifier '{' variable_reference_list '}’

bl ock_redefinition
= 'DELETE' 'BLOCK' Identifier ';'
' REDEFI NE' ' BLOCK' ldentifier '"{' "'}’
' REDEFI NE' ' BLOCK' ldentifier '{' block_ attribute_list '}’
"BLOCK' ldentifier '{' block_attribute_redefinition_list '}’

bl ock_attribute_redefinition_list
= block_attribute_redefinition

©Copyright by PNO 2001 - All rights reserved Page: 150

EDDL Specification for PROFIBUS

Version 1.1, January 2001

= block_attribute_redefinition_list block_attribute_redefinition

bl ock_attribute_redefinition
bl ock_type_redefinition
bl ock_nunber _redefinition

bl ock_type_redefinition
= ' REDEFI NE' bl ock_type

bl ock_nunber _redefinition
= ' REDEFI NE' bl ock_nunber

vari abl e_redefinition
' DELETE' ' VARI ABLE' Identifier ';"'
= 'REDEFI NE' ' VARI ABLE' Identifier "{" "}’

variable_attribute_redefinition_list

' REDEFI NE' ' VARI ABLE' |dentifier '{' variable_ attribute_list
"VARI ABLE' Identifier '{' variable_attribute_redefinition_|list '}’

y

= variable_attribute_redefinition_list variable_attribute_redefinition

variabl e_attribute_redefinition

vari abl e_cl ass_redefinition

= handl i ng_redefinition

= hel p_redefinition

= constant _unit_redefinition

= required_| abel _redefinition

= pre_edit_actions_redefinition

= post_edit_actions_redefinition
= pre_read_actions_redefinition

= post_read_actions_redefinition
= pre_wite_actions_redefinition
= post_write_actions_redefinition
= read_tinmeout_redefinition

= wite_tinmeout_redefinition

= type_redefinition

= response_codes_reference_redefinition
= validity_redefinition

= default_val ue_redefinition
initial_value_redefinition

vari abl e_cl ass_redefinition
= ' REDEFI NE' vari abl e_cl ass

handl i ng_redefinition
= 'DELETE' 'HANDLING ';'
' REDEFI NE' handl i ng

hel p_redefinition
= ' DELETE' ' HELP' ';
= ' REDEFI NE' hel p

©Copyright by PNO 2001 - All rights reserved

Page: 151

EDDL Specification for PROFIBUS

Version 1.1, January 2001

constant _unit_redefinition
" DELETE' ' CONSTANT_UNI T ' ;*'
' REDEFI NE' constant _unit

required_| abel _redefinition
= ' REDEFI NE' required_| abel

pre_edit_actions_redefinition
' DELETE' ' PRE_EDI T_ACTIONS' ';°'
= 'REDEFI NE' pre_edit_actions

post _edit_actions_redefinition
' DELETE' ' POST_EDI T_ACTIONS' ';*
= ' REDEFI NE' post_edit_actions

pre_read_actions_redefinition
= 'DELETE ' PRE_READ ACTIONS ;'
= ' REDEFI NE' pre_read_actions

post _read_actions_redefinition
= 'DELETE ' POST_READ ACTIONS ;'
= ' REDEFI NE' post_read_actions

pre_wite_actions_redefinition
= 'DELETE' ' PRE_WRI TE_ACTIONS' ' ;'
= 'REDEFINE' pre_wite_actions

post_write_actions_redefinition
= 'DELETE ' POST_WRI TE_ACTI ONS' ' ;'
= ' REDEFI NE' post_write_actions

read_ti meout _redefinition
= 'DELETE' 'READ_TI MEQUT' ;'
= ' REDEFI NE' read_ti nmeout

wite_tinmeout_redefinition
= 'DELETE 'WRI TE_TI MEQUT" ' ;'
= 'REDEFINE' write_tinmeout

type_redefinition
"TYPE' type_redefinitions
' REDEFI NE' type

type_redefinitions
= "INTEGER '{' arithmetic_option_redefinition_|list '}’
= "UNSI GNED_| NTEGER ' {' arithmetic_option_redefinition_list
= '"FLOAT" '{' arithmetic_option_redefinition_list '}’
= '"DOUBLE '{' arithmetic_option_redefinition_|list '}’
= ' ENUMERATED '{' enuneration_redefinition_list '}’
= 'BI T_ENUMERATED '{' bit_enuneration_redefinition_|list '}'

arithmetic_option_redefinition_list
= arithmetic_option_redefinition

©Copyright by PNO 2001 - All rights reserved

Hy

Page: 152

EDDL Specification for PROFIBUS Version 1.1, January 2001

= arithnmetic_option_redefinition_list arithnetic_option_redefinition

arithmetic_option_redefinition

= display_format_redefinition
= edit_format_redefinition

= scaling_factor_redefinition
= m ni nrum val ue_redefinition
= maxi mum val ue_redefinition
= defaul t _val ue_redefinition
= initial_value_redefinition

di splay_format_redefinition
= 'DELETE' ' DI SPLAY_FORMAT' ';
= ' REDEFI NE' di spl ay_f or mat

edit_format _redefinition
= 'DELETE ' ED T_FORVAT' ';
= ' REDEFI NE' edit_format

scaling_factor_redefinition
= 'DELETE' ' SCALI NG FACTOR ';'
= ' REDEFI NE' scal ing_factor

m ni mum val ue_redefinition
= '"DELETE' 'M N_VALUE' ';
= ' DELETE M N_VALUE Integer ';'
= ' REDEFI NE' mi ni mum val ue

maxi mum val ue_r edefinition
= 'DELETE' ' MAX_VALUE ';
= ' DELETE' MAX_VALUE | nteger ';'
= ' REDEFI NE' maxi num val ue

enuneration_redefinition_list
= enuneration_redefinition
= enuneration_redefinition_|list enuneration_redefinition

enuneration_redefinition

= ' DELETE' Integer ';'
' REDEFI NE' enuner at or
" ADD enuner at or

bit_enumeration_redefinition_list
= bit_enuneration_redefinition
= bit_enuneration_redefinition_|list bit_enunmeration_redefinition

bit_enuneration_redefinition

' DELETE' Integer ';'

' REDEFI NE' bi t _enuner at or
"ADD bit_enunerator

response_codes_reference_redefinition
= 'DELETE' ' RESPONSE_CCDES ';

©Copyright by PNO 2001 - All rights reserved Page: 153

EDDL Specification for PROFIBUS Version 1.1, January 2001

= ' REDEFI NE' response_codes

validity_redefinition
= 'DELETE 'VALIDITY' ';
= 'REDEFINE validity

defaul t _val ue_redefinition
= ' DELETE' ' DEFAULT_VALUE ';
= ' REDEFI NE' defaul t _val ue

initial_value_redefinition
= 'DELETE' "I NI TIAL_VALUE ';
= 'REDEFI NE' initial_value

menu_redefinition
= 'DELETE' ' MENU Identifier ';'
= 'REDEFINE' 'MENU ldentifier "{' '}’
= 'REDEFINE' 'MENU ldentifier '{' nenu_attribute_list '}
= '"MENU Identifier '{' nenu_attribute_redefinition_list '}

menu_attribute_redefinition_list
= menu_attribute_redefinition_list menu_attribute_redefinition

menu_attribute_redefinition
= requi red_| abel _redefinition
= menu_i tens_redefinition
= menu_access_redefinition
= menu_style_redefinition
= hel p_redefinition

menu_itens_redefinition
= ' REDEFI NE' nenu_itens

menu_access_redefinition
= ' REDEFI NE' nenu_access

menu_styl e_redefinition
= ' REDEFINE' nenu_style

met hod_redefinition
= 'DELETE' ' METHOD ldentifier ';'
' REDEFI NE' ' METHOD Identifier "{' '}’
' REDEFI NE' ' METHOD Identifier '{' method_attribute_ list '}
' METHOD ldentifier '{' method_attribute_redefinition_list '}’

met hod_attribute_redefinition_list
= method_attribute_redefinition
= method_attribute_redefinition_|ist nethod attribute_redefinition

met hod_attribute_redefinition

= variabl e_cl ass_redefinition
met hod_definition_redefinition
required_l abel _redefinition

©Copyright by PNO 2001 - All rights reserved Page: 154

EDDL Specification for PROFIBUS Version 1.1, January 2001

hel p_redefinition
validity_redefinition

met hod_definition_redefinition
= ' REDEFI NE' et hod_definition

refresh_redefinition

' DELETE' ' REFRESH Identifier ';'

' REDEFI NE' ' REFRESH ldentifier "{' '}’

= 'REDEFI NE' ' REFRESH Identifier '{' refresh_specifier '}’

unit_redefinition

'DELETE" "UNIT" ldentifier ';'

"REDEFINE' "UNIT" ldentifier "{" "}’

"REDEFINE 'UNIT Identifier '{' unit_specifier '}

itemarray_redefinition
= 'DELETE' '|TEM ARRAY' Identifier ';'
' REDEFI NE' '| TEM ARRAY' 'OF' itemtype ldentifier "{' '}’
' REDEFI NE' '| TEM ARRAY' 'OF' itemtype ldentifier
"{'" itemarray_attribute_list '}
= "I TEM ARRAY' 'OF' itemtype ldentifier
"{" itemarray_attribute_redefinition_|list '}

itemarray_attribute_redefinition_list
= itemarray_attribute_redefinition
= itemarray_attribute_redefinition_list itemarray_attribute_redefinition

itemarray_attribute_redefinition

= elenents_redefinition
hel p_redefinition
optional _| abel _redefinition

el enents_redefinition
= "ELEMENTS' '{' elenent _redefinition_list '}
= ' REDEFI NE' el enents

el ement _redefinition_list
= el enent _redefinition
= element _redefinition_|list elenment_redefinition

el enent _redefinition

' DELETE' Integer ';'
' REDEFI NE' el enent
"ADD el enent

optional _| abel _redefinition
= 'DELETE" ' LABEL' ';
= ' REDEFI NE' optional _| abe

collection_redefinition
= 'DELETE ' COLLECTION Identifier ';*'
= 'REDEFI NE' ' COLLECTION 'OF itemtype Identifier "{' "}’

©Copyright by PNO 2001 - All rights reserved Page:

155

EDDL Specification for PROFIBUS Version 1.1, January 2001

' REDEFI NE' ' COLLECTION' 'OF' itemtype ldentifier
"{'" collection_attribute_list "}

" COLLECTION 'OF itemtype Identifier

"{'" collection_attribute_redefinition_list '}

collection_attribute_redefinition_list
= collection_attribute_redefinition
= collection_attribute_redefinition_list collection_attribute_redefinition

collection_attribute_redefinition

= nmenbers_redefinition
hel p_redefinition
optional _| abel _redefinition

menbers_redefinition
= 'MEMBERS' '{' nenber _redefinition_list '}
= ' REDEFI NE' nenbers

menber _redefinition_list
= nmenber _redefinition
= menber_redefinition_list menber_redefinition
menber _redefinition
= 'DELETE' Identifier ';'
' REDEFI NE' nenber
"ADD menber

record_redefinition

' DELETE' ' RECORD Identifier ';

' REDEFI NE' ' RECORD ldentifier '{' record_attribute_|list "}’
'"RECORD Identifier '{' record_attribute redefinition_list '}’

record_attribute_redefinition_list
= record_attribute_redefinition
= record_attribute_redefinition_|list record_attribute_redefinition

record_attribute_redefinition
= hel p_redefinition
= requi red_Il abel _redefinition
= response_codes_reference_redefinition
= menbers_redefinition

array_redefinition

= 'DELETE' ' ARRAY' ldentifier ';'
' REDEFI NE' ' ARRAY' ldentifier '{' array_attribute_|list '}’
"ARRAY' ldentifier '{' array_attribute_redefinition_list '}

array_attribute_redefinition_list
= array_attribute_redefinition
= array_attribute_redefinition_list array_attribute_redefinition

array_attribute_redefinition
= array_type_redefinition
= nunber_of _el ements_redefinition

©Copyright by PNO 2001 - All rights reserved Page:

156

EDDL Specification for PROFIBUS Version 1.1, January 2001

hel p_redefinition
required_| abel _redefinition
response_codes_reference_redefinition

array_type_redefinition
= 'REDEFI NE' array_type

nunber _of _el ements_redefinition
= ' REDEFI NE' nunber _of _el ements

response_codes_definition_redefinition

' DELETE' ' RESPONSE_CODES' ldentifier ';

' REDEFI NE' ' RESPONSE_CODES' Identifier "{' '}’

' REDEFI NE' ' RESPONSE_CODES' Identifier '{' response_codes_specifier_list '}
= ' RESPONSE_CODES' ldentifier '{' response_code_redefinition_list '}’

response_code_redefinition_list
= response_code_redefinition
response_code_redefinition_list response_code_redefinition

response_code_redefinition
= ' DELETE' Integer ';'
= ' REDEFI NE' response_code

= 'ADD response_code

vari abl e_list_redefinition
= 'DELETE' 'VARI ABLE LIST' Identifier ';'
= 'REDEFI NE' ' VARI ABLE_LIST' Identifier '{' variable_list_attribute_list "}’
= '"VARI ABLE LI ST' Identifier '{'" variable_list_attribute_redefinition_list '}’

variable_list_attribute_redefinition_list
variable_list_attribute_redefinition
= variable_list_attribute_redefinition_list variable_list_attribute_redefinition

variable_list_attribute_redefinition

hel p_redefinition

= optional _I| abel _redefinition

= response_codes_reference_redefinition
= menbers_redefinition

program redefinition
= 'DELETE' ' PROGRAM Identifier ';'
= 'REDEFI NE' ' PROGRAM ldentifier '{' programattribute_|list '}’
= '"PROGRAM ldentifier '{' programattribute_redefinition_list '}’

program attribute_redefinition_|ist
= programattribute_redefinition
= programattribute_redefinition_|list programattribute_redefinition

program attribute_redefinition
= argunents_redefinition
= response_codes_reference_redefinition

©Copyright by PNO 2001 - All rights reserved Page:

157

EDDL Specification for PROFIBUS

Version 1.1, January 2001

argunents_redefinition
= ' DELETE' ' ARGUMENTS
= ' REDEFI NE' argunents

domai n_r edefini tion
= ' DELETE DOVAIN Identifier
' REDEFI NE DOVAI N | dentifier

domain_attribute_redefinition_list
= domain_attribute_redefinitio
= domai n_attribute_redefinitio

domai n_attribute_redefinition
= handling_redefinition

"{' domain_attribute list '}

"DOVAIN Identifier '{' domain_attribute_redefinition_list '}

n
n_list domain_attribute_redefinition

= response_codes_reference_redefinition

C.19 References

reference

= ldentifier
reference '[' expr ']’
= reference ' (' argument_|ist
= reference '.' ldentifier
"BLOCK' '.' ldentifier

vari abl e_ref erence
= reference

menu_r ef erence
= reference

met hod_r ef erence
= reference

itemarray_reference
= reference

col |l ection_reference
= reference

response_codes_r ef erence
= reference

refresh_reference
= reference

unit _reference
= reference

bl ock_reference

©Copyright by PNO 2001 - All rights reserved

oy

Page: 158

EDDL Specification for PROFIBUS Version 1.1, January 2001

= reference

C.20 Relation

refresh_rel ation
= 'REFRESH ldentifier '{' refresh_specifier '}

refresh_specifier
= left: variable_reference_list

right: variable_reference_|ist

vari abl e_reference_li st
= variable_reference_listR
variabl e_reference_listR
vari abl e_reference
vari able_reference_l i stR vari abl e_reference
= variable_reference_listR"',' variable_reference

unit_relation
='UNIT Identifier '{' unit_specifier "}’

uni t _specifier
= variable_reference ':' variable_reference_list

wite_as_one_relation
= "WRITE_AS ONE' Identifier '{' variable_reference_list '}

C.21 Response Code

response_codes_definition
= ' RESPONSE_CODES' ldentifier '{' response_codes_specifier_list '}’

response_codes_specifier_|ist
= response_codes_specifier_listR

response_codes_specifier_listR
= response_codes_specifier
= response_codes_specifier_|listR response_codes_specifier

response_codes_specifier

response_code_|i st

"I'F (" expr ')' '"{' response_codes_specifier_list '}’
"I'F (" expr ')'" '"{' response_codes_specifier_list '}’
"ELSE' '{' response_codes_specifier_list '}

" SELECT' ' (' expr '")' '{' response_codes_selection_list '}

response_code_li st
= response_code_l i stR

response_code_| i stR
response_code
response_code_l i stR response_code

©Copyright by PNO 2001 - All rights reserved Page: 159

EDDL Specification for PROFIBUS

Version 1.1, January 2001

response_code
= Integer ','
= Integer ',’'

response_code_t ype
= ' SUCCESS
= ' M SC_WARNI NG

= ' DATA_ENTRY_WARNI NG

= ' DATA ENTRY_ERROR
= ' MODE_ERROR

= ' PROCESS_ERRCR

= ' M SC_ERRCOR

response_codes_sel ection_|i st

= response_codes_sel ection_listR

response_codes_sel ection_listR
= response_codes_sel ection
= response_codes_sel ection_listR response_codes_sel ecti on

response_codes_sel ecti on
= 'CASE' expr

response_code_t ype
response_code_t ype

description_string
description_string

response_codes_speci fier_|ist

= 'DEFAULT" ':' response_codes_specifier_list

C.22 Variable

vari abl e

= '"VARI ABLE' ldentifier

variable_attribute_list

= variable_attribute_listR

variable_attribute listR
= variable_attribute

variable_attribute_list '}'

= variable_attribute_|istR variable_attribute

variable_attribute
= vari abl e_cl ass
= type
= requi red_| abe
= constant _unit
= handl i ng
= help
= pre_edit_actions
= post_edit_actions
= pre_read_actions
= post_read_actions
= pre_write_actions
= post_write_actions
= read_ti neout
= wite_tinmeout
= response_codes

©Copyright by PNO 2001 - All rights reserved

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

hel p_string

M */
M */
M */
o */
O */
O */
o */
O */
O */
O */
o */
o */
O */
O */
o */

Page: 160

EDDL Specification for PROFIBUS Version 1.1, January 2001

validity /* O*/
def aul t _val ue
initial _val ue

vari abl e_cl ass
= 'CLASS variable_class_definition

variabl e_cl ass_definition
= vari abl e_cl ass_keyword
= variable_class_definition '& variabl e_cl ass_keyword
vari abl e_cl ass_keyword
= "I NPUT'
= " QUTPUT'
' CONTAI NED
= 'DYNAM C
' DI AGNCSTI C
' SERVI CE
' OPERATE'
= ' ALARM
" TUNE'
" LOCAL'

requi red_| abe
= '"LABEL' required_string_specifier

required_string_specifier

= string ';

='"IF "('" expr ")" '"{' required_string specifier '}’

"ELSE' '{' required_string_specifier "}’

"SELECT' ' (' expr ")' '"{' required_string_selection_list "}

string

string_litera

= vari abl e_reference
variable_reference '(' Integer ')’
"['" ldentifier ']’

string_litera
= string_const
= string_literal string_const

required_string_selection_list
= required_string_selection_|listR

required_string_selection_listR
= required_string_sel ection
= required_string_selection_|listR required_string_selection

required_string_sel ection
= "CASE' expr ':' required_string_specifier
' DEFAULT' ':' required_string_specifier

©Copyright by PNO 2001 - All rights reserved

Page: 161

EDDL Specification for PROFIBUS Version 1.1, January 2001

constant _unit
= 'CONSTANT_UNIT* string_specifier

string_specifier

= string ';

='"IF "(" expr ') '"{' string_specifier '}

='"IF "('" expr ')" '{' string_specifier '"}' "ELSE '{' string_specifier '}
"SELECT' ' (' expr ")' '"{' string_selection_list '}

string_selection_|ist
= string_selection_listR

string_selection_listR
= string_sel ection
= string_selection_|listR string_sel ection

string_sel ection
"CASE' expr ':' string_specifier
' DEFAULT' ':' string_specifier

handl i ng

= '"HANDLI NG handl i ng_specifier

handl i ng_speci fier

handl i ng_definition ';

"IF (" expr ') "{' bhandling_specifier '}

="IF "(" expr ")" "{'" handling_specifier '"}' "ELSE '{' handling_specifier '}
"SELECT" ' (' expr ")'" '"{' handling_selection_list '}

handl i ng_definition
= handl i ng_definition_

handl i ng_definition_
handl i ng_keywor d
handl i ng_definition_ '& handling_keyword

handl i ng_keywor d
' READ
"WRI TE'

handl i ng_sel ection_li st
= handl i ng_sel ection_listR

handl i ng_sel ection_listR
= handl i ng_sel ecti on
= handl i ng_sel ection_listR handling_sel ection

handl i ng_sel ecti on
= "CASE' expr ':' handling_specifier
' DEFAULT' ':' handling_specifier

hel p

"HELP' string_specifier

©Copyright by PNO 2001 - All rights reserved Page: 162

EDDL Specification for PROFIBUS

Version 1.1, January 2001

pre_edit_actions
= 'PRE_EDI T_ACTIONS' '{' actions_specifier_list '}’

post _edit_actions

= 'POST_EDI T_ACTIONS' '{' actions_specifier_list '}

pre_read_actions
= 'PRE_READ ACTIONS' '{' actions_specifier_list '}’

post _read_actions

= ' POST_READ ACTIONS' '{' actions_specifier_list '}

pre_wite_actions

= 'PRE_WRI TE_ACTIONS' '{' actions_specifier_list '}

post _write_actions
= ' POST_WRI TE_ACTIONS' ' {' actions_specifier_|ist

actions_specifier_|ist
= actions_specifier_listR

actions_specifier_listR
= actions_specifier
= actions_specifier_listR actions_specifier

actions_specifier
= nmethod_reference_list
='IF "(" expr ') '{' actions_specifier_list '}’
="IF "('" expr '")'" '"{' actions_specifier_list '}’
"ELSE' '{' actions_specifier_list '}
= 'SELECT" ' (' expr ')' '{' actions_selection_|ist

met hod_r ef erence_l i st
= method_reference_|istR

met hod_reference_|istR
= met hod_reference
= method_reference_listR"',' nethod_reference

actions_selection_list
= actions_selection_|listR

actions_selection_|listR
= actions_sel ection
= actions_selection_listR actions_sel ection

actions_sel ection
= '"CASE' expr ':' actions_specifier_list

= 'DEFAULT'" ':' actions_specifier_list

read_ti meout
= ' READ_TI MEQUT' expr _specifier

©Copyright by PNO 2001 - All rights reserved

}

3

Page: 163

EDDL Specification for PROFIBUS

Version 1.1, January 2001

write_timeout
= "WRI TE_TI MEQUT' expr_specifier
expr _specifier

= expr

='"IF "(" expr ') '"{' expr_specifier '}

='"IF "('" expr ") '"{' expr_specifier '}' 'ELSE '{'
= "SELECT" ' (' expr ')' '"{' expr_selection_list '}

expr_sel ection_list
= expr_selection_listR

expr_selection_listR
= expr_sel ection

= expr_selection_listR expr_selection

expr_sel ection

= 'CASE' expr ' expr_specifier

= 'DEFAULT" ':' expr_specifier
type

= 'TYPE type_specifier

type_specifier
= arithmetic_type
= enuner at ed_t ype
= i ndex_type
= string_type
= bitstring_type
= date_tine_type

arithmetic_type

float _type

doubl e_type

= integer_type

unsi gned_i nt eger _type

float_type

= 'FLQAT ';'

= '"FLOAT" '{' arithnmetic_option_list '}
doubl e_t ype

= 'DOUBLE ';

= '"DOUBLE '{' arithnetic_option_list '}

i nteger_type

= ' | NTEGER ;

= "INTEGER ' (' Integer ')' ';'

= "INTEGER '{' arithmetic_option_list '}

= "INTEGER ' (' Integer ")' '{' arithnetic_option_list

unsi gned_i nt eger _t ype

©Copyright by PNO 2001 - All rights reserved

expr_specifier '}’

y

Page: 164

EDDL Specification for PROFIBUS Version 1.1, January 2001

" UNSI GNED_| NTEGER ' ;
" UNSI GNED_| NTEGER ' (' Integer ')’
(

"UNSI GNED_I NTEGER ' {' arithmetic_option_list "}’
"UNSI GNED I NTEGER ' (' Integer ")' '{' arithnetic_option_list '}’

arithmetic_option_|ist
= arithnmetic_option_listR

arithmetic_option_listR
= arithmetic_option
= arithnmetic_option_listR arithnetic_option

arithmetic_option

= di spl ay_f or mat
= edit_fornat

= scaling_factor
= m ni mum val ue
= maxi mum val ue
= defaul t _val ue
= initial_value
= enunerator_|ist

di spl ay_f or mat
= ' DI SPLAY_FORMAT' string_specifier

edi t _format
= 'EDI T_FORMAT' string_specifier

scal i ng_factor
= ' SCALI NG_FACTOR expr_specifier

m ni mum val ue
= 'M N_VALUE' expr_specifier
= M N_VALUE | nteger expr_specifier

M N_VALUE_I nt eger

= "M N_VALUE1'
"M N_VALUE2'
= "M N_VALUE3'
"M N_VALUE4'
"M N_VALUE5S'

maxi mum val ue
= ' MAX_VALUE' expr_specifier
= MAX_VALUE | nteger expr_specifier

MAX_VALUE | nt eger
= ' MAX_VALUEL'
= ' MAX_VALUE2'
= ' MAX_VALUE3'
= ' MAX_VALUE4'
= ' MAX_VALUES'

©Copyright by PNO 2001 - All rights reserved

Page: 165

EDDL Specification for PROFIBUS Version 1.1, January 2001

enuner ated_type
= ' ENUMERATED ' {' enunerators_list '}
' ENUMERATED ' (' Integer ')' '{' enunerators_list '}’
"Bl T_ENUMVERATED '{' bit_enunerators_list '}
"Bl T_ENUMERATED ' (' Integer ')" '{' bit_enunerators_list '}

enunerators_|ist
= enunerators_listR

enunerators_|listR
= enunerators_itens
= enunerators_listR enunerators_itens

enunerators_itens
def aul t _val ue
initial _val ue

enuner at ors

enuner at ors

enunerator_|i st

"IF (" expr ') "{' enunerators_list '}

"IF (" expr ') "{' enunmerators_list '}' '"ELSE '{' enunerators_list '}
"SELECT" ' (' expr ")' '{' enunerators_list_selection_list "}

enunerator_|i st
= enunerator_listR

enunerator_|istR

= enuner at or
= enunerator_|listR"',"' enunerator
enuner at or
='{" Integer ',' description_string '}’
='{" Integer ',' description_string ',' help_string '}’

description_string
= string

hel p_string
= string

enunerators_|ist_selection_list
= enunerators_|ist_selection_|listR

enunerators_list_selection_listR
= enunerators_list_selection
= enunerators_list_selection_list enunerators_|ist_selection

enunerators_|ist_selection
= '"CASE' expr ':' enumerators_|ist
' DEFAULT' ':' enunerators_|ist

©Copyright by PNO 2001 - All rights reserved Page: 166

EDDL Specification for PROFIBUS

Version 1.1, January 2001

bit_enunerators_li st
= bit_enunerators_listR

bit_enunerators_listR
= bit_enunmerators_itens
= bit_enunerators_|listR bit_enunerators_itens

bit_enunerators_itens
def aul t _val ue

bit_enunerators

nitial _val ue

bit _enunerators
bit_enumerator_list

IF "('" expr ') '{' bit_enunerators_list '}
IF (" expr ") '"{' bit_enunerators_list '}' "ELSE '{' bit_enunerators_list '}
expr ") '"{' bit_enurmerators_|ist_selection_list "}’

SELECT' * ("

bit_enunmerator_|ist
= bit_enunerator_|istR

bit_enunerator_listR

= bit_enunerator

= bit_enunerator_listR',"' bit_enunerator

bi t _enumer at or

= "{" Integer
{' Integer '
hel p_string
{' Integer '

description_string '}
description_string '

}

description_string '

variabl e_class_definition '}

{* Integer

description_string

status_class '}’

{' Integer '

description_string '

met hod_r ef erence '}’

{' Integer

description_string '

hel p_string ',' variable_class_definition '}
{'" Integer ',' description_string '

hel p_string ',' status_class '}’
{' Integer ',' description_string "

hel p_string ',' nmethod_reference '}
{' Integer ',' description_string '

variabl e_class_definition ',' status_class '}
{' Integer ',' description_string "

variable_class_definition ',' nethod_reference '}’
{' Integer ',' description_string '

status_class ',' method_reference '}
{' Integer ',' description_string "

hel p_string ',' variable_class_definition',' status_class '}’
{'" Integer ',' description_string '

help_string ',' variable_class_definition '," nmethod_reference '}’
{* Integer ',' description_string "

hel p_string ',' status_class ',' nethod_reference '}’

©Copyright by PNO 2001 - All rights reserved

Page: 167

EDDL Specification for PROFIBUS

Version 1.1, January 2001

"{' Integer '

" help_string ',

description_string ',
variabl e_cl ass_definition '
"{'" Integer

status_cl ass '

description_string ',

met hod_r ef erence '}’

status_cl ass
status_cl ass_keyword
status_class '& status_cl ass_keyword

status_cl ass_keyword
' HARDWARE'
' SOFTWARE'

' PROCE
" NODE'
' DATA
"M SC

SS'

" EVENT'

' STATE

' SELF_CORRECTI NG

' CORRE!

CTABLE'

" UNCORRECTABLE'
' SUMVARY'

' DETAI

= ' MORE

' COMWL

L'

ERROR

= ' | GNORE_| N_HANDHELD

='DV "(' output_node
='TV "(' output_node '
='AO "(' output_node
= "ALL' "(' output_node
='DV" Integer '(' output_node '
='TV' Integer '(' output_node '
= '"AO Integer '(' output_node
= "ALL'" Integer '(' output_node
out put _nopde
=reliability '& node
= node '& reliability
reliability
= ' AUTO
= ' MANUAL'
node
= ' GooD
= ' BAD

bit_enunerators_list_selection_|ist
= bit_enunerators_list_selection_listR

bit_enunerators_list_selection_|listR

= bit_enunerators_|ist_selection

©Copyright by PNO 2001 - All rights reserved

variabl e_class_definition ',"'

met hod_r ef erence

status_class ',

3

Page: 168

EDDL Specification for PROFIBUS Version 1.1, January 2001

= bit_enunerators_list_selection_listR bit_enunerators_list_selection

bit_enunerators_list_selection

= '"CASE' expr ':' bit_enunerators_list

= 'DEFAULT" ':' bit_enunerators_|ist
i ndex_type

= '"INDEX itemarray_reference ';'

= '"INDEX itemarray_reference '{' '}’

= '"INDEX itemarray_reference '{' string_option_list "}’

= "INDEX '(' Integer ')' itemarray_reference ';'

= '"INDEX '(' Integer ')' itemarray reference '{' '}’

= '"INDEX ' (' Integer ')' itemarray_reference '{' string_option_list "'}’
string_type

="AsCll'" "(' Integer ")' ';'
"ASCII' (' Integer ")" "{" "}

"ASCII" (" Integer ')' "{' string_option_list '}’

= 'PASSWORD ' (' Integer ')' ';'

"PASSWORD ' (' Integer)" '"{' "}’

"PASSWORD ' (' Integer ')" '{' string_option_list '}’

string_option_list
= string_option_listR

string_option_listR
= string_option
= string_option_listR string_option

string_option
= defaul t _val ue
= initial_value

bitstring_type
= 'BITSTRING '(' Integer ')' ';'

date_time_type

' DATE_AND TI ME' ' ;"

"DATE_AND TIME '{' '}

' DATE_AND TIME' '{' string_option_list '}’

='"TIME ;"

='TIME "{" "}

="TIME "{' string_option_list "}’

="TIME '(' Integer ")' ';'

='TIME '(' Integer ")" "{" '}

="'TIME '(' Integer ')" "{' string_option_list '}’

response_codes
= ' RESPONSE_CODES' response_codes_reference ';'
= ' RESPONSE_CODES' expr_specifier

validity

©Copyright by PNO 2001 - All rights reserved Page: 169

EDDL Specification for PROFIBUS Version 1.1, January 2001

= '"VALIDI TY' bool ean_specifier

bool ean_speci fier
= bool ean ';
='"IF "(" expr ')" '"{' boolean_specifier '}’
='"IF "(" expr ')" '{' boolean_specifier '}' "ELSE '{' bool ean_specifier '}
= 'SELECT" '(' expr ')' '{' bool ean_selection_list "}’

bool ean
= ' TRUE'
= ' FALSE

bool ean_sel ection_|i st
= bool ean_sel ection_listR

bool ean_sel ection_listR
= bool ean_sel ecti on
= bool ean_sel ection_listR bool ean_sel ecti on

bool ean_sel ecti on
= 'CASE expr ':' bool ean_specifier
= 'DEFAULT" ':' bool ean_specifier

def aul t _val ue
= ' DEFAULT_VALUE expr_specifier
= ' DEFAULT_VALUE' string ';

initial _val ue
= "INl TIAL_VALUE expr_specifier
= "INITIAL_VALUE' string ';

C.23 Variable List

variable_li st
= "VARI ABLE LI ST" ldentifier '{' variable_|list_attribute_ list '}

variable_list_attribute_|ist
= variable_list_attribute_ listR

variable_list_attribute_listR
= variable_list_attribute
variable_list_attribute_listR variable_list_attribute

variable_list_attribute

= menbers [* M*/
= hel p /* O*/
= optional _| abel /* O*/
= response_codes /* O*/

©Copyright by PNO 2001 - All rights reserved Page: 170

EDDL Specification for PROFIBUS

Version 1.1, January 2001

D List of Manufacturers

List Of Manufacturer*

DEVICE_MAN_ID (Hexadecimal)

ABB Automation Ox1A
ACCUTECH OxX5E
Acromag 0x1
Allen Bradley 0x2
Ametek 0x3
Analog Devices 0x4
Anderson Instrument Company Ox5A
Apparatebau Hundsbach 0x71
Applied System Technologies 0x41
Arcom Control Systems 0x3C
ASCO 0x102
Beckman 0x6
Bell Microsensor 0x7
BESTA 0x66
Betz 0x46
Bopp & Reuther Heinrichs 0x6C
Bourns 0x8
Bristol Babcock 0x9
Brooks Instrument O0x0A
BTG 0x55
Birkert 0x78
Camille Bauer 0x2B
Chessell 0x0B
Combustion Engineering 0x0C
Daniel Industries 0x0D
Delta 0x0E
Dieterich Standard O0xOF
Dohrmann 0x10
Draeger 0x52
Drexelbrook Ox4E
Druck 0x47
Elcon Instruments 0x49
Elsag Bailey 0x5
Elsag Bailey 0x12
Elsag Bailey 0x16
EMCO Ox4A
Endress & Hauser 0x11
Exac Corporation 0x3A

© Copyright by PNO 2001 - All rights reserved

Page: 171

EDDL Specification for PROFIBUS

Version 1.1, January 2001

List Of Manufacturer*

DEVICE_MAN_ID (Hexadecimal)

Fireye 0x44
Fisher Controls 0x13
Flow Measurement Ox5F
Flowdata 0x51
Foxboro 0x14
Foxboro Eckardt 0x3F
Fuji 0x15
Harold Beck and Sons 0x68
HELIOS 0x59
Honeywell 0x17
INOR 0x5B
ITT Barton 0x18
Jordan Controls Ox6E
KAMSTRUP 0x60
Kay Ray/Sensall 0x19
KDG Mobrey 0x3B
Knick 0x61
Krohne 0x45
K-TEK 0x50
Leeds & Northrup 0x1B
Leslie 0x1C
Magnetrol 0x56
Masoneilan-Dresser 0x65
Measurement Technology 0x40
Measurex Ox1E
Meridian Instruments 0x54
Micro Motion Ox1F
Milltronics 0x58
Moore Industries 0x20
Moore Products 0x21
M-System Co. 0x1D
MTS Systems Corp. 0x63
Neles Controls 0x57
Nuovo Pignone 0x38
Ohkura Electric 0x22
Ohmart 0x67
Oval 0x64
Paine 0x23
Peek Measurement 0x27

©Copyright by PNO 2001 - All rights reserved

Page: 172

EDDL Specification for PROFIBUS

Version 1.1, January 2001

List Of Manufacturer*

DEVICE_MAN_ID (Hexadecimal)

PEPPERL+FUCHS 0x5D
PR Electronics 0x6D
Princo 0x3D
Promac 0x39
Raytek 0x53
rittmeyer instrumentation 0x69
ROBERTSHAW 0x5C
Rochester Instrument Systems 0x24
Ronan 0x25
Rosemount 0x26
Rosemount Analytic 0x2E
Rossel Messtechnik Ox6A
Rueger 0x100
Saab Tank Control Ox4F
Samson 0x42
Schlumberger 0x28
Sensall 0x29
SICK 0x101
Siemens 0x2A
Smar Ox3E
SOR 0x48
Sparling Instruments 0x43
Termiflex Corporation 0x4B
Toshiba 0x2C
Transmation 0x2D
US ELECTRIC MOTORS 0x70
VAF Instruments 0x4C
Valcom s.r.l. 0x6F
Valmet 0x2F
Valtek 0x30
Varec 0x31
VEGA 0x62
Viatran 0x32
Weed 0x33
Westinghouse 0x34
Westlock Controls 0x4D
WIKA 0x6B
Xomox 0x35
Yamatake 0x36

©Copyright by PNO 2001 - All rights reserved

Page: 173

EDDL Specification for PROFIBUS

Version 1.1, January 2001

List Of Manufacturer*

DEVICE_MAN_ID (Hexadecimal)

Yokogawa

0x37

©Copyright by PNO 2001 - All rights reserved

Page: 174

EDDL Specification for PROFIBUS Version 1.1, January 2001

E Description of the EDDL-Syntax using Unified Modeling Language

ARRAY

glLabel : String

< 1ype : Enumeration
wNumber_Of_Elements : Integer
¢Help : String
wResponse_Code : Enumeration

VARIABLE
(from VariableSpec)

Figure 9: Array

BLOCK
(from EDDLanguage)
¢ TYPE : Block_Type
«=NUMBER : Integer

Figure 10: Block

© Copyright by PNO 2001 - All rights reserved Page: 175

EDDL Specification for PROFIBUS Version 1.1, January 2001

METHOD
(from EDDLanguage)

caLabel St'ring is known VARIABLE
gHelp : String

«#Class : Enumerated
gzDefinition : Code
<V alidity : Boolean

(from VariableSpec)

Figure 11: Method

DOMAIN

{:}Handling :Enumeration
{:}Respons e_Code: Response_Code

Figure 12: Domain

©Copyright by PNO 2001 - All rights reserved Page: 176

EDDL Specification for PROFIBUS

Version 1.1, January 2001

BLOCK
(from BlockSpec)

VARIABLE
(from Variable Spec) Members
Members
METHOD
(from MethodSpec) Members
Members
REFRESH
(from RefreshSpec)
Members
Members

UNIT
(from UNitSpec)

WRITE_AS_ONE
from WriteAsOneSpec)

©Copyright by PNO 2001 - All rights reserved

MENU

(from MenuSpec)

ITEM_ARRAY

(from ItemArraySpec)

|
Members Members
|
/ ARRAY
/ (from ArraySpec)
//
‘ O Members
COLLECTION / RECORD
cilLabel : String S 77Meimffls,,,,ff (from RecordSpec)
cHelp : String
Members

[VARIABLE_LIST
/ Members (from VariablenLigSpec)
|
Members Members
]
/ DOMAIN
Members (from DomainSpec)
RESPONSE_CODES PROGRAM
(from RespCodeSpec) (from ProgramSpec)

Figure 13: Collection

Page: 177

EDDL Specification for PROFIBUS Version 1.1, January 2001

COMMAND

gBlock : Block

gSlot : Integer

galndex : Integer

¢2Operation : Enumeration
szResponse_Code : Response_Code
gTransaction : Transaction

Transaction
(from RefreshSpec)

czRequest
=Reply

Figure 14: Command

©Copyright by PNO 2001 - All rights reserved Page: 178

EDDL Specification for PROFIBUS Version 1.1, January 2001

VARIABLE

[¥iClass : Enumeration
[Type : Enumeration
[ZiLable : String

Constgnt_Unit : String FORMAT
[gHandling : Enumeration

.H | STri (rom EDDLanguage)
#Help : STring .

. MIN_VALUE : Variant
[gRead_Time_Out : Integer MA)Z VNS S Vet
[gWrite_Time_Out : Integer v — ' , .
BV alidity : Boolean [DEFAULT_VALUE : Variant

i . Display_Format : Strin
[ZResponse_Codes : Enumeration play_ . <
[gEdit_Format : String

[gScaling_Factor : Variant

EPre_Edit_Action()
&P ost_Edit_Action()
&P re_Read_Action()
&P ost_Read_Action()
E#Pre_Write_ACtion()
&P ost_Write_Action()

Figure 15: Variable

©Copyright by PNO 2001 - All rights reserved Page: 179

EDDL Specification for PROFIBUS

Version 1.1, January 2001

BLO CK
(from BlockSpec) (f

METHOD
rom MethodSpec)

VARIABLE
(fom VariableSpec)

Elements

Elements

0

é Elements

COLLECTION
(from CollectionSpec)

Elements

ARRAY
(from ArraySpec)

MENU Elements ITEM_ARRAY
from MenuSpec) —_— glLabel : String Elements RECORD
S ¢zHelp : String | (from RecordSpec)
Element— =
1€t ‘/‘ Q Elements
UNT | Element \
(from UNitSpec) \ Elements VARIABLE_LIST
\‘ \ (from VariablenListSpec)
|
Elements \\
\ Elements
REFRESH | \
(from RefreshSpec) Element ‘\/ DOMAIN
Elements (from DomainSpec)

WRITE_AS_ONE
(from WriteAsOneSpec)

\
\

\

\
RESPONSE_CODES
(from RespCodeSpec)

Figure 16: Item Array

PROGRAM
(fom Program Spec)

PROGRAM

{;;Arguments : Octet_String
{;Response_Code :Response_Code

Figure 17: Program

©Copyright by PNO 2001 - All rights reserved

Page: 180

EDDL Specification for PROFIBUS

Version 1.1, January 2001

MENU
(from EDDLanguage)

od_abel : String
wsAccess . Enumerated

eStyle : Enumerated
QValidity : Boolean

\

S It

VARIABLE
(from VariableSpec)

Figure 18: Menu

©Copyright by PNO 2001 - All rights reserved

METHOD

(from EDDLanguag

je)

Page: 181

EDDL Specification for PROFIBUS

Version 1.1, January 2001

RECORD
glabel : String
cHelp : String

@Response_Code : Response_Code

Members

VARIABLE

(from VariableSpec)

Figure 19: Record

RESPONSE_CODES

AType : Enum eration
{;,.Value: Integer
{;,Description : String
gzHelp : String

Figure 20: Response Code

©Copyright by PNO 2001 - All rights reserved

Page: 182

EDDL Specification for PROFIBUS Version 1.1, January 2001

REFRESH

VARIABLE
(from VariableSpec)

Figure 21: Refresh

UNIT

VARIABLE

(from VariableSpec)

Figure 22: Unit

©Copyright by PNO 2001 - All rights reserved Page: 183

EDDL Specification for PROFIBUS Version 1.1, January 2001

WRITE_AS_ONE

VARIABLE

(from VariableSpec)

Figure 23: Write AsOne

VARIABLE_LIST
gilabel : String
«Help @ String
wResponse_Code : Response_Code

Members

VARIABLE

(from VariableSpec)

Figure 24: Variable List

©Copyright by PNO 2001 - All rights reserved Page: 184

EDDL Specification for PROFIBUS Version 1.1, January 2001

[1 Copyright by:

PROFIBUS Nutzerorganisation e.V.
Haid-und-Neu-Str. 7
D-76131 Karlsruhe

Phone: ++ 721/ 96 58 590
Fax: ++ 721 /96 58 589
PROFIBUS International@compuserve.com
www.profibus.com

© Copyright by PNO 2001 - All rights reserved Page: 185

http://www.profibus.com/

	1	Preface	14
	Preface
	Introduction
	Scope
	References
	Abbreviations
	Definitions
	Conventions
	UML-Notations
	Explanation of the Syntax- and Built-in-Description

	EDD Background

	EDD Concept
	Overview
	EDD Architecture
	Electronic Device Description Source and Profiles

	EDD Language - Basic Elements
	Introduction
	Preprocessor
	Overview
	Avoidance of Ambiguities in the EDD
	Top Level Objects of equal Types and equal Identifiers
	Top Level Objects of different Types and equal Identifiers
	Top Level Object containing equal Attributes

	Blocks
	Type Block Attribute
	Number Block Attribute

	Connection
	Appinstance Connection Attribute

	Variables
	Class Variable Attribute
	Type Variable Attribute
	Arithmetic Types
	Enumeration Types
	Cause

	Table 2: Status Classes and Bit Settings for Bit Enumerated Variables
	String Types
	Index Type
	Date / Time Types

	Constant Unit Variable Attribute
	Handling Variable Attribute
	Help Variable Attribute
	Label Variable Attribute
	Pre/Post Edit Actions Variable Attributes
	Pre/Post Read Actions Variable Attributes
	Pre/Post Write Actions Variable Attributes
	Read/Write Timeout Variable Attributes
	Validity Variable Attribute
	Response Codes Variable Attribute
	Application Context

	Menus
	Label-Menu Attribute
	Items-Menu Attribute
	Style-Menu Attribute
	Access-Menu Attribute
	Validity-Menu Attribute
	Table 3: Processing of menu-items

	Recommendation for the menu structure

	Methods
	Class-Method Attribute
	Access-Method Attribute
	Definition-Method Attribute
	Label-Method Attribute
	Help-Method Attribute
	Validity-Method Attribute
	Methods with Arguments

	Relations
	Refresh Relation
	Unit Relation
	Write-As-One Relation

	Item Arrays
	Elements-Item Array Attribute
	Help-Item Array Attribute
	Label-Item Array Attribute

	Collections
	Members-Collection Attribute
	Help-Collection Attribute
	Label-Collection Attribute

	Records
	Members-Record Attribute
	Help-Record Attribute
	Label-Record Attribute
	Response Codes-Record Attribute

	Arrays
	Type-Array Attribute
	Number of Elements-Array Attribute
	Help-Array Attribute
	Label-Array Attribute
	Response Codes-Array Attribute

	Variable Lists
	Members-Variable List Attribute
	Help-Variable List Attribute
	Label-Variable List Attribute
	Response Codes-Variable List Attribute

	Command
	Block Command Attribute
	Slot Command Attribute
	Index Command Attribute
	Operation Command Attribute
	Connection Command Attribute
	Module Command Attribute
	Response Code Command Attribute
	Transaction Command Attribute
	Data Item Mask
	Data Item Qualifier

	Upload-/Download-Menu

	Programs
	Arguments-Program Attribute
	Response Codes-Program Attribute

	Domains
	Handling-Domain Attribute
	Response Codes-Domain Attribute

	Response Codes
	
	Table 4: Response Code Types

	Device Description Information
	Output Redirection (OPEN and CLOSE Keywords)
	Creating Similar Items (LIKE Keyword)
	Importing Device Descriptions
	Import Keywords
	Item Redefinitions
	Redefining Imported Blocks
	Redefining Imported Variables
	Redefining Imported Records
	Redefining Imported Item Arrays
	Redefining Imported Menus
	Redefining Imported Methods
	Redefining Imported Relations
	Redefining Imported Arrays
	Redefining Imported Collections
	Redefining Imported Variable Lists
	Redefining Imported Programs
	Redefining Imported Domains
	Redefining Imported Response Codes

	Preprocessor Directives
	Header Files
	Macros

	Conditional Expressions
	If Conditional
	Select Conditional

	References
	Referencing Items
	Referencing Elements of a Record
	Referencing Elements Of An Array
	Referencing Members of a Collection
	Referencing Elements of an Item Array
	Referencing Members of a Variable List

	Expressions
	Primary Expressions
	Unary Expressions
	Binary Expressions
	Multiplicative Operators
	Additive Operators
	Shift Operators
	Relational Operators
	Equality Operators
	Bitwise AND Operator (&)
	Bitwise XOR Operator (()
	Bitwise OR Operator (|)
	Logical AND Operator (&&)
	Logical OR Operator (||)

	Strings
	Specifying a String as a String Literal
	Specifying a String as a String Variable
	Specifying a String as a Enumeration Value
	Specifying a String as a Dictionary Reference

	Lexical Conventions
	Integer Constants
	Floating Point Constants
	String Literals
	Using Language Codes in String Constants

	Standard Text Dictionary

	EDDL Method Built-ins Library
	ABORT_ON_ALL_COMM_STATUS
	ABORT_ON_ALL_RESPONSE_CODES
	ABORT_ON_COMM_STATUS
	ABORT_ON_NO_DEVICE
	ABORT_ON_RESPONSE_CODE
	DELAY
	DELAY_TIME
	IGNORE_ALL_COMM_STATUS
	IGNORE_ALL_RESPONSE_CODES
	IGNORE_COMM_STATUS
	IGNORE_NO_DEVICE
	IGNORE_RESPONSE_CODE
	METHODID
	PROGID
	RETRY_ON_ALL_COMM _STATUS
	RETRY_ON_ALL_RESPONSE_CODES
	RETRY_ON_COMM_STATUS
	RETRY_ON_NO_DEVICE
	RETRY_ON_RESPONSE_CODE
	VARID
	abort
	acknowledge
	add_abort_method
	assign_str
	delay
	display
	display_comm_status
	display_response_status
	fassign
	fvar_value
	get_dev_var_value
	get_dictionary_string
	get_local_var_value
	get_status_code_string
	GET_TICK_COUNT
	ivar_value
	lvar_value
	process_abort
	put_message
	ReadCommand
	remove_abort_method
	remove_all_abort_methods
	rspcode_string
	sassign
	select_from_list
	ShellExecute
	vassign
	WriteCommand

	L

