SIEMENS

Техническое описание, Ноябрь 2013

RUGGEDCOM RS900

9-ти портовый полностью управляемый Ethernet коммутатор с оптоволоконными магистральными портами Полностью управляемый Ethernet коммутатор RUGGEDCOM RS900 для промышленных применений разработан для надежной работы в окружении сильного электромагнитного излучения и климатически сложных условиях.

RS900 обеспечивает высокий уровень устойчивости к электромагнитным помехам и сильным электрическим импульсам, типичным для заводских цехов или придорожных шкафов управления движением. Диапазон рабочих температур от -40 до +85 °C в сочетании с сертификацией для взрывоопасных помещений (Class 1 Division 2) позволяют размещать RS900 практически в любом месте.

RS900 упакован в компактный корпус из оцинкованной стали, монтируемый либо на DIN рейку или на плоскую панель обеспечивая эффективное использование пространства шкафа. RS900 имеет встроенный источник питания с широким диапазоном напряжений питающей сети (88-300В постоянного или 85-264В переменного тока) для работы по всему миру или низковольтный источник на диапазоны, 24В и 48В с двойными подключением для приложений требующих наличия резервирования питающей сети.

Превосходная высокопрочная конструкция RS900 вместе с операционной системой ROS® (Rugged Operating System) обеспечивая повышенную надежность и богатую сетевую функциональность, делают этот коммутатор идеальным для создания промышленных Ethernet сетей для критически важных приложений управления реального времени.

Гибкий и широкий выбор оптоволоконных интерфейсов позволяет использовать RS900 в различных приложениях. RS900 обеспечивает до трёх 100 Мбит оптоволоконных портов Ethernet для создания информационной магистрали с высокой помехозащищенностью на большие расстояния.

Все продукты RUGGEDCOM имеют пятилетнюю гарантию и обеспечены технической поддержкой.

Характеристики и преимущества

Ethernet порты

- До 9-ти портов: 6 Base10/100TX медная витая пара + опционально ещё 3 FastEthernet медных или оптических порта
- Различные типы оптических соединителей:
 - LC, SC, ST, MTRJ
- Поддержка многомодового, одномодового оптоволокна
- Дальность работы оптики до 90 км

Информационная безопасность

- Многоуровневые пользовательские пароли
- SSH/SSL шифрование
- Вкл./выкл. портов, ограничение доступа по МАС адресу
- Ограничение доступа к сети на порту (802.1x)
- Изоляция и защита трафика в VLAN-ах (802.1Q)
- Централизованная парольная защита на RADIUS
- SNMP v3 с шифрацией и идентификацией пользователей

Работа в неблагоприятных условиях окружающей среды

- Высокая устойчивость к электромагнитным излучениям (ЭМИ)
 - Соответствует IEEE 1613 Class 1 (Электроподстанции)
 - Превосходит IEC 61850-3 (Электроподстанции)
 - Превосходит IEEE 61800-3 (приводы с регулируемой скоростью)
 - Превосходит IEC 61000-6-2 (промышленность)
 - Превосходит NEMA TS-2 (управление дорожным движением)
- Сертифицирован для взрывоопасных зон Class 1 Division 2
- Рабочая температура: от -40°С до +85°С (без вентилятора)
- Конформное покрытие печатной платы (опционально)

Характеристики операционной системы ROS®

- "plug and play" автоматическое согласование скорости дуплекса и типа кабеля
- MSTP 802.1Q-2005 (ранее известно как 802.1s)
- Резервирование RSTP (802.1w) и eRSTP[™] с временем восстановления менее 5 мс
- QoS (802.1p) работа с приложениями реального времени
- VLAN (802.1Q) с двойной маркировкой и поддержкой GVRP
- Объединение нескольких физических каналов в один логический (802.3ad)
- Фильтрация трафика групповых рассылок IGMP Snooping
- Конфигурация портов, статус, статистика, зеркалирование, безопасность
- Синхронизация времени SNTP (клиент и сервер)
- Интеграция в системы автоматизации (Modbus и т.д.)

Управление и мониторинг

- Управление через WEB, CLI на консоли и через Telnet
- SNMP v1/v2/v3
- Дистанционный мониторинг (RMON)
- Богатый набор средств диагностики с журналами событий и с оповещениями

Электропитание

- Полностью интегрированный БП
- Высоковольтный БП: 88-300В = или 85-264В ~
- Низковольтные БП на: 24 B (9-36 B =), 48 B (36-72 B =)
- Варианты подключения: «под винт» или клеммная колодка
- Одобрен по CSA/UL 60950 для работы до +85°C

Дополнительные Ethernet порты:

- До 3-х Ethernet портов
- 10/100 TX RJ45
- многомодовое оптоволокно
- одномодовое оптоволокно
- двунаправленная передача по одному волокну
- SC, ST, LC и MTRJ соединители
- Дальность до 90 км

Прочная конструкция:

- Корпус из оцинкованной стали толщиной 1 мм
- Опционально конформное покрытие печатных плат

Сертификация для взрывоопасных помещений:

Class 1, Division 2

Порты FastEthernet:

■ 6 — портов FastEthernet (10/100BaseTX)

SIEMENS POWER 0 ALARM RESET RUGGEDCOM

Рабочая температура:

- от -40 до +85 °C
- Без вентиляторов

Варианты монтажа:

- DIN рейка
- Плоская панель

Аварийная сигнализация:

- Выход на сухие контакты Form-C
- Максимальный постоянный ток 1А при 30 В

Встроенный источник питания:

- Универсальный высоковольтный БП: 88-300B постоянного тока или 85-264B переменного тока
- Низковольтные БП на диапазоны: 24 В (9-36 В постоянный ток), 48 В (36-72 В постоянный ток)
- Варианты подключения: «под винт» или клеммная колодка

Информационная безопасность

В индустриальных приложениях, где автоматизация и телекоммуникации играют ключевую роль для критически важных приложений и где высокая надежность имеет первостепенное значение, остро стоит вопрос информационной безопасности. Возможности ROS ®, для безопасности в локальных сетях включают в себя:

- Пароли Пароли разного уровня доступа защищают от несанкционированного изменения конфигурации.
- SSH/SSL Дополняют парольную защиту шифруя пароли и управление при передаче через сеть.
- Включение / выключение портов Возможность отключать порты, чтобы трафик не проходил
- 802.1Q VLAN Обеспечивает возможность логически разделять трафик между группами портов
- Ограничение доступа по МАС адресу Возможность настроить порты коммутатора так чтобы только определенные устройства / МАС-адреса могли передавать данные через этот порт
- Ограничение доступа 802.1х Возможность настроить порты коммутатора так чтобы клиенты могли передавать данные через них только после авторизации
- RADIUS Сервис авторизации с централизованным хранением паролей и их защитой при передаче
- SNMPv3 управление и мониторинг с авторизацией и защитой передаваемых данных
- Secure Socket Layer WEB-интерфейс управления использующий SSL с шифрованием данных
- RSA обмен управление ключами
- ТАСАСS+ Сервис аутентификации авторизации с централизованным хранением паролей и защитой передаваемых данных
- Point to Point (PPP) поддержка аутентификации СНАР
- SFTP Протокол безопасной передачи файлов с защитой сессии при помощи SSH.

Функции кибербезопасности ROS® подобраны так, чтобы соответствовать различным отраслевым стандартам безопасности, таким как: NERC CIP, ISA S99, AGA 12, IEC 62443, ISO 17799:2005 и PCSRF SPP-ICS.

Enhanced Rapid Spanning Tree Protocol (eRSTP™)

RuggedCom eRSTP ™ позволяет создавать отказоустойчивые сети Ethernet кольцевой и полносвязной топологии, включающие резервные связи, временно блокируемые для предотвращения петель. eRSTP $^{\text{тм}}$ допускает «диаметр» сети до 160 коммутаторов и обеспечивает восстановление при отказе за 5 мс на коммутатор. Например, кольцо из десяти коммутаторов восстановление произойдёт через 50 мс после возникновения неисправностей. В отличии от других проприетарных кольцевых протоколов резервирования, eRSTP $^{\text{тм}}$ полностью совместим с STP и RSTP для работы с коммутаторами других производителей.

Механизмы Качества сервиса (IEEE 802.1p)

Некоторые сетевые приложения, такие как управление в реальном времени или VoIP (голос поверх IP) требуют предсказуемое время доставки кадров Ethernet. В случае сильной загрузки сети возникают большие и непредсказуемые задержки во внутренних буферах и очередях обслуживаемых по принципу первый пришёл – первый обслужен. ROS® поддерживает "классы обслуживания" в соответствии с IEEE 802.1р, позволяя трафику реального времени отправляться в первую очередь, уменьшая задержки и снижая джиттер, что нужно для корректной работы упомянутых приложений. ROS® может классифицировать по порту, 802.1р и полю тип сервиса (TOS). Конфигурируемый алгоритм "Weighted Fair Queuing" определяет, логику обслуживания очередей.

VLAN (IEEE 802.1Q)

Виртуальные локальные сети (VLAN) позволяют сегментировать физическую сеть на несколько отдельных логических сетей с независимыми широковещательными доменами. Это повышает безопасность, так как хост имеет доступ только к хостам в той же виртуальной сети и широковещательные рассылки оказываются изолированными. ROS® поддерживает маркирование кадров Ethernet 802.1Q в «транках». Поддерживаются статические VLAN и жесткая настройка портов, поддерживается и динамический протокол GVRP.

Link Aggregation (802.3ad)

Функция агрегирования соединений позволяет собрать несколько Ethernet портов в один логический канал с более высокой пропускной способностью. Это недорогой способ создания магистрали для повышения скорости сети. Эта функция также известна как "port trunking", "port bundling", "port teaming" и "Ethernet trunk".

IGMP Snooping

ROS® использует IGMP Snooping (Internet Group Management Protocol v1 и v2), для интеллектуальной раздачи или фильтрации потоков групповых рассылок (например, MPEG видео). Это снижает нагрузку на сеть и на хосты не подписавшиеся на рассылку. ROS® имеет очень мощную реализацию IGMP Snooping, включающую следующие возможности:

- Можно включать независимо в разных VLAN.
- Распознает и фильтрует все групповые рассылки независимо от того, существуют ли подписчики.
- Работает без маршрутизатора благодаря «активному» режиму.
- Восстанавливает потоки трафика сразу же после изменения топологии RSTP.

SNMP (Simple Network Management Protocol)

SNMP стандартный метод опроса устройств различных производителей Системами Управления Сетью. ROS® поддерживаются SNMP версии v1, 2c и 3. В частности в SNMPv3, обеспечивает функции безопасности, такие как аутентификация контроль доступа и защита данных с помощью шифрования, которых нет в более ранних версиях SNMP.

¹Время восстановления связи после обрыва для eRSTP может быть оценено следующим образом: Для портов 100 Мбит/с, время восстановления <5мс на каждое соединение пары коммутаторов, для портов 1 Гигабит/с время восстановления <5мс на каждое соединение пары коммутаторов, +20 мс

SNMP (Simple Network Management Protocol) продолжение.

ROS® также поддерживает многочисленные стандартные базы MIB (Management Information Base), позволяющая легкую интеграцию с любой системой управления сетью (NMS). SNMP реализованный в ROS® может генерировать «trap-ы» сообщения о системных событиях. Система управления RuggedNMS ™ от RuggedCom, собирает эти trap-ы от нескольких устройств, реализуя мощный инструмент диагностики сетей. Она также обеспечивает графическую визуализацию сети и полностью интегрирована со всеми продуктами RuggedCom.

SNTP (Simple Network Time Protocol)

SNTP автоматически синхронизирует внутренние часы всех ROS ® устройств в сети. Это важно при устранении неполадок для корреляции событий по метками времени.

SCADA and Industrial Automation

ROS ® содержит функции, которые позволяют оптимизировать производительность сети и упростить управление коммутатором специально для приложений промышленной автоматизации и систем SCADA. Такие функции, поддержка Modbus TCP для считывания данных этим распространённым протоколом и DHCP Option 82, необходимая для раздачи IP-адресов на основе расположения конечного устройства в соответствии требованиям Rockwell Automation ODVA, обеспечивают возможности, которых нет в типичных Ethernet коммутаторах "общего назначения" или "офисного класса".

Ограничение доступа к сети на конкретном порту (802.1x)

ROS® поддерживает стандарт IEEE 802.1X, описывающий механизм контроля доступа к сети на порту коммутатора, который обеспечивает средства аутентификации и авторизации устройств, подключающихся через этот порт к ЛВС.

Ограничение скорости порта

ROS ® может управлять ограничением направленного и группового (unicast и multicast) трафика на порту. Это необходимо операторам при управлении ценной полосой пропускания сети. Это повышает безопасность на уровне доступа при атаках типа отказ в обслуживании (DoS-атаки).

Фильтрация широковещательных штормов

Широковещательные штормы занимают ресурсы сети и могут привести к отказу оконечных устройств. Это может иметь катастрофические последствия в сети с критически важным оборудованием. ROS ® ограничивает это путем фильтрации широковещательных кадров свыше заданного пользователем порога.

Обработка обрыва связи

Некоторые интеллектуальные электронные устройства (IED) имеют двойные волоконно-оптические порты с автоматическим переходом на резервный при отказе первичного. ROS ® обеспечивает надежную работу этого механизм при любых сценариях отказов при необходимости отключая лазер на свой стороне. ROS ® также очищает таблицу MAC-адресов для ускорения восстановления связи после обрыва.

Зеркалирование портов

Коммутатор с ROS ® может быть настроен так, чтобы дублировать весь трафик с одного порта на другой «зеркальный». В комбинации с сетевым анализатором это может очень помочь при поиске неисправностей

Конфигурация портов и их статус

ROS ® позволят жестко настраивать на портах скорость, дуплекс, управление потоком и т.п. Это позволяет работать при подключении устройствам не поддерживающим автоопределение и имеющим нестандартные настройки. Подробная информация по состоянию портов вместе с отправкой аварийных SNMP trap-ов сильно помогает при поиске неисправностей.

Статистика и дистанционный мониторинг порта (RMON)

ROS ® даёт постоянное сбор статистики на портах, включающую постоянно обновляемые счетчики входящих и исходящих пакетов и байтов, а также подробные данные об ошибках. Также обеспечена полная поддержка RMON статистики, истории, тревог и групп событий. RMON реализует очень хитроумный анализ выявление структур трафика.

Тревоги и аварийные сообщения

ROS ® записывает все важные события в системный журнал в энергонезависимой памяти, позволяя расследовать причины отказов. В частности к таким событиям относятся падение и поднятие соединений, несанкционированный доступ, обнаружения широковещательных штормов и самодиагностика. Тревоги сообщают о последних событиях, администратором должен подтвердить их получение. Сухие контакты аварийной сигнализации переключаются при критических событиях, что позволяет реагировать на них внешнему контроллеру.

WEB и текстовый пользовательские интерфейсы

ROS ® обеспечивает простой и интуитивно понятный пользовательский интерфейс для настройки и мониторинга через WEB-браузер или через консоль и Telnet. По всем параметрам есть подробные он-лайн подсказки, что делает настроить лёгкой. ROS ® имеет единый вид и процесс настройки для всех устройств RuggedCom, позволяя легко переходить на новые продукты.

Конфигурация в текстовом файле

Все настроенные параметры хранятся в конфигурации в виде простого текстового файла, который может быть легко передан при помощи TFTP или Xmodem. Файл конфигурации может быть сохранён в резервной копии или отредактирован стандартным текстовым редактором. Такой файл моет быть вновь закачен на коммутатор для изменения или восстановления конфигурации.

Командно-строчный интерфейс (CLI)

Интерфейс командной строки может быть использован в сочетании с remote shell для автоматизации управления, обновления конфигурации и обновления встроенного программного обеспечения. Мощный SQL-подобный язык позволяет опытным пользователям выборочно извлекать или манипулировать любыми параметрами на устройстве.

Устойчивость к воздействию внешних факторов и ЭМИ

ГОСТ Р МЭК 61850-3 «Сети и системы связи на подстанциях.»				
Тест	Описание		Параметры теста	Степень жесткости
МЭК 61000-4-2 Устойчивость к		контактный разряд	+/- 8 ĸB	4
(FOCT P 51317.4.2)			+/- 15 кВ	4
МЭК 61000-4-3 (ГОСТ Р 51317.4.3)	Устойчивость к р-ч. э-м. полю	напряжённость поля	20 В/м	жёстче 3 ²
		порт сигналов	+/- 4 кВ при 2,5 кГц	X (жёстче 4) ²
MЭК 61000-4-4	Устойчивость к наносекундным	порт питания пост. тока	+/- 4 κB	4
(FOCT P 51317.4.4)	импульсным помехам (НИП)	порт питания перем. тока	+/- 4 κB	4
		порт заземления	+/- 4 κB	4
	Устойчивость к микросекундным импульсным помехам большой	порт сигналов	+/- 4 кВ линия-земля +/- 2 кВ линия-линия	4
МЭК 61000-4-5 (ГОСТ Р 51317.4.5)		порт питания пост. тока	+/- 2 кВ линия-земля +/- 1 кВ линия-линия	3
	энергии	порт питания перем. тока	+/- 4 кВ линия-земля +/- 2 кВ линия-линия	4
	Устойчивость к кондуктивным помехам, наведенным радиочастотными электромагнитными полями	порт сигналов	10 B	3
MЭК 61000-4-6		порт питания пост. тока	10 B	3
(FOCT P 51317.4.6)		порт питания перем. тока	10 B	3
	GTOKI POMOLITIZITI DININI TIGIZINI	порт заземления ¹	10 B	3
MЭК 61000-4-8	Устойчивость к магнитному полю промышленной частоты	защита портов	40 А/м непрерывно	
(FOCT P 50648)			1000 А/м в течении 1 с	5
MЭК 61000-4-29	Устойчивость к провалам,	порт питания пост. тока	30% при 0.1 с, 60% при 0.1 с, 100% при 0.05с	
(FOCT P 51317.4.29)	коротким прерываниям и	порт питания перем. тока	30% за 1 период, 60% за 50 периодов	
МЭК 61000-4-11	изменениям напряжения	порт питания перем. тока	100% за 5 периодов, 100% за 50 периодов	
	Устойчивость к колебательным затухающим помехам	порт сигналов	2.5 кВ общий, 1 кВ диф. вкл. при 1 МГц	3
МЭК 61000-4-12 (ГОСТ Р 51317.4.12)		порт питания пост. тока	2.5 кВ общий, 1 кВ диф. вкл. при 1 МГц	3
,		порт питания перем. тока	2.5 кВ общий, 1 кВ диф. вкл. при 1 МГц	3
MЭК 61000-4-16	Устойчивость к кондуктивным помехам в полосе 0 -150 кГц	пульс. напр. пит. пост. тока	30 В непрерывно, 300 В при 1 с	4
(FOCT P 51317.4.16)		порт питания пост. тока	30 В непрерывно, 300 В при 1 с	4
МЭК 61000-4-17	пульс. напр. пит. пост. тока	порт питания пост. тока	10%	3
MЭK 60255-5	Тестирование изоляции	порт сигналов	2 кВ (контакты аварийной сигнализации)	
		порт питания пост. тока	1.5 кВ постоянного тока	
		порт питания перем. тока	2 кВ переменного тока	
Испытания изоляции электрических реле	Импульсное перенапряжение	порт сигналов	5 кВ (контакты аварийной сигнализации)	
		порт питания пост. тока	5 кВ	
		порт питания перем. тока	5 кВ	

 $^{^1\,\}Pi$ рименимо только при разделении сигнального и защитного заземлений. 2 Специальная степень жёсткости заданная RuggedCom

Устойчивость к воздействию внешних факторов и ЭМИ

IEEE 1613 (С37.90.х) тесты на устойчивость к электромагнитным помехам¹				
Тест	Описание		Параметры теста	
IEEE C37.90.3	Устойчивость к электростатическим разрядам	контактный разряд	+/- 2 кВ, +/- 4 кВ, +/- 8 кВ	
		воздушный разряд	+/- 4 кВ, +/- 8 кВ, +/- 15 кВ	
IEEE C37.90.2	Устойчивость к р-ч. э-м. полю	напряжённость поля	35 В/м	
	Устойчивость к наносекундным импульсным помехам (НИП)	порт сигналов	+/- 4 кВ при 2,5 кГц	
IEEE C37.90.1		порт питания пост. тока	+/- 4 ĸB	
		порт питания перем. тока	+/- 4 KB	
		порт заземления	+/- 4 KB	
IEEE C37.90.1	Устойчивость к колебательным затухающим помехам	порт сигналов	2.5 кВ общий, при 1 МГц	
		порт питания пост. тока	2.5 кВ общий, 1 кВ диф. вкл. при 1 МГц	
		порт питания перем. тока	2.5 кВ общий, 1 кВ диф. вкл. при 1 МГц	
IEEE C37.90	Импульсное перенапряжение	порт сигналов	5 кВ (сухие контакты аварийной сигнализации)	
		порт питания пост. тока	5 кВ	
		порт питания перем. тока	5 кВ	
IEEE C37.90	Тестирование изоляции	порт сигналов	2 кВ переменного тока (сухие контакты аварийной сигнализации)	
		порт питания пост. тока	1.5 кВ постоянного тока	
		порт питания перем. тока	2 кВ переменного тока	

Устойчивость к воздействию внешних факторов					
Тест	Описание		Параметры теста	Степень жесткости	
ГОСТ Р МЭК 60068-2-1- 2009	Испытание А: Холод	Испытание Ad	-40°С; 16 ч;		
ГОСТ Р МЭК 60068-2-2- 2009	Испытание В: Сухое тепло	Испытание Bd	+85°С; 16 ч;		
FOCT P M9K 60068-2-30- 2009	Испытание D: Влажное тепло	Испытание Db	95% (без конденсации) +55°C, 6 циклов		
MЭК 60255-21-1	Испытания на вибрацию	Испытание Fc	2g при частотах 10-150 Гц	Class2 ²	
MЭК 60255-21-2	Испытания на удар и толчки	Испытание Еа	30g в течении 11 мс	Class2 ²	

Устойчивость к воздействию внешних факторов (требования NEMA TS-2)				
Тест	Описание	Параметры теста	Критерий успешности	
TS-2 1998, Section 2, para 2.2.7.3	Температура: Низкая температура / пониженное напряжение	89.0 В переменного тока при -34°C		
TS-2 1998, Section 2, para 2.2.7.4	Температура: Низкая температура / повышенное напряжение	135.0 В переменного тока при -34°C	Тестируемое оборудование продолжает правильно	
TS-2 1998, Section 2, para 2.2.7.5	Температура: Высокая температура / пониженное напряжение	135.0 В переменного тока при + 75°C	продолжает правильно функционировать во время и после всех температурных тестов	
TS-2 1998, Section 2, para 2.2.7.6	Температура: Высокая температура / повышенное напряжение	89.0 В переменного тока при + 75°C		
TS-2 1998, Section 2 para. 2.2.8.4	Испытание выносливости к вибрации	0.5g на 30 Гц в течении 1 во всех трех плоскостях	Тестируемое оборудование правильно функционирует после тестирования. Нет физических повреждений	
TS-2 1998, Section 2, para 2.1.10	Удар	+/-10g синусоидальной полуволны в течении 11 мс во всех трех плоскостях	Тестируемое оборудование правильно функционирует после тестирования. Нет физических повреждений	
TS-2 1992, Section 2, para. 2.1.6.1	Электрические импульсные наводки: Частые повторения (клеммы питания переменного тока)	Один +/-300 В импульс во время каждого периода питающей сети в течении 3 секунд однократно (пик 2500Вт)	Тестируемое оборудование правильно функционирует во время и после тестирования. Нет физических повреждений	
TS-2 1998, Section 2 para. 2.1.6.2	Электрические импульсные наводки: Редкие повторения, Высокая энергия (клеммы питания переменного тока)	Один +/-600 В импульс каждую секунду случайно в течении периода питающей сети. Всего10 импульсов .	Тестируемое оборудование правильно функционирует во время и после тестирования. Нет физических повреждений	
TS-2 1998, Section 2, para 2.1.7	Электрические импульсные наводки: Порты ввода / вывода	Один +/-300 В импульс каждую секунду минимум 5 импульсов на каждый порт.	Тестируемое оборудование правильно функционирует во время и после тестирования. Нет физических повреждений	
TS-2 1992, Section 2, para. 2.1.8	Электрические импульсные наводки: Устойчивость к наводкам без повреждения (клеммы питания переменного тока)	Один+/-1000 В импульс каждые две секунды, 3 импульса каждой полярности.	Тестируемое оборудование правильно функционирует после тестирования. Нет физических повреждений	

¹ Соответствует требованиям Class 2 для конфигураций с оптическими портами и требованиям Class 1 для конфигураций с медными портами. ² Class 2 относится к "оборудованию релейной защиты и автоматики, для которых требуется очень высокий запас надежности или где имеется очень высокие уровни вибрации, например, на борту судна и для тяжелых условий транспортировки"

Технические характеристики

Электропитание

- Потребляемая мощность: 10 Вт максимум
- БП 24 В : 10-36 В, 0,4 А пост. тока
- БП 48 В : 36–72 В, 0,2 А пост. тока
- БП пром. сети: 88–300 В пост. или 85–264 В перем. тока 0,1 А

Реле аварийной сигнализации

- Выход на сухие контакты Form-C
- Макс. постоянный ток 1 А при 30 В

Физические характеристики

- Высота: 188 мм / 4,7 "Ширина: 66 мм / 2.6 "
- Глубина: 127 мм / 5.0 "Вес: 1,22 кг / 2,7 фунта
- Степень защиты: ІР40 (1 мм объекты)
- Корпус: оцинкованная сталь толщиной 1 мм (20 AWG)
- Монтаж: на DIN рейку или на панель

Свойства коммутационной фабрики

- Метод коммутации: Store & Forward
- Задержка: 8 нс
- Производительность: 1,8 Гбит/с
- Количество хранимых МАС адресов: 8192
- Объём памяти МАС адресов: 64 Кбайт
- Кол-во очередей: 4
- Размер буфер: 1 Мбит
- Кол-во VLAN: 255 (одновременно)
- Диапазоне VLAN ID от 1 до 4094
- Кол-во IGMP групп: 256
- Ограничение скорости порта: 128, 256, 512, кбит/с 4, 8 мбит/с
- Неблокируемая архитектура

Сертификации

- Взрывоопасные зоны: Класс 1 Раздел 2 (искробезопасность)
- ISO: Разработан и изготовлен в соответствии программой сертификации качества ISO9001:2000
- Маркировка СЕ
- Излучение: FCC Part 15 (класс A), EN55022 (CISPR22 Класс A)
- Безопасность: cCSAus (в соответствии с CSA C22.2 № 60950, UL 60950, EN60950)
- Опасность лазерного излучения для зрения (FDA / CDRH): в соответствии с 21 CFR Глава 1, подраздел J.

Устойчивость к воздействию внешних факторов и ЭМИ

- IEC 61000-6-2 промышленность (общего назначения)
- IEC 61800-3 промышленность (приводы с регулируемой скоростью)
- IEC 61850-3 Электрические подстанции
- IEEE 1613 Электрические подстанции
- NEMA TS 2 Управление дорожным движением

Гарантия

 5 лет – В отношении дефектов продукта связанных с разработкой и производством.

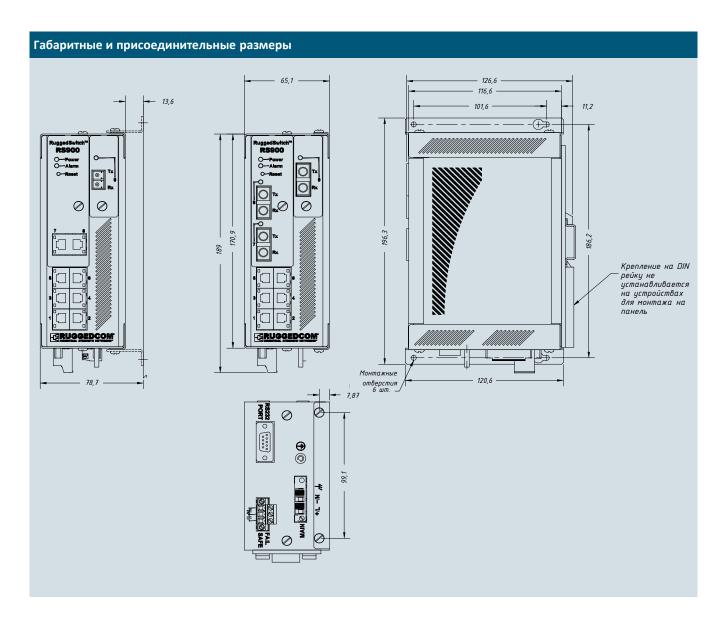
Управление сетью

- НТТР графический веб-интерфейс, SSL (128-битное шифрование)
- SNMP v1, v2c, v3 (56-битное шифрование)
- Telnet, VT100, SSH / SFTP (128-битное шифрование)
- Интерфейс командной строки (CLI)
- Управление ключами RSA (длина ключа 1024 бит)
- Authentication и Accounting TACACS+ (с шифрацией), RADIUS, PPP

Соответствие стандартам IEEE

- 802.3-10BaseT
- 802.3u-100BaseTX, 100BaseFX
- 802.3x-Flow Control
- 802.3z-1000BaseLX
- 802.3ab-1000BaseTX
- 802.3ad-Link Aggregation
- 802.1D-MAC Bridges
- 802.1D-Spanning Tree Protocol
- 802.1p-Class of Service
- 802.1Q-VLAN Tagging
- 802.1w-Rapid Spanning Tree Protocol
- 802.1X-Port Based Network Access Control
- 802.1Q-2005 (formerly 802.1s) MSTP

Соответствие рекомендациям IETF RFC


- RFC768-UDP
- RFC783-TFTP
- RFC791-IP
- RFC792-ICMP
- RFC793-TCP
- RFC826-ARP
- RFC854-Telnet
- RFC894-IP over Ethernet
- RFC1112-IGMP v1
- RFC1519-CIDR
- RFC1541-DHCP (client)
- RFC2030-SNTP
- RFC2068-HTTP
- RFC2236-IGMP v2
- RFC2284-EAP
- RFC2475-Differentiated Services
- RFC2865-RADIUS
- RFC3414-SNMPv3-USM
- RFC3415-SNMPv3-VACM

Поддерживаемые IETF SNMP MIB-ы

- RFC1493-BRIDGE-MIB
- RFC1907-SNMPv2-MIB
- RFC2012-TCP-MIB
- RFC2013-UDP-MIB
- RFC2578-SNMPv2-SMI
- RFC2579-SNMPv2-TC
- RFC2819-RMON-MIB
- RFC2863-IF-MIB
- Draft-ietf-bridge-rstpmib-03-BRIDGE-MIB
- Draft-ietf-bridge-bridgemib-smiv2-03-RSTP-MIB
- IANAifType-MIB

Характеристики трансиверов для оптического волокна

Параметр	Тип оптического порта			
Тип оптического волокна	Многомодовое	Одномодовое		
Соединители	MTRJ/ST/SC/LC	LC / SC / ST		
Типичная дальность (км.)	2	20	50	90
Длина волны (нм)	1300	1310		
Толщина ядра/оболочки волокна (мкм)	50 или 62,5/125	8 или 9/125		
Мощность на передачу Тх Power (dBm)	-15,7	-15,5	-2,5	2,5
Чувствительность Rx Sensitivity (dBm)	-33,5	-32	-37	-39
Типичный оптический бюджет (dB)	17	16,5	34,5	41,5

Артикулы для заказа

Используйте базовый артикул 6GK60900AS2 для RS900 и 6GK60900AS1 для RS900NC. Для получения полного артикула для заказа с различными опциями воспользуйтесь он-лайн конфигуратором по адресу: http://ruggedcom-selector.automation.siemens.com/

ООО Сименс

115184, Россия,

Москва, ул. Большая Татарская д. 9

Тел.: +7 (495) 737-2150 **Факс:** +7(495) 737-2483

Email: ruggedcom.ru@siemens.com

Техническая поддержка:

Тел.: +7 (495) 737 1737 Факс: +7 (495) 737 2483 E-mail: <u>iadt.ru@siemens.com</u>

http://support.automation.siemens.com/

Для получения дополнительной информации о наших продуктах и услугах, пожалуйста, посетите наш веб-сайт по адресу: http://www.iadt.siemens.ru/products/automation/

Информация, представленная в данной брошюре, содержит описания и характеристики, которые в случае фактического использования не всегда соответствуют описанию, или могут измениться в результате дальнейшего развития продуктов. Обязательство предоставить точные характеристики может возникнуть только в случае если это специально оговорено в условиях контракта. Наличие и технические характеристики могут быть изменены без предварительного уведомления. Все названия продуктов могут быть товарными знаками или брендами Siemens AG или компаний-поставщиков, использование которых третьими сторонами для собственных целей может нарушать права владельцев.