
Instruction Manual • February 2004

milltronics MUS BELT SCALE

SIEMENS

Safety Guidelines

Warning notices must be observed to ensure personal safety as well as that of others, and to protect the product and the connected equipment. These warning notices are accompanied by a clarification of the level of caution to be observed.

Qualified Personnel

This device/system may only be set up and operated in conjunction with this manual. Qualified personnel are only authorized to install and operate this equipment in accordance with established safety practices and standards.

Warning: This product can only function properly and safely if it is correctly transported, stored, installed, set up, operated, and maintained.

Note: Always use product in accordance with specifications.

Copyright Siemens Milltronics Process Instruments Inc. 2004. All Rights Reserved	Disclaimer of Liability
This document is available in bound version and in electronic version. We encourage users to purchase authorized bound manuals, or to view electronic versions as designed and authored by Siemens Milltronics Process Instruments Inc. Siemens Milltronics Process Instruments Inc. will not be responsible for the contents of partial or whole reproductions of either bound or electronic versions.	While we have verified the contents of this manual for agreement with the instrumentation described, variations remain possible. Thus we cannot guarantee full agreement. The contents of this manual are regularly reviewed and corrections are included in subsequent editions. We welcome all suggestions for improvement.
	Technical data subject to change.

MILLTRONICS® is a registered trademark of Siemens Milltronics Process Instruments Inc.

Contact SMPI Technical Publications at the following address:

Technical Publications Siemens Milltronics Process Instruments Inc. 1954 Technology Drive, P.O. Box 4225 Peterborough, Ontario, Canada, K9J 7B1 Email: techpubs@siemens-milltronics.com

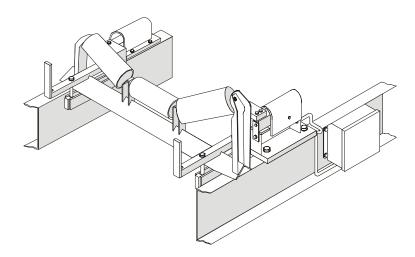

For the library of SMPI instruction manuals, visit our Web site: www.siemens-milltronics.com

Table of Contents

Milltronics MUS Belt Scale1 The Manual	
Specifications	
Outline dimensions æ Standard Duty4	
Side View4	
Front View	i
Outline dimensions æ Heavy Duty6	,
Side View6	
Front View	
Conveyor Considerations8	
Control Gates	
Conveyor Belting	
Head Pulley	
Conveyor Curvature11	
Belt Ploughs11	
Stacker Conveyors12	
Conveyor Trippers12	
Skirt Boards and Sealing Strips12	
Installation13	
Welding	;
Load Cell Handling13	;
Installation Procedure14	•
MUS Wiring 17	,
Calibration18	5
Balancing	
Test Load	
Final Calibration	
Material Test20	
Maintenance	1

Milltronics MUS Belt Scale

Milltronics MUS belt scale is a modular-design, medium-duty scale for process indication. The MUS includes a left and a right weigh beam, with one load cell each

An idler (supplied and installed by customer) and test weights (ordered separately) complete the weighing assembly. The MUS load cells provide an electric signal proportional to load, which is fed to the integrator. Weighing occurs without interrupting the process or affecting the process material.

The MUS belt scale operates in conjunction with an integrator and optional speed sensor.

The Manual

This instruction manual covers the installation, operation and maintenance of the Milltronics MUS belt scale.

We strongly recommend that you read this manual before installing and starting up any component of the weighing system to which the MUS is being applied. Adhering to the installation and operating procedures ensures a quick, trouble-free installation and allows for the maximum accuracy and reliability of your weighing system.

This manual covers only MCS installaton and operating procedures. Integrator and speed sensor instruction manuals are available for download from **www.siemens-milltronics.com**.

We always welcome suggestions and comments about manual content, design, and accessibility. Please direct your comments to <u>techpubs@siemens-milltronics.com</u>.

Note: This section provides details on the standard duty and heavy duty MUS scales.

Accuracy:

+ \pm 0.5 to 1% of totalization over 3 to 1 operating range, application dependent

Load Cell:

 excitation: 	10 V DC nominal
	15 V DC maximum
• output:	2 mV/V excitation at rated load cell capacity
 non-linearity: 	0.02% of rated output
 hysteresis: 	0.02% of rated output
 non-repeatability: 	0.01% of rated output
• capacity:	standard duty ranges: 20, 30, 50, 75, 100 kg (aluminum or stainless steel)
	heavy duty ranges: 50, 100, 150, 200, 500 kg (aluminum only)
overload:	safe 150% of rated capacity, ultimate 300% of rated capacity
• temperature:	-40 to 65 °C (-40 to 150 °F) operating range -10 to 40 °C (15 to 105 °F) compensated
mounting dimensions	see details for standard and heavy duty versions

Belt Width:

- standard duty up to 1000 mm (CEMA width up to 42")
- heavy duty 1200 mm and up (CEMA width 48" and up) (may also be used with narrower conveyors)
- refer to the outline dimension section

Belt Speed:

• up to 3 m/s (600 fpm)

Capacity:

• up to 5000 t/h (5500 STPH) at maximum belt speed

Conveyor Incline:

- ± 20° from horizontal, fixed incline
- up to $\pm 30^{\circ}$ with reduced accuracy

Idler Profile:

- flat to 35°
- up to 45° with reduced accuracy

Idler Diameter:

• 50 to 180 mm (2 to 7")

Idler Spacing:

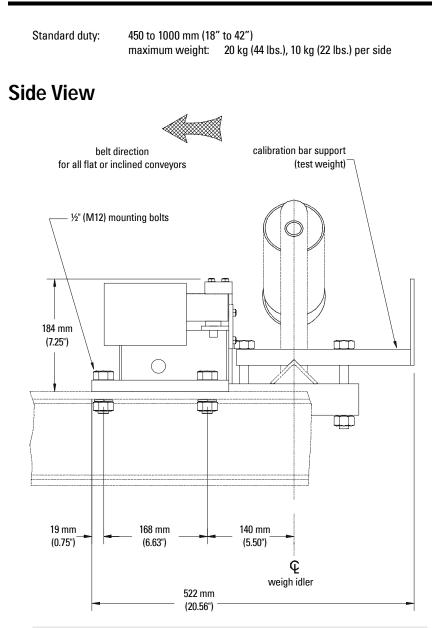
• 0.6 to 1.5 m (2.0 to 5.0 ft)

Weight:

- standard duty up to 20 kg (44 lbs.), 10 kg (22 lbs.) per side
- heavy duty up to 30 kg (64 lbs.), 15 kg (32 lbs.) per side

Interconnecting Wiring (to integrator):

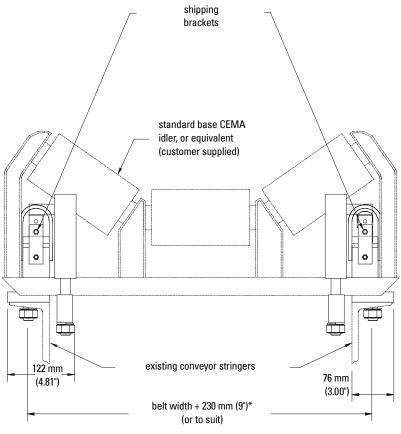
- * < 100 m (300 ft.) 0.75 mm² (18 AWG) 6 conductor shielded cable
- > 100 m (300 ft.) to 300 m (1000 ft.) 0.75 to 0.34 $\rm mm^2$ (18 to 22 AWG) 8 conductor shielded cable


Hazardous Locations:

• with the use of approved intrinsically safe barrier strips

Approvals

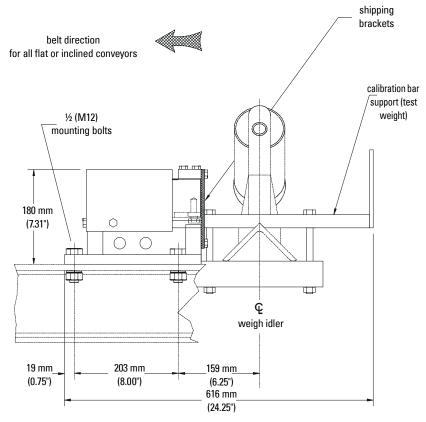
• CE


Outline dimensions — Standard Duty

Note:

(2) approach and (2) retreat idlers should be aligned with the weigh idler to within +1/32" (0.8) to -0" (0). Call your Siemens Milltronics representative with any questions.

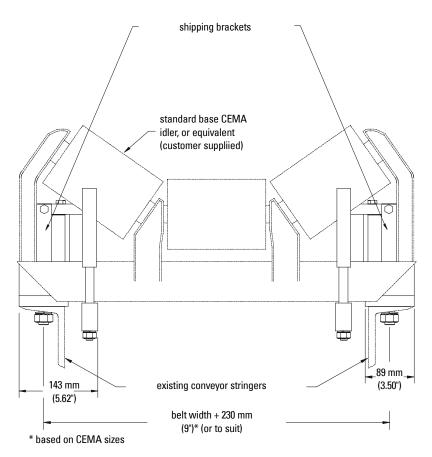
Front View


* based on CEMA sizes

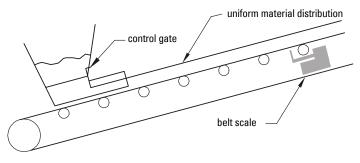
Outline dimensions — Heavy Duty

Heavy Duty: 1200 to 2000 mm (48" to 84") although can be applied to narrower conveyors

maximum weight: 30 kg (64 lbs.), 15 kg (32 lbs.) per side


Side View

Notes:

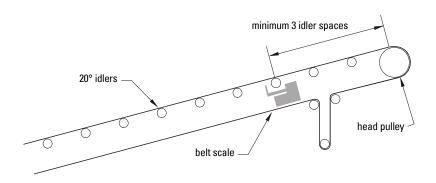

 (2) approach and (2) retreat idlers should be aligned with the weigh idler to within +1/32" (0.8) to -0" (0). Call your Siemens Milltronics representative with any questions.

Front View

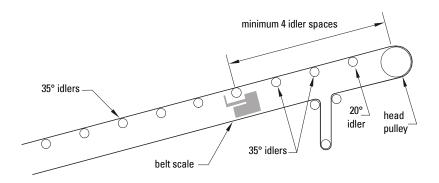
The ideal placement of the Milltronics Universal Scale depends on the conveyor system. This section provides guidelines to determine MUS placement.

Control Gates

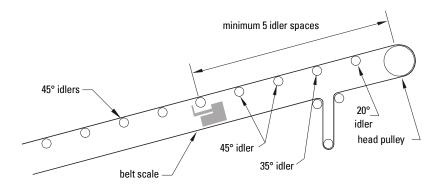
Note: Ensure steady and uniform material loading to the belt at or near the same speed as the conveyor belt. The installation of a material feed control gate or similar device improves uniform flow of material.

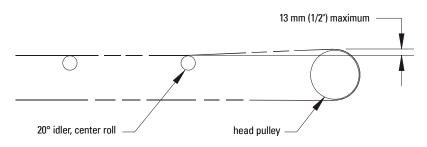

Conveyor Belting

Variations in the number of belt plies, the cover thickness and the type and number of splices in a given belt cause considerable change in the weight per unit length of the belt. During the course of zero calibrations, belt scales average the weight of the belt over one complete circuit of the belt. Large deviations from the average adversely affect the zero calibrations.


Head Pulley

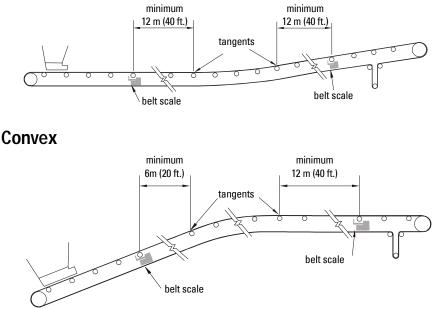
Use caution when installing a scale in a short conveyor, or when locating the scale near the head pulley. Since head pulleys are flat faced, and carrying idlers are generally troughed, the belt profile must change from troughed to flat in a short distance. To accommodate this, the conveyor manufacturer designs a built-in vertical displacement of the head pulley above the top of the center roll of the adjacent idler. To further ease this transition, idlers of decreasing trough angles are inserted between the head pulley and the normal run of idlers. If these measures are not taken, a considerable amount of stress is exerted on the belt edges and the idlers adjacent to the head pulley. The stress is transmitted to the scale.


Recommendation: On conveyors with 20° trough idlers throughout, a minimum of two fixed 20° idlers must be located between the scale idler and the head pulley.


Recommendation: On conveyors with 35° trough idlers throughout, a minimum of two 35° and one 20° retreat idlers must be located between the scale and the head pulley.

Recommendation: On conveyors with 45° trough idlers throughout, a minimum of two 45°, one 35° and one 20° retreat idlers must be located between the scale and the head pulley.

Recommendation: The vertical displacement of the head pulley relative to the adjacent retreat idler is normally in excess of that which is acceptable for belt scale installations. It is suggested that when locating the scale close to the head pulley, a maximum of 13mm ($\frac{1}{2}$ ") vertical displacement between the top of the head pulley and the top of the center roll of the adjacent roll be allowed.


Conveyor Curvature

Vertical curvature (varied heights on one belt) is common in conveyor design, but creates difficulties for belt scales if not dealt with correctly. The curvature, whether concave (internal) or convex (external), disturbs the idler alignment, if the scale is installed in the area of curvature. The concave curve tends to lift the belt off of the idlers in the area of curvature as belt loading decreases, adversely affecting the zero calibration.

Recommendation

Avoid locating the scale within the tangents of scale curvature.

Concave

Belt Ploughs

The use of belt ploughs or any conveyor or material control device that changes the profile of the carrying belt in or near the scale area is not recommended. These devices can negatively affect the belt scale idler alignment and usually create drag on the belt which the scale senses as a material force of load.

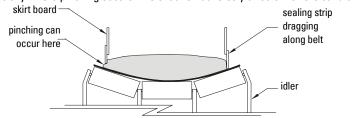
Recommendation

Do not install the scale within 9 m (30 ft.) of belt ploughs or similar devices that contact the material or belt.

Stacker Conveyors

Any conveyor that is not a permanent structure, which varies in its incline, elevation or profile is not considered a good installation for an accurate belt scale. A belt scale can be used effectively in this conveyor type, but requires special setup.

Conveyor Trippers


Not as common as a conveyor with vertical curvature, trippers can still be troublesome to scales.

Recommendation

On a conveyor with a tripper car, locate the scale under the recommendations for vertical curves, but with the tripper fully retracted.

Skirt Boards and Sealing Strips

Sometimes it is necessary to extend the infeed skirt boards and sealing strips the full length of the conveyor. This can create problems in weighing accuracy if the sealing strips exert excess force when contacting the belt and indirectly upon the idlers, especially where pinching occurs. The situation adversely affects the zero calibrations.

Recommendation

If possible, remove skirting in scale area. If not, adjust skirting so sealing strip does not put excess force on the belt or allow pinching of material.

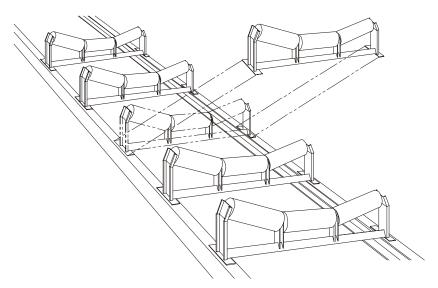
Welding

ļ

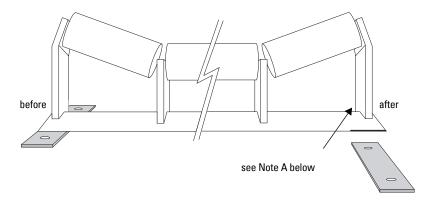
CAUTION: Use extreme caution when arc welding in the area of the belt scale. To avoid damaging the load cells, ensure that no welding currents can flow through the belt scale.

Load Cell Handling

Load cells are sensitive electro-mechanical transducers and must be handled with care. They can tolerate very little mechanical deflection without damage.

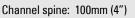

Lift the scale by the mass blocks only.

Do not lift the scale by the idler or idler mounting brackets. Never subject the scale to sudden impacts or shocks.

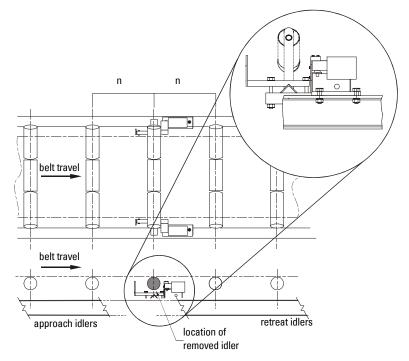


Installation Procedure

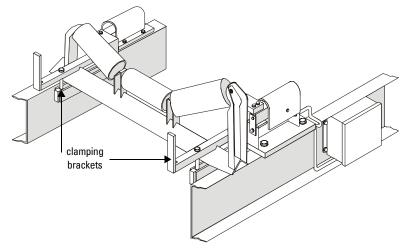
1. Remove the idler at the chosen location on the conveyor.


2. Remove the idler foot plates and cut the spine as shown.

Notes:


- A Cut idler support as shown to allow clearance when the load is applied.
- B Maximum allowable idler spine for fitting to an MUS is:

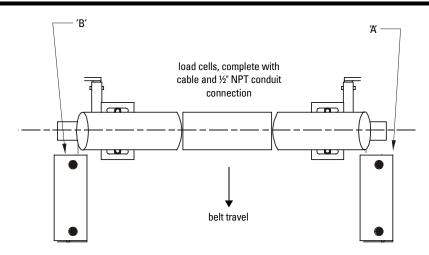
Angled spine: 75mm (3")

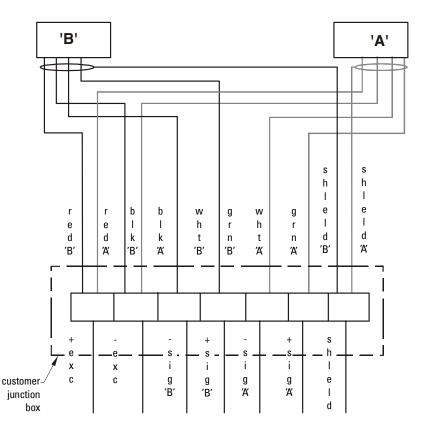


3. Position the weigh beams so that the center of the scale idler is centered between the adjacent approach and retreat idlers.

Ensure that the scale is centered and square to the stringers.

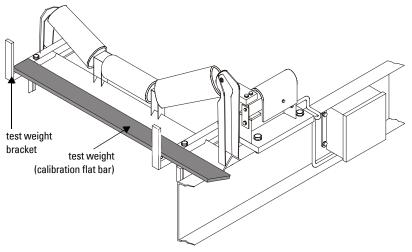
- 4. Mark the position and make new mounting holes suited for M12 ($\frac{1}{2}$ ") bolts. Refer to the Outline Dimensions.
- 5. Place the scale on the conveyor stringers with the arrows on the mass blocks pointing in the direction of belt travel (retreat idlers) and mount the modified idler onto the scale using the clamping bracket.




6. The idlers in the weighing area (A2 through R2) must be aligned to and square to the stringers, and levelled to a common reference such as a string or wire (refer to subsequent figures). Ensure that the reference is taut (no sagging). If necessary, shim these idlers to be in line with the reference.

Alignment and levelling are important parts of the installation procedure and have a direct effect on scale performance. Proper care and attention is recommended.

MUS Wiring



After the MUS, the speed sensor and the integrator have been properly installed and wired, calibration of the weighing system must be done in conjunction with the integrator. Refer to the integrator instruction manual for programming and calibration. The calibration is initially done using the test weight. Material tests are recommended to achieve the greatest accuracy.

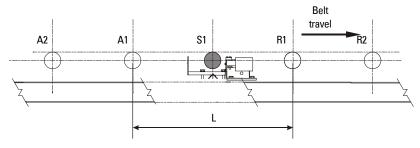
Balancing

For applications where the conveyor loading does not repeat in location across the width of the belt, such as side to side loading, electronic balancing of the two load cells is recommended. This procedure is done during the start-up phase, but should be redone if either load cell is reinstalled or replaced. Refer to the associated integrator manual for details on completing the balancing procedure.

When balancing load cells, apply the test weight flat bar(s) to the extreme sides (side A and B), as required, while supported by the two test weight support arms. Reverse position of bar to balance second load cell.

Note:

Position the test weight flush with the sides of the brackets when balancing load cells. Reverse position of bar to balance other load cell.


Test Load

The test load value is required for calibration of the integrator. The calculated value is entered into the associated programming parameter of the integrator, in kilograms per meter or pounds per foot.

The test load value is calculated as follows:

Test load = <u>test weight</u> <u>kg</u> or <u>lb</u> idler spacing m ft.

Where: idler spacing = L/2 [minimum 0.6 m (2.0 ft.)]

Final Calibration

Once the installation and load cell balancing are completed, the belt can be released and be allowed to ride normally on the conveyor. The belt speed sensor should be installed as described in its instruction manual and the speed sensor and belt scale should be interconnected with the belt scale integrator as shown in its instruction manual and the system interconnection diagram.

Program the belt scale integrator as suggested in its instruction manual and with parameters suitable for the application. With programming complete, the system is ready for calibration.

A zero calibration can be performed after sufficient running of the conveyor allows the belt to limber up and take its natural formation. A zero calibration is performed in accordance to the belt scale integrator instruction manual with the conveyor running empty.

Zero

Perform the zero calibration as described in the Calibration section of the integrator manual.

After the completion of the zero calibration, a span calibration, as described in the belt scale integrator instruction manual, can be performed with the test weight applied. Be sure to stop the conveyor when applying and removing the test weight.

Span

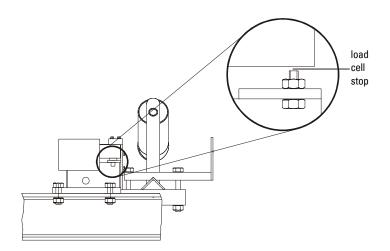
- 1. The span reference (test load) is simulated using the test weight (calibration flat bar).
- 2. Place the test weight onto the test weight bracket with equal length over both ends.
- 3. Perform the span calibration as described in the Calibration section of the integrator instruction manual.

After completing the span calibration, remove the test weight and store it.

With a successful zero and span calibration, and with the test weight no longer applied to the belt scale, the MUS belt scale system is ready for operation. Ensure that the belt scale integrator is left in the run mode.

Material Test

To achieve accuracy with respect to absolute values, perform material tests. Refer to the associated integrator manual.


Re-Rating

If the rate, speed or idler spacing is changed from the original design, you may need to reprogram the integrator. Please contact your regional Milltronics service office.

Maintenance

The MUS is virtually a maintenance-free device.

In dusty or granular applications, periodically check the load cell stops for material build up. Remove any build up in the mechanism to insure that the load cell maintains free movement.

Index

Α

Accuracy
operating range2
B
Balancing
information
Belt Ploughs
recommendations 11
Belt Speed
specifications2
Belt Width
specifications2
С
Calibration
information18
Capacity
specifications2
Components
list1
Concave curve
recommendations
Control Gates
recommendations8
Convex curve
recommendations 11
Conveyor Belting
recommendations8
Conveyor considerations8
Conveyor Curvature
recommendations11
Conveyor Idler
specifications3
Conveyor Incline
specifications2
Conveyor Trippers
recommendations12
Conveyors
application information8
F
Final Calibration
information19
Н
Hazardous Locations
specifications3
Head Pulley
recommendations8

L

1
Idler Diameter
specifications
Idler Spacing
specifications
Installation
information13
procedure14
Interconnecting Wiring
specifications3
L
Load Cell
specifications2
Load Cell Handling
caution13
Μ
Material Test
information20
MUS
components1
MUS belt scale1
0
Overview
The manual1
The MUS1
R
Recommendations
belt ploughs11
concave curve11
control gates8
convex curve11
conveyor belting
conveyor curvature
conveyor trippers12
head pulley8
skirt boards and sealing strips12

stacker conveyors	12
Re-Rating	
information	20

S

•	
Skirt Boards and Sealing Strips	
recommendations	12
Span	
calibration	19
Specifications	

belt speed	2
belt width	2
capacity	2
conveyor idler	3
conveyor incline	
harardous locations	
idler diameter	3
idler spacing	3
interconnecting wiring	3
load cell	
weight	3
Stacker Conveyors	-
recommendations	12
т	

Т

Test Load
calculation19
information18
The manual1
W
Weight
specifications3
Welding
caution13
welding13
Z
Zero
calibration19

www.siemens-milltronics.com

Siemens Milltronics Process Instruments Inc. 1954 Technology Drive, P.O. Box 4225 Peterborough, ON, Canada K9J 7B1 Tel: (705) 745-2431 Fax: (705) 741-0466 Email: techpubs@siemens-milltronics.com © Siemens Milltronics Process Instruments Inc. 2004 Subject to change without prior notice

Rev. 1.1