SIEMENS Introduction Using ROS 2 RUGGEDCOM ROS v4.3 Device Management System Administration Setup and Configuration 5 User Guide Troubleshooting 6

For RS416, RS416P

Copyright © 2016 Siemens Canada Ltd

All rights reserved. Dissemination or reproduction of this document, or evaluation and communication of its contents, is not authorized except where expressly permitted. Violations are liable for damages. All rights reserved, particularly for the purposes of patent application or trademark registration.

This document contains proprietary information, which is protected by copyright. All rights are reserved. No part of this document may be photocopied, reproduced or translated to another language without the prior written consent of Siemens Canada Ltd.

» Disclaimer Of Liability

Siemens has verified the contents of this document against the hardware and/or software described. However, deviations between the product and the documentation may exist.

Siemens shall not be liable for any errors or omissions contained herein or for consequential damages in connection with the furnishing, performance, or use of this material.

The information given in this document is reviewed regularly and any necessary corrections will be included in subsequent editions. We appreciate any suggested improvements. We reserve the right to make technical improvements without notice.

>> Registered Trademarks

RUGGEDCOM™ and ROS™ are trademarks of Siemens Canada Ltd.

Other designations in this manual might be trademarks whose use by third parties for their own purposes would infringe the rights of the owner.

>> Third Party Copyrights

Siemens recognizes the following third party copyrights:

• Copyright © 2004 GoAhead Software, Inc. All Rights Reserved.

>> Open Source

RUGGEDCOM ROS contains Open Source Software. For license conditions, refer to the associated License Conditions document.

>> Security Information

Siemens provides products and solutions with industrial security functions that support the secure operation of plants, machines, equipment and/or networks. They are important components in a holistic industrial security concept. With this in mind, Siemens' products and solutions undergo continuous development. Siemens recommends strongly that you regularly check for product updates.

For the secure operation of Siemens products and solutions, it is necessary to take suitable preventive action (e.g. cell protection concept) and integrate each component into a holistic, state-of-the-art industrial security concept. Third-party products that may be in use should also be considered. For more information about industrial security, visit http://www.siemens.com/industrialsecurity.

To stay informed about product updates as they occur, sign up for a product-specific newsletter. For more information, visit http://support.automation.siemens.com.

>>> Warranty

Refer to the License Agreement for the applicable warranty terms and conditions, if any.

For warranty details, visit www.siemens.com/ruggedcom or contact a Siemens customer service representative.

>> Contacting Siemens

Address

Siemens Canada Ltd Industry Sector 300 Applewood Crescent Concord, Ontario Canada, L4K 5C7

Telephone

Toll-free: 1 888 264 0006 Tel: +1 905 856 5288 Fax: +1 905 856 1995

E-mail

ruggedcom.info.i-ia@siemens.com **Web**

www.siemens.com/ruggedcom

Table of Contents

Preface	X۱
Conventions	X۱
Related Documents	ΧV
System Requirements	ΧV
Accessing Documentation	ΧV
Training	‹vi
Customer Support	‹vi
Chapter 1	
Introduction	1
1.1 Features and Benefits	1
1.2 Security Recommendations and Considerations	. 3
1.2.1 Security Recommendations	. 3
1.2.2 Credential Files	. 5
1.2.2.1 SSL Certificates	. 6
1.2.2.2 SSH Key Pairs	. 8
1.3 Supported Networking Standards	. 9
1.4 Port Numbering Scheme	9
1.5 Available Services by Port	10
1.6 SNMP Management Interface Base (MIB) Support	
1.6.1 Supported Standard MIBs	12
1.6.2 Supported Proprietary RUGGEDCOM MIBs	13
1.6.3 Supported Agent Capabilities	14
1.7 SNMP Traps	15
1.8 ModBus Management Support	17
1.8.1 ModBus Function Codes	
1.8.2 ModBus Memory Map	18
1.8.3 ModBus Memory Formats	23
1.8.3.1 Text	24
1.8.3.2 Cmd	24
1.8.3.3 Uint16	24
1.8.3.4 Uint32	25
1.8.3.5 PortCmd	25
1.8.3.6 Alarm	26
1.8.3.7 PSStatusCmd	26

	1.8.3.8 TruthValues	26
1.9	SSH and SSL Keys and Certificates	27
	1.9.1 Certificate and Keys Life Cycle	27
	1.9.2 Certificate and Key Requirements	28
Chapter 2	DOC	21
_	ROS	
2.1	Connecting to ROS	
	2.1.1 Connecting Directly	
	2.1.2 Connecting via the Network	
	Logging In	
	Logging Out	
	Using the Web Interface	
	Using the Console Interface	
2.6	Using the Command Line Interface	
	2.6.1 Available CLI Commands	
	2.6.2 Tracing Events	
	2.6.3 Executing Commands Remotely via RSH	
	2.6.4 Using SQL Commands	
	2.6.4.1 Finding the Correct Table	
	2.6.4.2 Retrieving Information	43
	2.6.4.3 Changing Values in a Table	
	2.6.4.4 Resetting a Table	
	2.6.4.5 Using RSH and SQL	46
2.7	Selecting Ports in RUGGEDCOM ROS	46
2.8	Managing the Flash File System	47
	2.8.1 Viewing a List of Flash Files	47
	2.8.2 Viewing Flash File Details	47
	2.8.3 Defragmenting the Flash File System	48
2.9	Accessing BIST Mode	48
2.10	O Managing SSH Public Keys	49
	2.10.1 Adding a Public Key	49
	2.10.2 Viewing a List of Public Keys	51
	2.10.3 Updating a Public Key	51
	2.10.4 Deleting a Public Key	52
Chanter 2		
Chapter 3 Device	Management	52
	Viewing Product Information	
	Viewing CPU Diagnostics	
5.3	Restoring Factory Defaults	20

3.4	Uploading/Downloading Files	57
	3.4.1 Uploading/Downloading Files Using XMODEM	58
	3.4.2 Uploading/Downloading Files Using a TFTP Client	59
	3.4.3 Uploading/Downloading Files Using a TFTP Server	60
	3.4.4 Uploading/Downloading Files Using an SFTP Server	60
3.5	Managing Logs	61
	3.5.1 Viewing Local Logs	61
	3.5.2 Clearing Local Logs	62
	3.5.3 Configuring the Local System Log	62
	3.5.4 Managing Remote Logging	63
	3.5.4.1 Configuring the Remote Syslog Client	63
	3.5.4.2 Viewing a List of Remote Syslog Servers	64
	3.5.4.3 Adding a Remote Syslog Server	65
	3.5.4.4 Deleting a Remote Syslog Server	66
3.6	Managing Ethernet Ports	67
	3.6.1 Controller Protection Through Link Fault Indication (LFI)	68
	3.6.2 Viewing the Status of Ethernet Ports	69
	3.6.3 Viewing Statistics for All Ethernet Ports	
	3.6.4 Viewing Statistics for Specific Ethernet Ports	
	3.6.5 Clearing Statistics for Specific Ethernet Ports	
	3.6.6 Configuring a PoE Port (For RS416P Only)	
	3.6.7 Configuring an Ethernet Port	
	3.6.8 Configuring Port Rate Limiting	
	3.6.9 Configuring Port Mirroring	
	3.6.10 Configuring Link Detection	80
	3.6.11 Detecting Cable Faults	
	3.6.11.1 Viewing Cable Diagnostics Results	
	3.6.11.2 Performing Cable Diagnostics	
	3.6.11.3 Clearing Cable Diagnostics	
	3.6.11.4 Determining the Estimated Distance To Fault (DTF)	
	3.6.12 Resetting Ethernet Ports	
3.7		
	3.7.1 Viewing a List of IP Interfaces	
	3.7.2 Adding an IP Interface	
	3.7.3 Deleting an IP Interface	
3.8	Managing IP Gateways	
	3.8.1 Viewing a List of IP Gateways	
	3.8.2 Adding an IP Gateway	
	3.8.3 Deleting an IP Gateway	
3.9	Configuring IP Services	94

	3.10	Managing Remote Monitoring	96
		3.10.1 Managing RMON History Controls	97
		3.10.1.1 Viewing a List of RMON History Controls	. 97
		3.10.1.2 Adding an RMON History Control	. 97
		3.10.1.3 Deleting an RMON History Control	. 99
		3.10.2 Managing RMON Alarms	100
		3.10.2.1 Viewing a List of RMON Alarms	101
		3.10.2.2 Adding an RMON Alarm	102
		3.10.2.3 Deleting an RMON Alarm	104
		3.10.3 Managing RMON Events	105
		3.10.3.1 Viewing a List of RMON Events	106
		3.10.3.2 Adding an RMON Event	106
		3.10.3.3 Deleting an RMON Event	108
	3.11	Upgrading/Downgrading Firmware	108
		3.11.1 Upgrading Firmware	109
		3.11.2 Downgrading Firmware	109
	3.12	Resetting the Device	110
	3.13	Decommissioning the Device	111
Chapte	or 1		
		Administration	113
•		Configuring the System Information	
		Customizing the Login Screen	
		Configuring Passwords	
		Clearing Private Data	
		Enabling/Disabling the Web Interface	
		Managing Alarms	
		4.6.1 Viewing a List of Pre-Configured Alarms	119
		4.6.2 Viewing and Clearing Latched Alarms	
		4.6.3 Configuring an Alarm	120
		4.6.4 Authentication Related Security Alarms	123
		4.6.4.1 Security Alarms for Login Authentication	
		4.6.4.2 Security Messages for Port Authentication	
	4.7	Managing the Configuration File	
		4.7.1 Configuring Data Encryption	126
		4.7.2 Updating the Configuration File	128
	4.8	Managing an Authentication Server	
		4.8.1 Managing RADIUS Authentication	
		4.8.1.1 Configuring the RADIUS Server	
		4.8.1.2 Configuring the RADIUS Client	
		4.8.2 Managing TACACS+ Authentication	

4.8.2.1 Configuring TACACS+	132
4.8.2.2 Configuring User Privileges	133
Chapter 5	
Setup and Configuration	135
5.1 Managing Virtual LANs	
5.1.1 VLAN Concepts	
5.1.1.1 Tagged vs. Untagged Frames	
5.1.1.2 Native VLAN	
5.1.1.3 The Management VLAN	
5.1.1.4 Edge and Trunk Port Types	
5.1.1.5 Ingress and Egress Rules	137
5.1.1.6 Forbidden Ports List	138
5.1.1.7 VLAN-Aware and VLAN-Unaware Modes	138
5.1.1.8 GARP VLAN Registration Protocol (GVRP)	139
5.1.1.9 PVLAN Edge	
5.1.1.10 QinQ	140
5.1.1.11 VLAN Advantages	142
5.1.2 Viewing a List of VLANs	143
5.1.3 Configuring VLANs Globally	143
5.1.4 Configuring VLANs for Specific Ethernet Ports	145
5.1.5 Managing Static VLANs	147
5.1.5.1 Viewing a List of Static VLANs	147
5.1.5.2 Adding a Static VLAN	147
5.1.5.3 Deleting a Static VLAN	149
5.2 Managing Spanning Tree Protocol	150
5.2.1 RSTP Operation	150
5.2.1.1 RSTP States and Roles	151
5.2.1.2 Edge Ports	153
5.2.1.3 Point-to-Point and Multipoint Links	154
5.2.1.4 Path and Port Costs	154
5.2.1.5 Bridge Diameter	155
5.2.1.6 eRSTP	155
5.2.1.7 Fast Root Failover	156
5.2.2 RSTP Applications	156
5.2.2.1 RSTP in Structured Wiring Configurations	157
5.2.2.2 RSTP in Ring Backbone Configurations	158
5.2.2.3 RSTP Port Redundancy	160
5.2.3 MSTP Operation	160
5.2.3.1 MSTP Regions and Interoperability	161
5.2.3.2 MSTP Bridge and Port Roles	162

	5.2.3.3 Benefits of	MSTP	163
	5.2.3.4 Implementi	ng MSTP on a Bridged Network	164
	5.2.4 Configuring STP GI	obally	165
	5.2.5 Configuring STP for	Specific Ethernet Ports	166
	5.2.6 Configuring eRSTP		169
	5.2.7 Viewing Global Sta	tistics for STP	171
	5.2.8 Viewing STP Statist	ics for Ethernet Ports	173
	5.2.9 Managing Multiple	Spanning Tree Instances	175
	5.2.9.1 Viewing Sta	tistics for Global MSTIs	175
	5.2.9.2 Viewing Sta	tistics for Port MSTIs	177
	5.2.9.3 Configuring	the MST Region Identifier	178
	5.2.9.4 Configuring	a Global MSTI	179
	5.2.9.5 Configuring	an MSTI for an Ethernet Port	180
	5.2.10 Clearing Spanning	Tree Protocol Statistics	182
5.3	Managing Classes of Servi	ce	182
	5.3.1 Configuring Classes	s of Service Globally	183
	5.3.2 Configuring Classes	of Service for Specific Ethernet Ports	184
	5.3.3 Configuring Priority	to CoS Mapping	185
	5.3.4 Configuring DSCP t	o CoS Mapping	186
5.4	Managing Time Services		188
	5.4.1 Configuring the Tir	ne and Date	188
	5.4.2 Configuring IRIG-B		190
	5.4.3 Managing the Preci	ision Time Protocol (PTP)	192
		PTP Globally	
	= =	an Ordinary Clock	
	= =	the PTP Delay Request Interval	
		a VLAN for PTP Traffic	
	5.4.3.5 Viewing PTF	P Clock Statistics	198
	5.4.3.6 Viewing Pe	er Delay Statistics	199
	5.4.4 Configuring the Tir	ne Source	200
	• •		
	5.4.5.1 Enabling/Dis	sabling NTP Service	201
	5.4.5.2 Configuring	NTP Servers	202
	5.4.6 Viewing the Status	of Time Synchronization Subsystems	203
5.5	Managing SNMP		205
	5.5.1 Managing SNMP U	sers	206
	_	ist of SNMP Users	
	5.5.1.2 Adding an 9	SNMP User	206
	5.5.1.3 Deleting an	SNMP User	209
	5.5.2 Managing Security-	to-Group Mapping	210

	5.5.2.1 Viewing a List of Security-to-Group Maps	210
	5.5.2.2 Adding a Security-to-Group Map	211
	5.5.2.3 Deleting a Security-to-Group Map	212
	5.5.3 Managing SNMP Groups	213
	5.5.3.1 Viewing a List of SNMP Groups	214
	5.5.3.2 Adding an SNMP Group	214
	5.5.3.3 Deleting an SNMP Group	216
5.6	Managing Network Discovery	217
	5.6.1 Network Discovery Concepts	217
	5.6.1.1 Link Layer Discovery Protocol (LLDP)	217
	5.6.1.2 RUGGEDCOM Discovery Protocol (RCDP)	218
	5.6.2 Configuring LLDP Globally	218
	5.6.3 Configuring LLDP for an Ethernet Port	220
	5.6.4 Enabling/Disabling RCDP	221
	5.6.5 Viewing Global Statistics and Advertised System Information	222
	5.6.6 Viewing Statistics for LLDP Neighbors	223
	5.6.7 Viewing Statistics for LLDP Ports	224
5.7	Managing Multicast Filtering	225
	5.7.1 Managing IGMP	225
	5.7.1.1 IGMP Concepts	225
	5.7.1.2 Viewing a List of Multicast Group Memberships	229
	5.7.1.3 Viewing Forwarding Information for Multicast Groups	230
	5.7.1.4 Configuring IGMP	231
	5.7.2 Managing GMRP	232
	5.7.2.1 GMRP Concepts	233
	5.7.2.2 Viewing a Summary of Multicast Groups	235
	5.7.2.3 Configuring GMRP Globally	235
	5.7.2.4 Configuring GMRP for Specific Ethernet Ports	236
	5.7.2.5 Viewing a List of Static Multicast Groups	238
	5.7.2.6 Adding a Static Multicast Group	238
	5.7.2.7 Deleting a Static Multicast Group	239
5.8	Managing Port Security	240
	5.8.1 Port Security Concepts	241
	5.8.1.1 Static MAC Address-Based Authentication	241
	5.8.1.2 IEEE 802.1x Authentication	241
	5.8.1.3 IEEE 802.1X Authentication with MAC Address-Based Authentication	242
	5.8.1.4 Assigning VLANS with Tunnel Attributes	243
	5.8.2 Viewing a List of Authorized MAC Addresses	243
	5.8.3 Configuring Port Security	244
	5.8.4 Configuring IEEE 802.1X	246

5.9 Managing Link Aggregation	248
5.9.1 Link Aggregation Concepts	249
5.9.1.1 Rules and Limitations	250
5.9.1.2 Link Aggregation and Layer 2 Features	250
5.9.1.3 Link Aggregation and Physical Layer Features	251
5.9.2 Managing Port Trunks	251
5.9.2.1 Viewing a List of Port Trunks	251
5.9.2.2 Adding a Port Trunk	252
5.9.2.3 Deleting a Port Trunk	253
5.10 Managing Serial Protocols	254
5.10.1 Encapsulation Concepts	256
5.10.1.1 Raw Socket Character Encapsulation	256
5.10.1.2 RTU Polling	257
5.10.1.3 Broadcast RTU Polling	258
5.10.1.4 Preemptive Raw Socket	259
5.10.1.5 Port Redirectors	259
5.10.1.6 Message Packetization	260
5.10.2 Modbus Concepts	261
5.10.2.1 Modbus Server Client Applications	261
5.10.2.2 Modbus TCP Performance Determinants	
5.10.2.3 Turnaround Delay	264
5.10.3 DNP, Microlok, TIN and WIN Concepts	264
5.10.3.1 DNP, Microlok, TIN and WIN Applications	
5.10.3.2 The Concept of Links	265
5.10.3.3 Address Learning for TIN	
5.10.3.4 Address Learning for DNP	266
5.10.3.5 Broadcast Messages	267
5.10.3.6 Transport Protocols	267
5.10.4 Force Half-Duplex (HD) Operation Mode	268
5.10.5 Configuring a Serial Port	
5.10.6 Configuring the Raw Socket Protocol	
5.10.7 Configuring the Preemptive Raw Socket Protocol	
5.10.8 Configuring a TCP Modbus Server	
5.10.9 Configuring a TCP Modbus Client	
5.10.10 Configuring the WIN and TIN Protocols	
5.10.11 Configuring the MicroLok Protocol	
5.10.12 Configuring the DNP Protocol	
5.10.13 Configuring the DNP Over Raw Socket Protocol	
5.10.14 Configuring the Mirrored Bits Protocol	
5.10.15 Configuring the Telnet Com Port Protocol	288

5.10.16 Managing Raw Socket Remote Hosts	. 290
5.10.16.1 Viewing a List of Remote Hosts	291
5.10.16.2 Adding a Remote Host	. 291
5.10.16.3 Deleting a Remote Host	. 292
5.10.17 Managing Device Addresses	. 293
5.10.17.1 Viewing a List of Device Addresses	293
5.10.17.2 Adding a Device Address	294
5.10.17.3 Deleting a Device Address	. 296
5.10.18 Viewing the TIN Dynamic Address Table	297
5.10.19 Viewing Statistics for Serial Protocol Links	. 298
5.10.20 Viewing Statistics for Serial Protocol Connections	299
5.10.21 Viewing Serial Port Statistics	. 299
5.10.22 Clearing Statistics for Specific Serial Ports	300
5.10.23 Resetting Serial Ports	. 301
hapter 6	202
roubleshooting	303
6.1 General	303

Preface

This guide describes v4.3 of ROS (Rugged Operating System) running on the RUGGEDCOM RS416/RS416P. It contains instructions and guidelines on how to use the software, as well as some general theory.

It is intended for use by network technical support personnel who are familiar with the operation of networks. It is also recommended for use by network and system planners, system programmers, and line technicians.

IMPORTANT!

Some of the parameters and options described may not be available depending on variations in the device hardware. While every attempt is made to accurately describe the specific parameters and options available, this Guide should be used as a companion to the Help text included in the software.

Conventions

This User Guide uses the following conventions to present information clearly and effectively.

>> Alerts

The following types of alerts are used when necessary to highlight important information.

DANGER!

DANGER alerts describe imminently hazardous situations that, if not avoided, will result in death or serious injury.

WARNING!

WARNING alerts describe hazardous situations that, if not avoided, may result in serious injury and/or equipment damage.

CAUTION!

CAUTION alerts describe hazardous situations that, if not avoided, may result in equipment damage.

IMPORTANT!

IMPORTANT alerts provide important information that should be known before performing a procedure or step, or using a feature.

NOTE

NOTE alerts provide additional information, such as facts, tips and details.

» CLI Command Syntax

The syntax of commands used in a Command Line Interface (CLI) is described according to the following conventions:

Conventions

Example	Description
command	Commands are in bold.
command parameter	Parameters are in plain text.
command parameter1 parameter2	Parameters are listed in the order they must be entered.
command parameter1 parameter2	Parameters in italics must be replaced with a user-defined value.
command [parameter1 parameter2]	Alternative parameters are separated by a vertical bar (). Square brackets indicate a required choice between two or more parameters.
<pre>command { parameter3 parameter4 }</pre>	Curly brackets indicate an optional parameter(s).
<pre>command parameter1 parameter2 { parameter3 parameter4 }</pre>	All commands and parameters are presented in the order they must be entered.

Related Documents

Other documents that may be of interest include:

- RUGGEDCOM RS416 Installation Guide
- RUGGEDCOM RS416 Installation Guide
- RUGGEDCOM RS416P Installation Guide

System Requirements

Each workstation used to connect to the RUGGEDCOM ROS interface must meet the following system requirements:

- Must have one of the following Web browsers installed:
 - Microsoft Internet Explorer 8.0 or higher
 - Mozilla Firefox
 - Google Chrome
 - Iceweasel/IceCat (Linux Only)
- Must have a working Ethernet interface compatible with at least one of the port types on the RUGGEDCOM device
- The ability to configure an IP address and netmask on the computer's Ethernet interface

Accessing Documentation

The latest user documentation for RUGGEDCOM ROS v4.3 is available online at www.siemens.com/ruggedcom. To request or inquire about a user document, contact Siemens Customer Support.

xvi Related Documents

Training

Siemens offers a wide range of educational services ranging from in-house training of standard courses on networking, Ethernet switches and routers, to on-site customized courses tailored to the customer's needs, experience and application.

Siemens' Educational Services team thrives on providing our customers with the essential practical skills to make sure users have the right knowledge and expertise to understand the various technologies associated with critical communications network infrastructure technologies.

Siemens' unique mix of IT/Telecommunications expertise combined with domain knowledge in the utility, transportation and industrial markets, allows Siemens to provide training specific to the customer's application.

For more information about training services and course availability, visit www.siemens.com/ruggedcom or contact a Siemens Sales representative.

Customer Support

Customer support is available 24 hours, 7 days a week for all Siemens customers. For technical support or general information, contact Siemens Customer Support through any of the following methods:

Online

Visit http://www.siemens.com/automation/support-request to submit a Support Request (SR) or check on the status of an existing SR.

Telephone

Call a local hotline center to submit a Support Request (SR). To locate a local hotline center, visit http://www.automation.siemens.com/mcms/aspa-db/en/automation-technology/Pages/default.aspx.

Mobile App

Install the Industry Online Support app by Siemens AG on any Android, Apple iOS or Windows mobile device and be able to:

- · Access Siemens' extensive library of support documentation, including FAQs and manuals
- Submit SRs or check on the status of an existing SR
- Contact a local Siemens representative from Sales, Technical Support, Training, etc.
- Ask questions or share knowledge with fellow Siemens customers and the support community

Training xvii

uide Preface

Customer Support xviii

RUGGEDCOM ROS Chapter 1
User Guide Introduction

Introduction

Welcome to the RUGGEDCOM ROS v4.3 Software User Guide for the RS416. This Guide describes the wide array of carrier grade features made available by ROS (Rugged Operating System).

CONTENTS

- Section 1.1, "Features and Benefits"
- Section 1.2, "Security Recommendations and Considerations"
- Section 1.3, "Supported Networking Standards"
- Section 1.4, "Port Numbering Scheme"
- Section 1.5, "Available Services by Port"
- Section 1.6, "SNMP Management Interface Base (MIB) Support"
- Section 1.7, "SNMP Traps"
- Section 1.8, "ModBus Management Support"
- Section 1.9, "SSH and SSL Keys and Certificates"

Section 1.1

Features and Benefits

The following describes the many features available in RUGGEDCOM ROS and their benefits:

Cyber Security

Cyber security is an urgent issue in many industries where advanced automation and communications networks play a crucial role in mission critical applications and where high reliability is of paramount importance. Key RUGGEDCOM ROS features that address security issues at the local area network level include:

Passwords Multi-level user passwords secures against unauthorized configuration	
SSH/SSL	Extends capability of password protection to add encryption of passwords and data as they cross the network
Enable/Disable Ports	Capability to disable ports so that traffic cannot pass
802.1Q VLAN	Provides the ability to logically segregate traffic between predefined ports on switches
SNMPv3	Encrypted authentication and access security
HTTPS	For secure access to the Web interface

Enhanced Rapid Spanning Tree Protocol (eRSTP)™

Siemens's eRSTP allows the creation of fault-tolerant ring and mesh Ethernet networks that incorporate redundant links that are *pruned* to prevent loops. eRSTP implements both STP and RSTP to promote interoperability with commercial switches, unlike other proprietary *ring* solutions. The fast root failover feature of eRSTP provides quick network convergence in case of an RSTP root bridge failure in a mesh topology.

Features and Benefits

Quality of Service (IEEE 802.1p)

Some networking applications such as real-time control or VoIP (Voice over IP) require predictable arrival times for Ethernet frames. Switches can introduce latency in times of heavy network traffic due to the internal queues that buffer frames and then transmit on a first come first serve basis. RUGGEDCOM ROS supports *Class of Service*, which allows time critical traffic to jump to the front of the queue, thus minimizing latency and reducing *jitter* to allow such demanding applications to operate correctly. RUGGEDCOM ROS allows priority classification by port, tags, MAC address, and IP Type of Service (ToS). A configurable *weighted fair queuing* algorithm controls how frames are emptied from the queues.

• VLAN (IEEE 802.1Q)

Virtual Local Area Networks (VLAN) allow the segregation of a physical network into separate logical networks with independent broadcast domains. A measure of security is provided since hosts can only access other hosts on the same VLAN and traffic storms are isolated. RUGGEDCOM ROS supports 802.1Q tagged Ethernet frames and VLAN trunks. Port based classification allows legacy devices to be assigned to the correct VLAN. GVRP support is also provided to simplify the configuration of the switches on the VLAN.

• Simple Network Management Protocol (SNMP)

SNMP provides a standardized method, for network management stations, to interrogate devices from different vendors. SNMP versions supported by RUGGEDCOM ROS are v1, v2c and v3. SNMPv3 in particular provides security features (such as authentication, privacy, and access control) not present in earlier SNMP versions. RUGGEDCOM ROS also supports numerous standard MIBs (Management Information Base) allowing for easy integration with any Network Management System (NMS). A feature of SNMP is the ability to generate *traps* upon system events. RUGGEDCOM NMS, the Siemens management solution, can record traps from multiple devices providing a powerful network troubleshooting tool. It also provides a graphical visualization of the network and is fully integrated with all Siemens products.

• Remote Monitoring and Configuration with RUGGEDCOM NMS

RUGGEDCOM NMS (RNMS) is Siemens's Network Management System software for the discovery, monitoring and management of RUGGEDCOM products and other IP enabled devices on a network. This highly configurable, full-featured product records and reports on the availability and performance of network components and services. Device, network and service failures are quickly detected and reported to reduce downtime.

RNMS is especially suited for remotely monitoring and configuring RUGGEDCOM routers, switches, serial servers and WiMAX wireless network equipment. For more information, contact a Siemens Sales representative.

• NTP (Network Time Protocol)

NTP automatically synchronizes the internal clock of all RUGGEDCOM ROS devices on the network. This allows for correlation of time stamped events for troubleshooting.

Port Rate Limiting

RUGGEDCOM ROS supports configurable rate limiting per port to limit unicast and multicast traffic. This can be essential to managing precious network bandwidth for service providers. It also provides edge security for Denial of Service (DoS) attacks.

• Broadcast Storm Filtering

Broadcast storms wreak havoc on a network and can cause attached devices to malfunction. This could be disastrous on a network with mission critical equipment. RUGGEDCOM ROS limits this by filtering broadcast frames with a user-defined threshold.

Port Mirroring

RUGGEDCOM ROS can be configured to duplicate all traffic on one port to a designated mirror port. When combined with a network analyzer, this can be a powerful troubleshooting tool.

Port Configuration and Status

RUGGEDCOM ROS allows individual ports to be *hard* configured for speed, duplex, auto-negotiation, flow control and more. This allows proper connection with devices that do not negotiate or have unusual settings. Detailed status of ports with alarm and SNMP trap on link problems aid greatly in system troubleshooting.

2 Features and Benefits

• Port Statistics and RMON (Remote Monitoring)

RUGGEDCOM ROS provides continuously updating statistics per port that provide both ingress and egress packet and byte counters, as well as detailed error figures.

Also provided is full support for RMON statistics. RMON allows for very sophisticated data collection, analysis and detection of traffic patterns.

· Multicast Filtering

RUGGEDCOM ROS supports static multicast groups and the ability to join or leave multicast groups dynamically using IGMP (Internet Group Management Protocol) or GMRP (GARP Multicast Registration Protocol).

• Event Logging and Alarms

RUGGEDCOM ROS records all significant events to a non-volatile system log allowing forensic troubleshooting. Events include link failure and recovery, unauthorized access, broadcast storm detection, and self-test diagnostics among others. Alarms provide a snapshot of recent events that have yet to be acknowledged by the network administrator. An external hardware relay is de-energized during the presence of critical alarms, allowing an external controller to react if desired.

• HTML Web Browser User Interface

RUGGEDCOM ROS provides a simple, intuitive user interface for configuration and monitoring via a standard graphical Web browser or via a standard telcom user interface. All system parameters include detailed online help to make setup a breeze. RUGGEDCOM ROS presents a common look and feel and standardized configuration process, allowing easy migration to other managed RUGGEDCOM products.

• Brute Force Attack Prevention

Protection against Brute Force Attacks (BFAs) is standard in RUGGEDCOM ROS. If an external host fails to log in to the Terminal or Web interfaces after a fixed number of attempts, the service will be blocked for one hour.

Section 1.2

Security Recommendations and Considerations

This section describes important security-related recommendations and suggestions that should be considered before implementing the RS416 on any network.

CONTENTS

- Section 1.2.1, "Security Recommendations"
- Section 1.2.2, "Credential Files"

Section 1.2.1

Security Recommendations

To prevent unauthorized access to the device, note the following security recommendations:

Authentication

- Replace the default passwords for all user accounts and processes (where applicable) before the device is deployed.
- Use strong passwords with high randomization (i.e. entropy), without repetition of characters. Avoid weak passwords such as *password1*, *123456789*, *abcdefgh*, and any dictionary words or proper names in any combination. For more information about creating strong passwords, refer to the password requirements in Section 4.3, "Configuring Passwords".

- Make sure passwords are protected and not shared with unauthorized personnel.
- Passwords should not be re-used across different user names and systems, or after they expire.
- If RADIUS authentication is done remotely, make sure all communications are within the security perimeter or on a secure channel.

Physical/Remote Access

- Do not connect the device to the Internet. Deploy the device only within a secure network perimeter.
- Restrict physical access to the device to only authorized personnel. A person with malicious intent could extract critical information, such as certificates, keys, etc. (user passwords are protected by hash codes), or reprogram the device.
- Control access to the serial console to the same degree as any physical access to the device. Access to the serial console allows for potential access to the RUGGEDCOM ROS boot loader, which includes tools that may be used to gain complete access to the device.
- Only enable services that will be used on the device, including physical ports. Unused physical ports could potentially be used to gain access to the network behind the device.
- If SNMP is enabled, limit the number of IP addresses that can connect to the device and change the community names. Also configure SNMP to raise a trap upon authentication failures. For more information, refer to Section 5.5, "Managing SNMP".
- Avoid using insecure services such as Telnet and TFTP, or disable them completely if possible. These services are available for historical reasons and are disabled by default.
- Limit the number of simultaneous Web Server, Telnet and SSH sessions allowed.
- Configure remote system logging to forward all logs to a central location. For more information, refer to Section 3.5, "Managing Logs".
- Configuration files are provided in the CSV (comma separated values) format for ease of use. Make sure configuration files are properly protected when they exist outside of the device. For instance, encrypt the files, store them in a secure place, and do not transfer them via insecure communication channels.
- Management of the configuration file, certificates and keys is the responsibility of the device owner.
 Consider using RSA key sizes of at least 2048 bits in length and certificates signed with SHA256 for increased cryptographic strength. Before returning the device to Siemens for repair, make sure encryption is disabled (to create a cleartext version of the configuration file) and replace the current certificates and keys with temporary throwaway certificates and keys that can be destroyed upon the device's return.
- Be aware of any non-secure protocols enabled on the device. While some protocols, such as HTTPS and SSH, are secure, others, such as Telnet and RSH, were not designed for this purpose. Appropriate safeguards against non-secure protocols should be taken to prevent unauthorized access to the device/network.

Hardware/Software

- Make sure the latest firmware version is installed, including all security-related patches. For the latest information on security patches for Siemens products, visit the Industrial Security website [http://www.industry.siemens.com/topics/global/en/industrial-security/news-alerts/Pages/alerts.aspx] or the ProductCERT Security Advisories website [http://www.siemens.com/innovation/en/technology-focus/siemens-cert/cert-security-advisories.htm]. Updates to Siemens Product Security Advisories can be obtained by subscribing to the RSS feed on the Siemens ProductCERT Security Advisories website, or by following @ProductCert on Twitter.
- Configure port security features on access ports to prevent a third-party from launching various attacks that can harm the network or device. For more information, refer to Section 5.8, "Managing Port Security".
- Enable BPDU Guard on ports where RSTP BPDUs are not expected.

- Use the latest Web browser version compatible with RUGGEDCOM ROS to make sure the most secure Transport Layer Security (TLS) versions and ciphers available are employed. Additionally, 1/n-1 record splitting is enabled in the latest web browser versions of Mozilla Firefox, Google Chrome and Internet Explorer, and mitigates against attacks such as SSL/TLS Protocol Initialization Vector Implementation Information Disclosure Vulnerability (BEAST) for Non-Controlled (NC) versions of RUGGEDCOM ROS.
- Modbus can be deactivated if not required by the user. If Modbus activation is required, then it is recommended to follow the security recommendations outlined in this User Guide and to configure the environment according to defense-in-depth best practices.
- Prevent access to external, untrusted Web pages while accessing the device via a Web browser. This can assist in preventing potential security threats, such as session hijacking.
- For optimal security, use SNMPv3 whenever possible. Use strong passwords without repetitive strings (e.g. *abc* or *abcabc*) with this feature. For more information about creating strong passwords, refer to the password requirements in Section 4.3, "Configuring Passwords".
- Unless required for a particular network topology, the *IP Forward* setting should be set to { Disabled } to prevent the routing of packets.

NOTE

For configuration compatibility reasons, the configured setting will not change when upgrading from RUGGEDCOM ROS versions older than v4.2.0 to v4.2.0 and newer. This setting is always enabled and cannot be configured on versions before v4.2.0. For new units with firmware v4.2.0 this setting is configurable and disabled by default.

Policy

- Periodically audit the device to make sure it complies with these recommendations and/or any internal security policies.
- Review the user documentation for other Siemens products used in coordination with device for further security recommendations.

Section 1.2.2

Credential Files

RUGGEDCOM ROS uses security keys to establish secure remote logins (SSH) and Web access (SSL).

It is strongly recommended that a unique SSL certificate and SSH keys be created and provisioned. New RUGGEDCOM ROS-based units from Siemens will be shipped with a unique certificate and keys preconfigured in the ssl.crt and ssh.keys flash files.

The default and auto-generated SSL certificates are self-signed. It is recommended to use an SSL certificate that is either signed by a trusted third-party Certificate Authority (CA) or by an organization's own CA. This technique is described in the Siemens application note: *Creating/Uploading SSH Keys and SSL Certificates to ROS Using Windows*, available from www.siemens.com/ruggedcom.

The sequence of events related to Key Management during an upgrade to RUGGEDCOM ROS v4.3 or later is as follows:

NOTE

The auto-generation of SSH keys is not available for Non-Controlled (NC) versions of RUGGEDCOM ROS.

On first boot, RUGGEDCOM ROS will start the SSH and SSL services using the default keys.

Credential Files 5

- Immediately after boot, RUGGEDCOM ROS will start to generate a unique SSL certificate and SSH key pair, and save each one to its corresponding flash file. As each one is created, the corresponding service is immediately restarted with the new keys.
- At any time during the key generation process, custom keys can be uploaded. The custom keys will take precedence over both the default and auto-generated keys.
- On subsequent boot, if there is a valid ssl.crt file, the default certificate will not be used for SSL. If there is a valid ssh.keys file, the default SSH key will not be used.
- At any time, new keys may be uploaded or generated by RUGGEDCOM ROS using the sslkeygen or sshkeygen CLI commands.

CONTENTS

- Section 1.2.2.1, "SSL Certificates"
- Section 1.2.2.2, "SSH Key Pairs"

Section 1.2.2.1

SSL Certificates

RUGGEDCOM ROS supports SSL certificates that conform to the following specifications:

- X.509 v3 digital certificate format
- · PEM format
- For RUGGEDCOM ROS Controlled verions: RSA key pair, 1024, 2048 or 3072 bits; or EC 256, 384 or 521 bits
- For RUGGEDCOM ROS Non-Controlled (NC) verions: RSA key pair, 512 to 2048 bits

The RSA key pair used in the default certificate and in those generated by RUGGEDCOM ROS uses a public key of 1024 bits in length.

NOTE

RSA keys smaller than 2048 bits in length are not recommended. Support is only included here for compatibility with legacy equipment.

NOTE

The default certificate and keys are common to all RUGGEDCOM ROS versions without a certificate or key files. That is why it is important to either allow the key auto-generation to complete or to provision custom keys. In this way, one has at least unique, and at best, traceable and verifiable keys installed when establishing secure communication with the unit.

The following (bash) shell script fragment uses the openssl command line utility to generate a self-signed X.509 v3 SSL certificate with a 1024 bit RSA key suitable for use in RUGGEDCOM ROS. Note that two standard PEM files are required: the SSL certificate and the RSA private key file. These are concatenated into the resulting ssl.crt file, which may then be uploaded to RUGGEDCOM ROS:

6 SSL Certificates

```
LOCALITY NAME=Concord
                                # City
ORGANIZATION=Ruggedcom.com
                                # Your organization's name
ORGANIZATION CA=${ORGANIZATION} CA # Your Certificate Authority
COMMON NAME=RC
                                # The DNS or IP address of the ROS unit
ORGANIZATIONAL UNIT=ROS
                                # Organizational unit name
# Variables used in the construction of the certificate
REQ_SUBJ="/C=${COUNTRY_NAME}/ST=${STATE_OR_PROVINCE_NAME}/L=${LOCALITY_NAME}/O=${ORGANIZATION}/OU=
${ORGANIZATIONAL UNIT}/CN=${COMMON NAME}/"
REQ SUBJ CA="/C=${COUNTRY NAME}/ST=${STATE OR PROVINCE NAME}/L=${LOCALITY NAME}/O=${ORGANIZATION CA}/
OU=${ORGANIZATIONAL UNIT}/"
# Make the self-signed SSL certificate and RSA key pair:
openssl req -x509 -newkey rsa:${BITS} -nodes \
-days ${DAYS} -subj ${REQ SUBJ} \
-keyout ros ssl.key
      ros ssl.crt
# Concatenate Cert and Key into a single file suitable for upload to ROS:
# Note that cert must precede the RSA key:
cat ros ssl.crt ros ssl.key > ssl.crt
```

For information on creating SSL certificates for use with RUGGEDCOM ROS in a Microsoft Windows environment, refer to the following Siemens application note: Creating/Uploading SSH Keys and SSL Certificates to ROS Using Windows

The following is an example of a self-signed SSL certificate generated by RUGGEDCOM ROS:

```
Certificate:
    Data:
        Version: 3 (0x2)
        Serial Number:
           ca:01:2d:c0:bf:f9:fd:f2
        Signature Algorithm: shalWithRSAEncryption
        Issuer: C=CA, ST=Ontario, L=Concord, O=RuggedCom.com, OU=RC, CN=ROS
            Not Before: Dec 6 00:00:00 2012 GMT
            Not After: Dec 7 00:00:00 2037 GMT
        Subject: C=CA, ST=Ontario, L=Concord, O=RuggedCom.com, OU=RC, CN=ROS
        Subject Public Key Info:
            Public Key Algorithm: rsaEncryption
            RSA Public Key: (1024 bit)
                Modulus (1024 bit):
                    00:83:e8:1f:02:6b:cd:34:1f:01:6d:3e:b6:d3:45:
                    b0:18:0a:17:ae:3d:b0:e9:c6:f2:0c:af:b1:3e:e7:
                    fd:f2:0e:75:8d:6a:49:ce:47:1d:70:e1:6b:1b:e2:
                    fa:5a:1b:10:ea:cc:51:41:aa:4e:85:7c:01:ea:c3:
                    1e:9e:98:2a:a9:62:48:d5:27:1e:d3:18:cc:27:7e:
                    a0:94:29:db:02:5a:e4:03:51:16:03:3a:be:57:7d:
                    3b:d1:75:47:84:af:b9:81:43:ab:90:fd:6d:08:d3:
                    e8:5b:80:c5:ca:29:d8:45:58:5f:e4:a3:ed:9f:67:
                    44:0f:1a:41:c9:d7:62:7f:3f
                Exponent: 65537 (0x10001)
        X509v3 extensions:
            X509v3 Subject Key Identifier:
                EC:F3:09:E8:78:92:D6:41:5F:79:4D:4B:7A:73:AD:FD:8D:12:77:88
            X509v3 Authority Key Identifier:
                keyid:EC:F3:09:E8:78:92:D6:41:5F:79:4D:4B:7A:73:AD:FD:8D:12:77:88
                DirName:/C=CA/ST=Ontario/L=Concord/O=RuggedCom.com/OU=RC/CN=ROS
                serial:CA:01:2D:C0:BF:F9:FD:F2
            X509v3 Basic Constraints:
                CA: TRUE
    Signature Algorithm: shalWithRSAEncryption
        64:cf:68:6e:9f:19:63:0e:70:49:a6:b2:fd:09:15:6f:96:1d:
```

SSL Certificates 7

```
4a:7a:52:c3:46:51:06:83:7f:02:8e:42:b2:dd:21:d2:e9:07:
5c:c4:4c:ca:c5:a9:10:49:ba:d4:28:fd:fc:9d:a9:0b:3f:a7:
84:81:37:ca:57:aa:0c:18:3f:c1:b2:45:2a:ed:ad:dd:7f:ad:
00:04:76:1c:f8:d9:c9:5c:67:9e:dd:0e:4f:e5:e3:21:8b:0b:
37:39:8b:01:aa:ca:30:0c:f1:1e:55:7c:9c:1b:43:ae:4f:cd:
e4:69:78:25:5a:a5:f8:98:49:33:39:e3:15:79:44:37:52:da:
28:dd
```

Section 1.2.2.2

SSH Key Pairs

Controlled versions of RUGGEDCOM ROS support SSH public/private key pairs that conform to the following specifications:

- PEM format
- DSA key pair, 1024, 2048 or 3072 bits in length; or RSA 1024, 2048 or 3072 bits in length

The DSA key pair used in the default key pair and in those generated by RUGGEDCOM ROS uses a public key of 1024 bits in length.

NOTE

DSA or RSA keys smaller than 2048 bits in length are not recommended, and support is only included here for compatibility with legacy equipment.

The following (bash) shell script fragment uses the ssh-keygen command line utility to generate a 1024 bit DSA key suitable for use in RUGGEDCOM ROS. The resulting ssh.keys file, which may then be uploaded to RUGGEDCOM ROS:

```
# DSA key size:
BITS=1024

# Make an SSH key pair:
ssh-keygen -t dsa -b 1024 -N '' -f ssh.keys
```

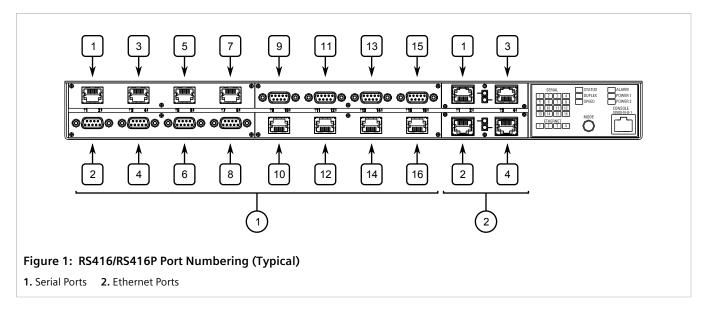
The following is an example of an SSH key generated by RUGGEDCOM ROS:

```
Private-Key: (1024 bit)
priv:
    00:b2:d3:9d:fa:56:99:a5:7a:ba:1e:91:c5:e1:35:
    77:85:e8:c5:28:36
pub:
    6f:f3:9e:af:e6:d6:fd:51:51:b9:fa:d5:f9:0a:b7:
    ef:fc:d7:7c:14:59:52:48:52:a6:55:65:b7:cb:38:
    2e:84:76:a3:83:62:d0:83:c5:14:b2:6d:7f:cc:f4:
    b0:61:0d:12:6d:0f:5a:38:02:67:a4:b7:36:1d:49:
    Oa:d2:58:e2:ff:4a:Oa:54:8e:f2:f4:c3:1c:e0:1f:
    9b:1a:ee:16:e0:e9:eb:c8:fe:e8:16:99:e9:61:81:
    ed:e4:f2:58:fb:3b:cb:c3:f5:9a:fa:ed:cd:39:51:
    47:90:5d:6d:1b:27:d5:04:c5:de:57:7e:a7:a3:03:
    e8:fb:0a:d5:32:89:40:12
P:
    00:f4:81:c1:9b:5f:1f:eb:ac:43:2e:db:dd:77:51:
    6e:1c:62:8d:4e:95:c6:e7:b9:4c:fb:39:9c:9d:da:
    60:4b:0f:1f:c6:61:b0:fc:5f:94:e7:45:c3:2b:68:
    9d:11:ba:e1:8a:f9:c8:6a:40:95:b9:93:7c:d0:99:
    96:bf:05:2e:aa:f5:4e:f0:63:02:00:c7:c2:52:c7:
    1a:70:7c:f7:e5:fe:dd:3d:57:02:86:ae:d4:89:20:
    ca:4b:46:80:ea:de:a1:30:11:5c:91:e2:40:d4:a3:
    82:c5:40:3b:25:8e:d8:b2:85:cc:f5:9f:a9:1d:ea:
    0a:ac:77:95:ee:d6:f7:61:e3
```

8 SSH Key Pairs

Section 1.3

Supported Networking Standards


The following networking standards are supported by RUGGEDCOM ROS:

Standard	10 Mbps Ports	100 Mbps Ports	1000 Mbps Ports	Notes
IEEE 802.3x	✓	✓	✓	Full Duplex Operation
IEEE 802.3z			✓	1000Base-LX
IEEE 802.3ab			✓	1000Base-Tx
IEEE 802.1D	✓	✓	✓	MAC Bridges
IEEE 802.1Q	✓	✓	✓	VLAN (Virtual LAN)
IEEE 802.1p	✓	✓	✓	Priority Levels

Section 1.4

Port Numbering Scheme

For quick identification, each port on a RS416/RS416P device is assigned a number. All port numbers are silk-screened on the device.

Use these numbers to configure applicable features on select ports.

Section 1.5

Available Services by Port

The following table lists the services available under RUGGEDCOM ROS. This table includes the following information:

Services

The service supported by the device.

• Port Number

The port number associated with the service.

Port Open

The port state, whether it is always open and cannot be closed, or open only, but can be configured.

NOTE

In certain cases, the service might be disabled, but the port can still be open (e.g. TFTP).

Port Default

The default state of the port (i.e. open or closed).

Access Authorized

Denotes whether the ports/services are authenticated during access.

Services	Port Number	Service Enabled/ Disabled	Access Authorized	Note
Telnet	TCP/23	Disabled	Yes	Only available through two management interfaces.
НТТР	TCP/80	Enabled (configurable), redirects to 443	_	

10 Available Services by Port

Services	Port Number	Service Enabled/ Disabled	Access Authorized	Note
HTTPS	TCP/443	Enabled (configurable)	Yes	
RSH	TCP/512	Disabled (configurable)	Yes	Only available through two management interfaces.
TFTP	UDP/69	Disabled (configurable)	No	Only available through two management interfaces.
SFTP	TCP/22	Enabled	Yes	Only available through two management interfaces.
SNMP	UDP/161	Disabled (configurable)	Yes	Only available through two management interfaces.
SNTP	UDP/123	Enabled (configurable)	No	Only available through two management interfaces.
SSH	TCP/22	Enabled	Yes	Only available through two management interfaces.
ICMP	_	Enabled	No	
TACACS+	TCP/49 (configurable)	Disabled (configurable)	Yes	
RADIUS	UDP/1812 to send (configurable), opens random port to listen to	Disabled (configurable)	Yes	Only available through two management interfaces.
Remote Syslog	UDP/514 (configurable)	Disabled (configurable)	No	Only available through two management interfaces.
DNP over RawSocket	TCP/21001 to TCP/21016	Disabled (configurable)	No	
DNPv3	UDP/20000 TCP/20000	UDP Disabled (configurable); TCP Enabled (configurable)	No	
RawSocket/Telnet COM	UDP/50001 to UDP/50016 TCP/50001 to TCP/50016	UDP Disabled (configurable); TCP Disabled (configurable)	No	
Preemptive RAW Socket	TCP/62001 to TCP/62016	Disabled (configurable)	No	

Available Services by Port

Services	Port Number	Service Enabled/ Disabled	Access Authorized	Note
TIN	UDP/51000 TCP/51000	UDP Enabled (configurable); TCP Disabled (configurable)	No	
WIN	UDP/52000 TCP/52000	UDP Enabled (configurable); TCP Disabled (configurable)	No	
MICROLOK	UDP/60000	UDP Enabled (configurable); TCP Disabled (configurable)	No	
MirroredBits	UDP/61001 to UDP/61016	Disabled (configurable)	No	
TCP Modbus (Server)	TCP/502	Disabled (configurable)	No	Only available through two management interfaces.
TCP Modbus (Switch)	TCP/502	Disabled (configurable)	No	
DHCP, DHCP Agent	UDP/67, 68 sending msg if enabled - if received, always come to CPU, dropped if service not configured	Disabled (configurable)	No	
RCDP	_	Disabled (configurable)	Yes	

Section 1.6

SNMP Management Interface Base (MIB) Support

RUGGEDCOM ROS supports a variety of standard MIBs, proprietary RUGGEDCOM MIBs and Agent Capabilities MIBs, all for SNMP (Simple Network Management Protocol).

CONTENTS

- Section 1.6.1, "Supported Standard MIBs"
- Section 1.6.2, "Supported Proprietary RUGGEDCOM MIBs"
- Section 1.6.3, "Supported Agent Capabilities"

Section 1.6.1

Supported Standard MIBs

RUGGEDCOM ROS supports the following standard MIBs:

Standard	MIB Name	Title
RFC 2578	SNMPv2-SMI	Structure of Management Information Version 2
RFC 2579	SNMPv2-TC	Textual Convention s for SMIv2
RFC 2580	SNMPv2-CONF	Conformance Statements for SMIv2
	IANAifType	Enumerated Values of the ifType Object Defined ifTable defined in IF-MIB
RFC 1907	SNMPv2-MIB	Management Information Base for SNMPv2
RFC 2011	IP-MIB	SNMPv2 Management Information Base for Internet Protocol using SMIv2
RFC 2012	TCP-MIB	SNMPv2 Management Information Base for the Transmission Control Protocol using SMIv2
RFC 2013	UDP-MIB	Management Information Base for the UDP using SMIv2
RFC 1659	RS-232-MIB	Definitions of Managed Objects for RS-232-like Hardware Devices
RFC 2863	IF-MIB	The Interface Group MIB
RFC 2819	RMON-MIB	Remote Network Monitoring (RMON) management Information base
RFC 4188	BRIDGE-MIB	Definitions of Managed Objects for Bridges
RFC 4318	RSTP-MIB	Definitions of Managed Objects for Bridges with Rapid Spanning Tree Protocol
RFC 3411	SNMP-FRAMEWORK-MIB	An Architecture for Describing Simple Network Management Protocol (SNMP) Management Framework
RFC 3414	SNMP-USER-BASED-SM-MIB	User-based Security Model (USM) for Version 3 of the Simple Network Management Protocol (SNMPv3)
RFC 3415	SNMP-VIEW-BASED-ACM-MIB	View-bsed Access Control Model (VACM) for the Simple Management Protocol (SNMP)
IEEE 802.3ad	IEEE8023-LAG-MIB	Management Information Base Module for Link Aggregation
IEEE 802.1AB-2005	LLDP-MIB	Management Information Base Module for LLDP Configuration, Statistics, Local System Data and Remote Systems Data Components
RFC 4363	Q-BRIDGE-MIB	Definitions of Managed Objects for Bridges with Traffic Classes, Multicast Filtering, and Virtual LAN Extensions
IEEE C37.238-2011	IEEEC37.238-MIB	IEEE Standard Profile for Use of IEEE 1588 Precision Time Protocol in Power System Applications

Section 1.6.2

Supported Proprietary RUGGEDCOM MIBs

RUGGEDCOM ROS supports the following proprietary RUGGEDCOM MIBs:

File Name	MIB Name	Description
RUGGEDCOM-MIB.mib	RUGGEDCOM-MIB	RUGGEDCOM enterprise SMI
RUGGEDCOM-TRAPS-MIB.mib	RUGGEDCOM-TRAPS-MIB	RUGGEDCOM traps definition
RUGGEDCOM-SYS-INFO-MIB.mib	RUGGEDCOM-SYS-INFO-MIB	General system information about RUGGEDCOM device

File Name	MIB Name	Description
RUGGEDCOM-DOT11-MIB.mib	RUGGEDCOM-DOT11-MIB	Managemet for wireless interface on RUGGEDCOM device
RUGGEDCOM-POE-MIB.mib	RUGGEDCOM-POE-MIB	Management for PoE ports on RUGGEDCOM device
RUGGEDCOM-SERIAL-MIB.mib	RUGGEDCOM-SERIAL-MIB	Managemet for seral ports on RUGGEDCOM device
RUGGEDCOM-STP-MIB.mib	RUGGEDCOM-STP-MIB	Management for RSTP protocol
RUGGEDCOM-IRIGB-MIB.mib	RUGGEDCOM-IRIGB-MIB	RUGGEDCOM proprietary MIB to control and monitor IRIG-B module
RUGGEDCOM-NTP-MIB.mib	RUGGEDCOM-NTP-MIB	RUGGEDCOM proprietary MIB to control and monitor NTP module
RUGGEDCOM-PTP1588-MIB.mib	RUGGEDCOM-PTP1588-MIB	RUGGEDCOM proprietary MIB to control and monitor PTP1588 module
RUGGEDCOM-TIMECONFIG-MIB.mib	RUGGEDCOM-TIMECONFIG-MIB	RUGGEDCOM proprietary MIB to control and monitor TIMECONFIG module

Section 1.6.3

Supported Agent Capabilities

RUGGEDCOM ROS supports the following agent capabilities for the SNMP agent:

NOTE

For information about agent capabilities for SNMPv2, refer to RFC 2580 [http://tools.ietf.org/html/rfc2580].

File Name	MIB Name	Supported MIB
RC-SNMPv2-MIB-AC.mib	RC-SNMPv2-MIB-AC	SNMPv2-MIB
RC-UDP-MIB-AC.mib	RC-UDP-MIB-AC	UDP-MIB
RC-TCP-MIB-AC.mib	RC-TCP-MIB-AC	TCP-MIB
RC-SNMP-USER-BASED-SM-MIB-AC.mib	RC-SNMP-USER-BASED-SM-MIB-AC	SNMP-USER-BASED-SM-MIB-AC
RC-SNMP-VIEW-BASED-ACM-MIB-AC.mib	RC-SNMP-VIEW-BASED-ACM-MIB-AC	SNMP-VIEW-BASED-ACM-MIB-AC
RC-IF-MIB-AC.mib	RC-IF-MIB-AC	IF-MIB
RC-BRIDGE-MIB-AC.mib	RC-BRIDGE-MIB-AC	BRIDGE-MIB
RC-RMON-MIB-AC.mib	RC-RMON-MIB-AC	RMON-MIB
RC-Q-BRIDGE-MIB-AC.mib	RC-Q-BRIDGE-MIB-AC	Q-BRIDGE-MIB
RC-IP-MIB-AC.mib	RC-IP-MIB-AC	IP-MIB
RC-LLDP-MIB-AC.mib	RC-LLDP-MIB-AC	LLDP-MIB
RC-LAG-MIB-AC.mib	RC-LAG-MIB-AC	IEEE8023-LAG-MIB
RC_RSTP-MIB-AC.mib	RC_RSTP-MIB-AC	RSTP-MIB
RC-RUGGEDCOM-DOT11-MIB-AC.mib	RC-RUGGEDCOM-DOT11-MIB-AC	RUGGEDCOM-DOT11- MIB

File Name	MIB Name	Supported MIB
RC-RUGGEDCOM-POE-MIB-AC.mib	RC-RUGGEDCOM-POE-MIB-AC	RUGGEDCOM-POE-MIB
RC-RUGGEDCOM-STP-AC-MIB.mib	RC-RUGGEDCOM-STP-AC-MIB	RUGGEDCOM-STP-MIB
RC-RUGGEDCOM-SYS-INFO-MIB-AC.mib	RC-RUGGEDCOM-SYS-INFO-MIB-AC	RUGGEDCOM-SYS-INFO-MIB
RC-RUGGEDCOM-TRAPS-MIB-AC.mib	RC-RUGGEDCOM-TRAPS-MIB-AC	RUGGEDCOM-TRAPS-MIB
RUGGEDCOM_RS-232-MIB-AC.mib	RUGGEDCOM_RS-232-MIB-AC	RS-232-MIB
RC-RUGGEDCOM-SERIAL-MIB-AC.mib	RC-RUGGEDCOM-SERIAL-MIB-AC	RUGGEDCOM-SERIAL-MIB
RC-IRIGB-MIB-AC.mib	RC-IRIGB-MIB-AC	IRIGB-MIB
RC-NTP-MIB-AC.mib	RC-NTP-MIB-AC	NTP-MIB
RC-PTP1588-MIB-AC.mib	RC-PTP1588-MIB-AC	PTP1588-MIB
RC-TIMECONFIG-MIB-AC.mib	RC-TIMECONFIG-MIB-AC	TIMECONFIG-MIB

Section 1.7

SNMP Traps

The device generates the following standard traps:

Table: Standard Traps

Trap	MIB
linkDown	IF-MIB
linkUp	
authenticationFailure	SNMPv2-MIB
coldStart	
newRoot	BRIDGE-MIB
topologyChage	
risingAlarm	RMON-MIB
fallingAlarm	
lldpRemoteTablesChange	LLDP-MIB

The device also generates the following proprietary traps:

Table: Proprietary Traps

Trap	MIB
genericTrap	RUGGEDCOM-TRAPS-MIB
powerSupplyTrap	
swUpgradeTrap	
cfgChangeTrap	
weakPasswordTrap	

SNMP Traps 15

Trap	MIB
defaultKeysTrap	

Generic traps carry information about events in their severity and description objects. They are sent at the same time an alarm is generated for the device. The following are examples of RUGGEDCOM generic traps:

NOTE

Information about generic traps can be retrieved using the CLI command alarms. For more information about the alarms command, refer to Section 2.6.1, "Available CLI Commands".

Table: Generic Traps

Trap	Severity
heap error	Alert
NTP server failure	notification
real time clock failure	Error
failed password	Warning
MAC address not learned by switch fabric	Warning
BootP client: TFTP transfer failure	Error
received looped back BPDU	Error
received two consecutive confusing BPDUs on port, forcing down	Error
GVRP failed to learn – too many VLANs	Warning

The device generates the following traps when specific events occur:

Table: Event-Based Traps

Trap	MIB	Event
rcRstpNewTopology	RUGGEDCOM-STP-MIB	This trap is generated when the device topology becomes stable after a topology change occurs on a switch port.
rcIrigbStatusChange	RUGGEDCOM-IRIGB-MIB.mib	This trap is generated if the status of the IRIG-B module is changed.
ieeeC37238EventOfstExceedLimit	IEEEC37-238-MIB.mib	This trap is generated if the offset from Master of the IEEE 1588 Slave exceeds the configured limit.
ieeeC37238EventChangeOfMaster	IEEEC37-238-MIB.mib	This trap is generated if new master has been selected.
ieeeC37238EventMasterStepChange	IEEEC37-238-MIB.mib	This trap is generated if a step change occurred in current grandmaster time.
ieeeC37238EventPTPServiceStarted	IEEEC37-238-MIB.mib	This trap is generated if PTP service has started.
ieeeC37238EventPTPServiceStopped	IEEEC37-238-MIB.mib	This trap is generated if PTP service has stopped.

16 SNMP Traps

RUGGEDCOM ROS Chapter 1
User Guide Introduction

Section 1.8

ModBus Management Support

Modbus management support in RUGGEDCOM devices provides a simple interface for retrieving basic status information. ModBus support simplifies the job of SCADA (Supervisory Control and Data Acquisition) system integrators by providing familiar protocols for retrieving RUGGEDCOM device information. ModBus provides mostly read-only status information, but there are some writable registers for operator commands.

The ModBus protocol PDU (Protocol Data Unit) format is as follows:

Function Code	Data

CONTENTS

- Section 1.8.1, "ModBus Function Codes"
- Section 1.8.2, "ModBus Memory Map"
- Section 1.8.3, "ModBus Memory Formats"

Section 1.8.1

ModBus Function Codes

RUGGEDCOM devices support the following ModBus function codes for device management through ModBus:

NOTE

While RUGGEDCOM devices have a variable number of ports, not all registers and bits apply to all products.

Registers that are not applicable to a particular device return a zero (0) value. For example, registers referring to serial ports are not applicable to RUGGEDCOM switch devices.

>> Read Input Registers or Read Holding Registers — 0x04 or 0x03

Example PDU Request

Function Code	1 Byte	0x04(0x03)	
Starting Address	2 Bytes	0x0000 to 0xFFFF (Hexadecimal) 128 to 65535 (Decimal)	
Number of Input Registers	2 Bytes	Bytes 0x0001 to 0x007D	
Example PDU Response			
Function Code	1 Byte	0x04(0x03)	
Byte Count	1 Byte	2 x N ^a	
Number of Input Registers	N ^a x 2 Bytes		

^a The number of input registers

>>> Write Multiple Registers — 0x10

Example PDU Request

Function Code	1 Byte	0x10
Starting Address	2 Bytes	0x0000 to 0xFFFF
Number of Input Registers	2 Bytes	Bytes 0x0001 to 0x0079
Byte Count	1 Byte	2 x N ^b
Registers Value	N ^b x 2 Bytes	Value of the register

^b The number of input registers

Example PDU Response

Function Code	1 Byte	0x10
Starting Address	2 Bytes	0x0000 to 0xFFFF
Number of Registers	2 Bytes	1 to 121 (0x79)

Section 1.8.2

ModBus Memory Map

The following details how ModBus process variable data is mapped.

>>> Product Info

The following data is mapped to the *Productinfo* table:

Address	#Registers	Description (Reference Table in UI)	R/W	Format
0000	16	Product Identification	R	Text
0010	32	Firmware Identification	R	Text
0040	1	Number of Ethernet Ports	R	Uint16
0041	1	Number of Serial Ports	R	Uint16
0042	1	Number of Alarms	R	Uint16
0043	1	Power Supply Status	R	PSStatusCmd
0044	1	FailSafe Relay Status	R	TruthValue
0045	1	ErrorAlarm Status	R	TruthValue

>> Product Write Register

The following data is mapped to various tables:

Address	#Registers	Description (Reference Table in UI)	R/W	Format
0800	1	Clear Alarms	W	Cmd
0081	2	Reset Ethernet Ports	W	PortCmd

18 ModBus Memory Map

Address	#Registers	Description (Reference Table in UI)	R/W	Format
0083	2	Clear Ethernet Statistics	W	PortCmd
0085	2	Reset Serial Ports	W	PortCmd
0087	2	Clear Serial Port Statistics	W	PortCmd

>> Alarms

The following data is mapped to the *alarms* table:

Address	#Registers	Description (Reference Table in UI)	R/W	Format
0100	64	Alarm 1	R	Alarm
0140	64	Alarm 2	R	Alarm
0180	64	Alarm 3	R	Alarm
01C0	64	Alarm 4	R	Alarm
0200	64	Alarm 5	R	Alarm
0240	64	Alarm 6	R	Alarm
0280	64	Alarm 7	R	Alarm
02C0	64	Alarm 8	R	Alarm

>> Ethernet Port Status

The following data is mapped to the ethPortStats table:

Address	#Registers	Description (Reference Table in UI)	R/W	Format
03FE	2	Port Link Status	R	PortCmd

>> Ethernet Statistics

The following data is mapped to the *rmonStats* table:

Address	#Registers	Description (Reference Table in UI)	R/W	Format
0400	2	Port s1/p1 Statistics - Ethernet In Packets	R	Uinst32
0402	2	Port s1/p2 Statistics - Ethernet In Packets	R	Uinst32
0404	2	Port s1/p3 Statistics - Ethernet In Packets	R	Uinst32
0406	2	Port s1/p4 Statistics - Ethernet In Packets	R	Uinst32
0408	2	Port s2/p1 Statistics - Ethernet In Packets	R	Uinst32
040A	2	Port s2/p2 Statistics - Ethernet In Packets	R	Uinst32
040C	2	Port s2/p3 Statistics - Ethernet In Packets	R	Uinst32
040E	2	Port s2/p4 Statistics - Ethernet In Packets	R	Uinst32
0410	2	Port s3/p1 Statistics - Ethernet In Packets	R	Uinst32

Address	#Registers	Description (Reference Table in UI)	R/W	Format
0412	2	Port s3/p2 Statistics - Ethernet In Packets	R	Uinst32
0414	2	Port s3/p3 Statistics - Ethernet In Packets	R	Uinst32
0416	2	Port s3/p4 Statistics - Ethernet In Packets	R	Uinst32
0418	2	Port s4/p1 Statistics - Ethernet In Packets	R	Uinst32
041A	2	Port s4/p2 Statistics - Ethernet In Packets	R	Uinst32
041C	2	Port s4/p3 Statistics - Ethernet In Packets	R	Uinst32
041E	2	Port s4/p4 Statistics - Ethernet In Packets	R	Uinst32
0420	2	Port s5/p1 Statistics - Ethernet In Packets	R	Uinst32
0422	2	Port s5/p2 Statistics - Ethernet In Packets	R	Uinst32
0424	2	Port s5/p3 Statistics - Ethernet In Packets	R	Uinst32
0426	2	Port s5/p4 Statistics - Ethernet In Packets	R	Uinst32
0428	2	Port s6/p1 Statistics - Ethernet In Packets	R	Uinst32
042A	2	Port s6/p2 Statistics - Ethernet In Packets	R	Uinst32
042C	2	Port s6/p3 Statistics - Ethernet In Packets	R	Uinst32
042E	2	Port s6/p4 Statistics - Ethernet In Packets	R	Uinst32
0430	2	Port s7/p1 Statistics - Ethernet In Packets	R	Uinst32
0432	2	Port s7/p2 Statistics - Ethernet In Packets	R	Uinst32
0434	2	Port s8/p1 Statistics - Ethernet In Packets	R	Uinst32
0436	2	Port s8/p2 Statistics - Ethernet In Packets	R	Uinst32
0440	2	Port s1/p1 Statistics - Ethernet Out Packets	R	Uinst32
0442	2	Port s1/p2 Statistics - Ethernet Out Packets	R	Uinst32
0444	2	Port s1/p3 Statistics - Ethernet Out Packets	R	Uinst32
0446	2	Port s1/p4 Statistics - Ethernet Out Packets	R	Uinst32
0448	2	Port s2/p1 Statistics - Ethernet Out Packets	R	Uinst32
044A	2	Port s2/p2 Statistics - Ethernet Out Packets	R	Uinst32
044C	2	Port s2/p3 Statistics - Ethernet Out Packets	R	Uinst32
044E	2	Port s2/p4 Statistics - Ethernet Out Packets	R	Uinst32
0450	2	Port s3/p1 Statistics - Ethernet Out Packets	R	Uinst32
0452	2	Port s3/p2 Statistics - Ethernet Out Packets	R	Uinst32
0454	2	Port s3/p3 Statistics - Ethernet Out Packets	R	Uinst32
0456	2	Port s3/p4 Statistics - Ethernet Out Packets	R	Uinst32
0458	2	Port s4/p1 Statistics - Ethernet Out Packets	R	Uinst32
045A	2	Port s4/p2 Statistics - Ethernet Out Packets	R	Uinst32
045C	2	Port s4/p3 Statistics - Ethernet Out Packets	R	Uinst32

Address	#Registers	Description (Reference Table in UI)	R/W	Format
045E	2	Port s4/p4 Statistics - Ethernet Out Packets	R	Uinst32
0460	2	Port s5/p1 Statistics - Ethernet Out Packets	R	Uinst32
0462	2	Port s5/p2 Statistics - Ethernet Out Packets	R	Uinst32
0464	2	Port s5/p3 Statistics - Ethernet Out Packets	R	Uinst32
0466	2	Port s5/p4 Statistics - Ethernet Out Packets	R	Uinst32
0468	2	Port s6/p1 Statistics - Ethernet Out Packets	R	Uinst32
046A	2	Port s6/p2 Statistics - Ethernet Out Packets	R	Uinst32
046C	2	Port s6/p3 Statistics - Ethernet Out Packets	R	Uinst32
046E	2	Port s6/p4 Statistics - Ethernet Out Packets	R	Uinst32
0470	2	Port s7/p1 Statistics - Ethernet Out Packets	R	Uinst32
0472	2	Port s7/p2 Statistics - Ethernet Out Packets	R	Uinst32
0474	2	Port s8/p1 Statistics - Ethernet Out Packets	R	Uinst32
0476	2	Port s8/p2 Statistics - Ethernet Out Packets	R	Uinst32
0480	2	Port s1/p1 Statistics - Ethernet In Packets	R	Uinst32
0482	2	Port s1/p2 Statistics - Ethernet In Packets	R	Uinst32
0484	2	Port s1/p3 Statistics - Ethernet In Packets	R	Uinst32
0486	2	Port s1/p4 Statistics - Ethernet In Packets	R	Uinst32
0488	2	Port s2/p1 Statistics - Ethernet In Packets	R	Uinst32
048A	2	Port s2/p2 Statistics - Ethernet In Packets	R	Uinst32
048C	2	Port s2/p3 Statistics - Ethernet In Packets	R	Uinst32
048E	2	Port s2/p4 Statistics - Ethernet In Packets	R	Uinst32
0490	2	Port s3/p1 Statistics - Ethernet In Packets	R	Uinst32
0492	2	Port s3/p2 Statistics - Ethernet In Packets	R	Uinst32
0494	2	Port s3/p3 Statistics - Ethernet In Packets	R	Uinst32
0496	2	Port s3/p4 Statistics - Ethernet In Packets	R	Uinst32
0498	2	Port s4/p1 Statistics - Ethernet In Packets	R	Uinst32
049A	2	Port s4/p2 Statistics - Ethernet In Packets	R	Uinst32
049C	2	Port s4/p3 Statistics - Ethernet In Packets	R	Uinst32
049E	2	Port s4/p4 Statistics - Ethernet In Packets	R	Uinst32
04A0	2	Port s5/p1 Statistics - Ethernet In Packets R		Uinst32
04A2	2	Port s5/p2 Statistics - Ethernet In Packets	R	Uinst32
04A4	2	Port s5/p3 Statistics - Ethernet In Packets	R	Uinst32
04A6	2	Port s5/p4 Statistics - Ethernet In Packets	R	Uinst32
04A8	2	Port s6/p1 Statistics - Ethernet In Packets	R	Uinst32

Address	#Registers	Description (Reference Table in UI)	R/W	Format
04AA	2	Port s6/p2 Statistics - Ethernet In Packets	R	Uinst32
04AC	2	Port s6/p3 Statistics - Ethernet In Packets	R	Uinst32
04AE	2	Port s6/p4 Statistics - Ethernet In Packets	R	Uinst32
04B0	2	Port s7/p1 Statistics - Ethernet In Packets	R	Uinst32
04B2	2	Port s7/p2 Statistics - Ethernet In Packets	R	Uinst32
04B4	2	Port s8/p1 Statistics - Ethernet In Packets	R	Uinst32
04B6	2	Port s8/p2 Statistics - Ethernet In Packets	R	Uinst32
04C0	2	Port s1/p1 Statistics - Ethernet Out Packets	R	Uinst32
04C2	2	Port s1/p2 Statistics - Ethernet Out Packets	R	Uinst32
04C4	2	Port s1/p3 Statistics - Ethernet Out Packets	R	Uinst32
04C6	2	Port s1/p4 Statistics - Ethernet Out Packets	R	Uinst32
04C8	2	Port s2/p1 Statistics - Ethernet Out Packets	R	Uinst32
04CA	2	Port s2/p2 Statistics - Ethernet Out Packets	R	Uinst32
04CC	2	Port s2/p3 Statistics - Ethernet Out Packets	R	Uinst32
04CE	2	Port s2/p4 Statistics - Ethernet Out Packets	R	Uinst32
04D0	2	Port s3/p1 Statistics - Ethernet Out Packets	R	Uinst32
04D2	2	Port s3/p2 Statistics - Ethernet Out Packets	R	Uinst32
04D4	2	Port s3/p3 Statistics - Ethernet Out Packets	R	Uinst32
04D6	2	Port s3/p4 Statistics - Ethernet Out Packets	R	Uinst32
04D8	2	Port s4/p1 Statistics - Ethernet Out Packets	R	Uinst32
04DA	2	Port s4/p2 Statistics - Ethernet Out Packets	R	Uinst32
04DC	2	Port s4/p3 Statistics - Ethernet Out Packets	R	Uinst32
04DE	2	Port s4/p4 Statistics - Ethernet Out Packets	R	Uinst32
04E0	2	Port s5/p1 Statistics - Ethernet Out Packets	R	Uinst32
04E2	2	Port s5/p2 Statistics - Ethernet Out Packets	R	Uinst32
04E4	2	Port s5/p3 Statistics - Ethernet Out Packets	R	Uinst32
04E6	2	Port s5/p4 Statistics - Ethernet Out Packets	R	Uinst32
04E8	2	Port s6/p1 Statistics - Ethernet Out Packets	R	Uinst32
04EA	2	Port s6/p2 Statistics - Ethernet Out Packets	R	Uinst32
04EC	2	Port s6/p3 Statistics - Ethernet Out Packets	R	Uinst32
04EE	2	Port s6/p4 Statistics - Ethernet Out Packets	R	Uinst32
04F0	2	Port s7/p1 Statistics - Ethernet Out Packets	R	Uinst32
04F2	2	Port s7/p2 Statistics - Ethernet Out Packets	R	Uinst32
04F4	2	Port s8/p1 Statistics - Ethernet Out Packets	R	Uinst32

Address	#Registers	Description (Reference Table in UI)	R/W	Format
04F6	2	Port s8/p2 Statistics - Ethernet Out Packets	R	Uinst32

>> Serial Statistics

The following data is mapped to the uartPortStatus table:

Address	#Registers	Description (Reference Table in UI)	R/W	Format
0600	2	Port 1 Statistics – Serial In characters	R	Uint32
0602	2	Port 2 Statistics – Serial In characters	R	Uint32
0604	2	Port 3 Statistics – Serial In characters	R	Uint32
0606	2	Port 4 Statistics – Serial In characters	R	Uint32
0640	2	Port 1 Statistics – Serial Out characters	R	Uint32
0642	2	Port 2 Statistics – Serial Out characters	R	Uint32
0644	2	Port 3 Statistics – Serial Out characters	R	Uint32
0646	2	Port 4 Statistics – Serial Out characters	R	Uint32
0680	2	Port 1 Statistics – Serial In Packets	R	Uint32
0682	2	Port 2 Statistics – Serial In Packets	R	Uint32
0684	2	Port 3 Statistics – Serial In Packets	R	Uint32
0686	2	Port 4 Statistics – Serial In Packets	R	Uint32
06C0	2	Port 1 Statistics – Serial Out Packets	R	Uint32
06C2	2	Port 2 Statistics – Serial Out Packets	R	Uint32
06C4	2	Port 3 Statistics – Serial Out Packets	R	Uint32
06C6	2	Port 4 Statistics – Serial Out Packets	R	Uint32

Section 1.8.3

ModBus Memory Formats

The following ModBus memory formats are supported by Siemens.

CONTENTS

- Section 1.8.3.1, "Text"
- Section 1.8.3.2, "Cmd"
- Section 1.8.3.3, "Uint16"
- Section 1.8.3.4, "Uint32"
- Section 1.8.3.5, "PortCmd"
- Section 1.8.3.6, "Alarm"
- Section 1.8.3.7, "PSStatusCmd"

ModBus Memory Formats 23

• Section 1.8.3.8, "TruthValues"

Section 1.8.3.1

Text

The Text format provides a simple ASCII representation of the information related to the product. The most significant register byte of an ASCII characters comes first.

For example, consider a Read Multiple Registers request to read Product Identification from location 0x0000.

0x04	0x00 0x00 0x00		30x0	0x08								
The response may look like:												
0x04	0x10	0x53	0x59	0x53	0x54	0x45	0x4D	0x20	0x4E	0x41	0x4D	0x45
0x00	0x00	0x00	0x00	0x00								

In this example, starting from byte 3 until the end, the response presents an ASCII representation of the characters for the product identification, which reads as SYSTEM NAME. Since the length of this field is smaller than eight registers, the rest of the field is filled with zeros (0).

Section 1.8.3.2

Cmd

The Cmd format instructs the device to set the output to either true or false. The most significant byte comes first.

- FF 00 hex requests output to be True
- 00 00 hex requests output to be False
- Any value other than the suggested values does not affect the requested operation

For example, consider a Write Multiple Registers request to clear alarms in the device.

0x10 0x00 0x80 0x00 0x01 2 0xFF 0x00	0x00 0x01 2 0xFF 0x00
--	-----------------------

- FF 00 for register 00 80 clears the system alarms
- 00 00 does not clear any alarms

The response may look like:

0x10	0x00	0x80	0x00	0x01

Section 1.8.3.3

Uint16

The Uint16 format describes a Standard ModBus 16 bit register.

24 Text

Section 1.8.3.4

Uint32

The Uint32 format describes Standard 2 ModBus 16 bit registers. The first register holds the most significant 16 bits of a 32 bit value. The second register holds the least significant 16 bits of a 32 bit value.

Section 1.8.3.5

PortCmd

The PortCmd format describes a bit layout per port, where 1 indicates the requested action is true, and 0 indicates the requested action is false.

PortCmd provides a bit layout of a maximum of 32 ports. Therefore, it uses two ModBus regsiters:

- The first ModBus register corresponds to ports 1 16
- The second ModBus register corresponds to ports 17 32 for a particular action

Bits that do not apply to a particular product are always set to zero (0).

A bit value of 1 indicates that the requested action is true. For example, the port is up.

A bit value of 0 indicates that the requested action is false. For example, the port is down.

>>> Reading Data Using PortCmd

To understand how to read data using PortCmd, consider a ModBus Request to read multiple registers from locatoin 0x03FE.

0x04	0x03	OxFE	0x	×00	0x02
The response depends on how many parts are available on the device. For example, if the maximum number of ports on a connected RUGGEDCOM device is 20, the response would be similar to the following:					
0x04	0x04	0xF2	0x76	0x00	0x05

In this example, bytes 3 and 4 refer to register 1 at location 0x03FE, and represent the status of ports 1 - 16. Bytes 5 and 6 refer to register 2 at location 0x03FF, and represent the status of ports 17 - 32. The device only has 20 ports, so byte 6 contains the status for ports 17 - 20 starting from right to left. The rest of the bites in register 2 corresponding to the non-existing ports 21 - 31 are zero (0).

>> Performing Write Actions Using PortCmd

To understand how data is written using PortCmd, consider a Write Multiple Register request to clear Ethernet port statistics:

0x10	0x00	0x83	0x00	0x01	2	0x55	0x76	0x00	0x50
A bit value of 1 clears Ethernet statistics on the corresponding port. A bit value of 0 does not clear the Ethernet									

A bit value of 1 clears Ethernet statistics on the corresponding port. A bit value of 0 does not clear the Ethernet statistics.

0x10 0x00 0x81 0x00 0x02	
--	--

Uint32 25

Section 1.8.3.6

Alarm

The Alarm format is another form of text description. Alarm text corresponds to the alarm description from the table holding all of the alarms. Similar to the Text format, this format returns an ASCII representation of alarms.

NOTE

Alarms are stacked in the device in the sequence of their occurence (i.e. Alarm 1, Alarm 2, Alarm 3, etc.).

The first eight alarms from the stack can be returned, if they exist. A zero (0) value is returned if an alarm does not exist.

Section 1.8.3.7

PSStatusCmd

The PSStatusCmd format describes a bit layout for providing the status of available power supplies. Bits 0-4 of the lower byte of the register are used for this purpose.

- Bits 0-1: Power Supply 1 Status
- Bits 2-3: Power Supply 2 Status

Other bits in the register do not provide any system status information.

Bit Value	Description
01	Power Supply not present (01 = 1)
10	Power Supply is functional (10 = 2)
11	Power Supply is not functional (11 = 3)

The values used for power supply status are derived from the RUGGEDCOM-specific SNMP MIB.

>> Reading the Power Supply Status from a Device Using PSStatusCmd

To understand how to read the power supply status from a device using PSStatusCmd, consider a ModBus Request to read multiple registers from location 0x0043.

0x04	0x00	0x43		0x00		0x01
The response may look like:						
0x04	0x02		0x00		0x0A	

The lower byte of the register displays the power supply's status. In this example, both power supplies in the unit are functional.

Section 1.8.3.8

TruthValues

The Truthvalues format represents a true or false status in the device:

1 indicates the corresponding status for the device to be true

26 Alarm

RUGGEDCOM ROS Chapter 1
User Guide Introduction

• 2 indicates the corresponding status for the device to be false

» Reading the FailSafe Relay Status From a Device Using TruthValue

To understand how to use the TruthValue format to read the FailSafe Relay status from a device, consider a ModBus request to read multiple registers from location 0x0044.

0x04	0x00	0x44		0x00		0x01
The response may look like:						
0x04	0x02		0x00		0x01	

The register's lower byte shows the FailSafe Relay status. In this example, the FailSafe Relay is energized.

>> Reading the ErrorAlarm Status From a Device Using TruthValue

To understand how to use the TruthValue format to read the ErrorAlarm status from a device, conside a ModBus request to read mulitple registers from location 0x0045.

0x04	0x00	0x45		0x00		0x01
The response may look like:						
0x04	0x02		0x00		0x01	

The register's lower byte shows the ErrorAlarm status. In this example, there is no active ERROR, ALERT or CRITICAL alarm in the device.

Section 1.9

SSH and SSL Keys and Certificates

The following describes the SSH and SSL keys and certificates in RS416, along with the certificate and SSH key requirements.

CONTENTS

- Section 1.9.1, "Certificate and Keys Life Cycle"
- Section 1.9.2, "Certificate and Key Requirements"

Section 1.9.1

Certificate and Keys Life Cycle

Each RUGGEDCOM ROS device is shipped with an SSL certificate and RSA key pair, and a DSA host key pair for SSH, that are generated at and provisioned by the factory. The administrator may upload a new certificate and keys to the system at any time, which will overwrite the existing ones. In addition, CLI commands are available to regenerate SSL certificate and key pair as well as the SSH host key pair.

There are three types of certificates and keys used in RUGGEDCOM ROS:

NOTE

SSH is not supported in Non-Controlled (NC) versions of RUGGEDCOM ROS.

NOTE

Network exposure to a ROS unit operating with the default keys, although always only temporary by design, should be avoided. The best way to reduce or eliminate this exposure is to provision user-created certificate and keys as quickly as possible, and preferably before the unit is placed in network service.

Default

A default certificate and SSL/SSH keys are built in to RUGGEDCOM ROS and are common across all RUGGEDCOM ROS units sharing the same firmware image. In the event that valid SSL certificate or SSL/SSH key files are not available on the device (as is usually only the case when upgrading from an old ROS version that does not support user-configurable keys and therefore does was not shipped with unique, factory-generated keys), the default certificate and keys are put into service *temporarily* so that SSH and SSL (https) sessions can be served until generated or provisioned keys are available.

Auto-Generated

If a default SSL certificate and SSL/SSH keys are in use, RUGGEDCOM ROS immediately begins to generate a unique certificate and SSL/SSH keys for the device in the background. If a custom certificate and keys are loaded while auto-generated certificates and keys are being generated, the generator will abort and the custom certificate and keys and will be used.

User-Generated (Recommended)

Custom certificates and keys are the most secure option. They give the user complete control over certificate and key management, allow for the provision of certificates signed by a public or local certificate authority, enable strictly controlled access to private keys, and allow authoritative distribution of SSL certificates, any CA certificates, and public SSH keys.

NOTE

The RSA key pair corresponding to the SSL certificate must be appended to the certificate in the ssl.crt file.

Section 1.9.2

Certificate and Key Requirements

For SSL, controlled versions of RUGGEDCOM ROS require an X.509 certificate in standard PEM format and an RSA or ECC key pair. The certificate may be self-signed or signed by a separate authority. The RSA key must be 1024, 2048 or 3072 bits in length; the ECC key must be 192, 224, 256, 384 or 521 bits in length.

Non-Controlled (NC) versions of RUGGEDCOM ROS require an X.509 certificate in standard PEM format and an RSA key pair. The RSA key must be between 512 and 2048 bits in length.

The certificate and keys must be combined in a single ssl.crt file and uploaded to the device.

The following is an example of a combined SSL certificate and key:

----BEGIN CERTIFICATE----MIIC9jCCAl+gAwIBAgIJAJh6rrehMt3iMA0GCSqGSIb3DQEBBQUAMIGuMQswCQYD
VQQGEwJDQTEQMA4GA1UECBMHT250YXJpbzEQMA4GA1UEBxMHQ29uY29yZDESMBAG
A1UEChMJUnVnZ2VkY29tMRkwFwYDVQQLExBDdXN0b21lciBTdXBwb3J0MSYwJAYD
VQQDEx1XUy1NSUxBTkdPVkFOL1JVR0dFRENPTS5MT0NBTDEkMCIGCSqGSIb3DQEJ
ARYVc3VwcG9ydEBydWdnZWRjb20uY29tMB4XDTEyMTAYMZIxMTA1M1oXDTE3MTAY
MjIxMTA1M1owgZwxCzAJBgNVBAYTA1VTMRAwDgYDVQQIEwdPbnRhcmlvMRAwDgYD

VQQHEwdDb25jb3JkMRIwEAYDVQQKEwlSdWdnZWRDb20xGTAXBgNVBAsTEEN1c3Rv bWVyIFN1cHBvcnQxFDASBgNVBAMTCzE5Mi4xNjguMS4yMSQwIgYJKoZIhvcNAQkB FhVTdXBwb3J0OHJ1Z2dlZGNvbS5jb20wgZ8wDOYJKoZIhvcNAOEBBOADgY0AMIGJ AoGBALfE4eh2aY+CE3W5a4Wz1Z1RGRP02COHt153wFFrU8/fFQXNhKlQirlAHbNT RSwcTR8ZFapivwYDivn0ogOGFXknYP90gv2oIaSVY08FqZkJW77g3kzkv/8Zrw3m W/cBsZJ8SyKLIDfy401HkHpD0le5NsQFSrziGUPjA0Ivvx4rAgMBAAGjLDAqMAkG A1UdEwQCMAAwHQYDVR00BBYEFER0utgQOifnrflnDtsqNcnvRB0XMA0GCSqGSIb3 DQEBBQUAA4GBAHtBsNZuh8tB3kdqR7Pn+XidCsD70YnI7w0tiy9yiRRhARmVXH8h 5Q1rOeHceri3JFFIOxIxQt4KgCUYJLu+c9Esk/nXQQar3zR7IQCt0qOABPkviiY8 c3ibVbhJjLpR2vNW4xRAJ+HkNNtBOg1xUlp4vOmJ2syYZR+7XAy/OP/S ----END CERTIFICATE--------BEGIN RSA PRIVATE KEY---- ${\tt MIICXAIBAAKBgQC3xOHodmmPghN1uWuFs9WdURkT9Ngjh7ded8BRa1PP3xUFzYSp}$ UIq5QB2zU0UsHE0fGRWqYr8GA4r59KIDhhV5J2D/dIL9qCGklWNPBamZCVu+4N5M 5L//Ga8N5lv3AbGSfEsiiyA38uNNR5B6QzpXuTbEBUq84hlD4wDiL78eKwIDAQAB AoGBAI2CXHuHg23wuk9zAusoOhw0MN1/M1jYz0k9aajIvvdZT3Tyd29yCADy8GwA eUmoWXLS/C4CcBqPa9til8ei3rDn/w8dveVHsi9FXjtVSYqN+ilKw+moMAjZy4kN /kpdpHMohwv/909VWR1AZbr+YTxaG/++tKl5bqXnZl4wHF8xAkEA5vwut8USRg2/ TndOt1e8ILEQNHvHQdQr2et/xNH4ZEo7mqot6skkCD1xmxA6XG64hR3BfxFSZcew Wr4SOFGCtQJBAMurr5FYPJRFGzPM3HwcpAaaMIUtPwNyTtTjywlYcUI7iZVVfbdx 4B7qOadPybTg7wqUrGVkPSzzQelz9YCSSV8CQFqpIsEYhbqfTLZE183YjsuaE801 xBivaWLIT0b2TvM2O7zSDOG5fv4I990v+mgrQRtmeXshVmEChtKnBcm7HH0CQE6B 2WUfLArDMJ8hAoRczeU1nipXrIh5kWWCgQsTKmUrafdEQvdpT8ja5GpX2Rp98eaU ${\tt NHfI0cP36JpCdome2eUCQDZN9OrTgPfeDIXzyOiUUwFlzS1idkUGL9nH86iuPnd7}$ WVF3rV9Dse30sVEk63Yky8uKUy7yPUNWldG4U5vRKmY= ----END RSA PRIVATE KEY--

For SSH, RUGGEDCOM ROS requires a DSA or RSA host key pair in PEM format. The key must be 1024, 2048 or 3072 bits in length for Controlled versions. The key file is uploaded to the ssh.keys flash file on the device.

The following is an example of a PEM formatted SSH key:

```
----BEGIN DSA PRIVATE KEY----
MIIBuwIBAAKBgQD0gcGbXx/rrEMu2913UW4cYo1OlcbnuUz7OZyd2mBLDx/GYbD8
X5TnRcMraJ0RuuGK+chqQJW5k3zQmZa/BS6q9U7wYwIAx8JSxxpwfPf1/t09VwKG
rtSJIMpLRoDq3qEwEVyR4kDUo4LFQDsljtiyhcz1n6kd6gqsd5Xulvdh4wIVANXb
SBi97GmZ6/9f4UCvIIBtXLEjAoGAAfmhkcCCEnRJitUTiCE+MurxdFUr3mFs/d31
4cUDaLStQEhYYmx5dbFdQuapl4Y32B7lZQkohi5q1TliUAa40/nUnJx1hFvblkYT
8DLwxcuDAaiu0VqsaPtJ+baL2dYNp96tFisj/475PEEWBGbP6GSe5kKa1Zdgwuie
9LyPb+ACgYBv856v5tb9UVG5+tX5Crfv/Nd8FF1SSFKmVWW3yzguhHajg2LQg8UU
sm1/zPSwYQ0SbQ9aOAJnpLc2HUkK0lji/0oKVI7y9MMc4B+bGu4W4OnryP7oFpnp
YYHt5PJY+zvLw/Wa+u3NOVFHkF1tGyfVBMXeV36nowPo+wrVMolAEgIVALLTnfpW
maV6uh6RxeEld4XoxSg2
----END DSA PRIVATE KEY-----
```

For more information about encryption key management, refer to Section 1.2, "Security Recommendations and Considerations".

This chapter describes how to use the RUGGEDCOM ROS interface.

CONTENTS

- Section 2.1, "Connecting to ROS"
- Section 2.2, "Logging In"
- · Section 2.3, "Logging Out"
- Section 2.4, "Using the Web Interface"
- Section 2.5, "Using the Console Interface"
- Section 2.6, "Using the Command Line Interface"
- Section 2.7, "Selecting Ports in RUGGEDCOM ROS"
- Section 2.8, "Managing the Flash File System"
- Section 2.9, "Accessing BIST Mode"
- Section 2.10, "Managing SSH Public Keys"

Section 2.1

Connecting to ROS

This section describes the various methods for connecting the device.

CONTENTS

- Section 2.1.1, "Connecting Directly"
- Section 2.1.2, "Connecting via the Network"

Section 2.1.1

Connecting Directly

RUGGEDCOM ROS can be accessed through a direct RS-232 serial console connection for management and troubleshooting purposes. A console connection provides access to the console interface and CLI.

To establish a console connection to the device, do the following:

1. Connect a workstation (either a terminal or computer running terminal emulation software) to the RS-232 serial console port on the device. For more information about the RS-232 serial console port, refer to the RS416 Installation Guide.

NOTE

The baud rate for the device is printed on the chassis exterior near the RS-232 serial console port.

Connecting to ROS 31

2. Configure the workstation as follows:

• Speed (baud): 57600

Data Bits: 8Parity: None

Flow Control: OffTerminal ID: VT100

• Stop Bit: 1

3. Connect to the device. Once the connection is established, the login form appears. For more information about logging in to the device, refer to Section 2.2, "Logging In".

Section 2.1.2

Connecting via the Network

RUGGEDCOM ROS can be accessed over the network either through a Web browser, terminal or a workstation running terminal emulation software.

>> Using a Web Browser

Web browsers provide a secure connection to the Web interface for RUGGEDCOM ROS using the SSL (Secure Socket Layer) communication method. SSL encrypts traffic exchanged with its clients.

The RUGGEDCOM ROS Web server guarantees that all communications with the client are private. If a client requests access through an insecure HTTP port, the client is automatically rerouted to the secure port. Access to the Web server through SSL will only be granted to clients that provide a valid user name and password.

To establish a connection through a Web browser, do the following:

1. On the workstation being used to access the device, configure an Ethernet port to use an IP address falling within the subnet of the device. The default IP address is 192.168.0.1/24.

For example, to configure the device to connect to one of the available Ethernet ports, assign an IP address to the Ethernet port on the workstation in the range of 192.168.0.3 to 192.168.0.254.

2. Open a Web browser. For a list of recommended Web browsers, refer to the section called "System Requirements".

IMPORTANT!

Upon connecting to the device, some Web browsers may report the Web server's certificate cannot be verified against any known certificates. This is expected behavior, and it is safe to instruct the browser to accept the certificate. Once the certificate is accepted, all communications with the Web server through that browser will be secure.

3. In the address bar, type the IP address for the port that is connected to the network. For example, to access the device using its factory default IP address, type https://l92.168.0.1 and press Enter. Once the connection is established, the login screen for the Web interface appears.

For more information about logging in to the device, refer to Section 2.2, "Logging In". For more information about the Web interface, refer to Section 2.4, "Using the Web Interface".

>> Using a Terminal or Terminal Emulation Software

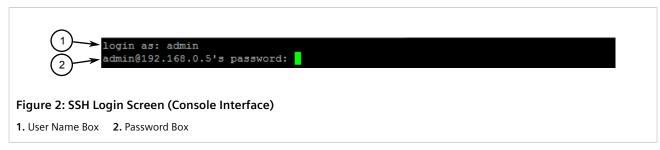
A terminal or computer running terminal emulation software provides access to the console interface for RUGGEDCOM ROS through a Telnet, RSH (Remote Shell) or SSH (Secure Shell) service.

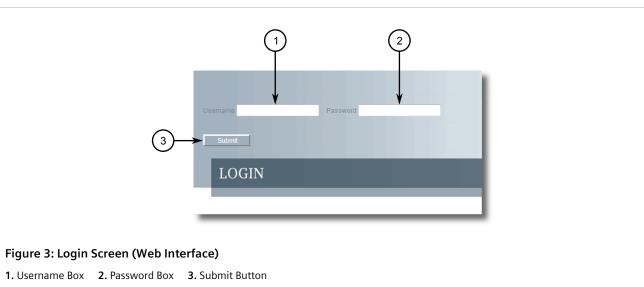
NOTE

IP services can be restricted to control access to the device. For more information, refer to Section 3.9, "Configuring IP Services".

To establish a connection through a terminal or terminal emulation software, do the following:

- 1. Select the service (i.e. Telnet, RSH or SSH).
- 2. Enter the IP address for the port that is connected to the network.
- 3. Connect to the device. Once the connection is established, the login form appears. For more information about logging in to the device, refer to Section 2.2, "Logging In".


Section 2.2


Logging In

To log in to the device, do the following:

1. Connect to the device either directly or through a Web browser. For more information about how to connect to the device, refer to Section 2.1, "Connecting to ROS".

Once the connection is established, the login form appears.

Logging In 33

NOTE

The following default usernames and passwords are set on the device for each user type:

Guest Operator Admin

Username: guest Username: operator Username: admin Password: guest Password: operator Password: admin

CAUTION!

To prevent unauthorized access to the device, make sure to change the default guest, operator, and admin passwords before commissioning the device.

For more information about changing passwords, refer to Section 4.3, "Configuring Passwords".

- 2. In the **User Name** field, type the username for an account setup on the device.
- 3. In the **Password** field, typ the password for the account.
- 4. Click **Enter** or click **Submit** (Web interface only).

Section 2.3

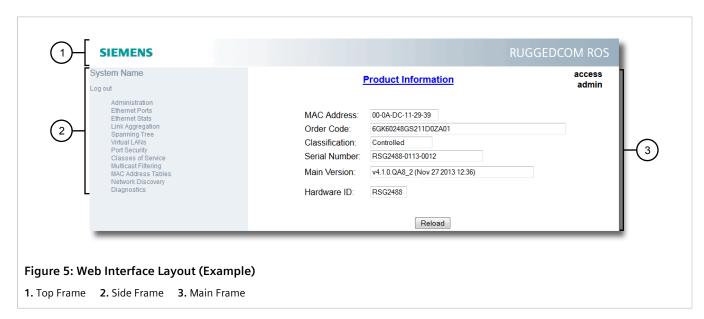
Logging Out

To log out of the device, navigate to the main screen and do the following:

- To log out of the Console or secure shell interfaces, press CTRL + X.
- To log out of the Web interface, click **Logout**.

NOTE

If any pending configuration changes have not been committed, RUGGEDCOM ROS will request confirmation before discarding the changes and logging out of the device.

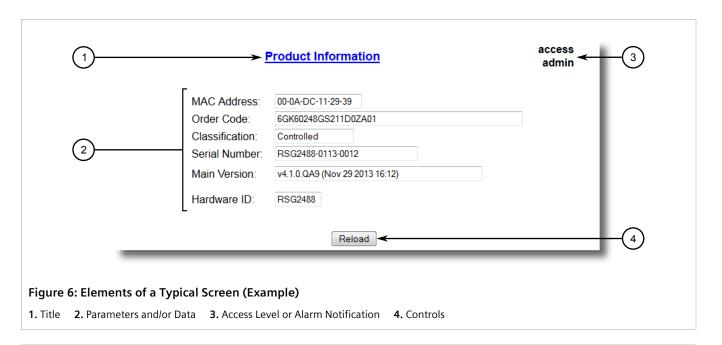

34 Logging Out

RUGGEDCOM ROS Chapter 2
User Guide Using ROS

Section 2.4

Using the Web Interface

The Web interface is a Web-based Graphical User Interface (GUI) for displaying important information and controls in a Web browser. The interface is divided into three frames: the banner, the menu and the main frame.



Frame	Description
Тор	The top frame displays the system name for the device.
Side	The side frame contains a logout option and a collapsible list of links that open various screens in the main frame. For information about logging out of RUGGEDCOM ROS, refer to Section 2.3, "Logging Out".
Main	The main frame displays the parameters and/or data related to the selected feature.

Each screen consists of a title, the current user's access level, parameters and/or data (in form or table format), and controls (e.g. add, delete, refresh, etc.). The title provides access to context-specific Help for the screen that provides important information about the available parameters and/or data. Click on the link to open the Help information in a new window.

When an alarm is generated, an alarm notification replaces the current user's access level on each screen until the alarm is cleared. The notification indicates how many alarms are currently active. For more information about alarms, refer to Section 4.6, "Managing Alarms".

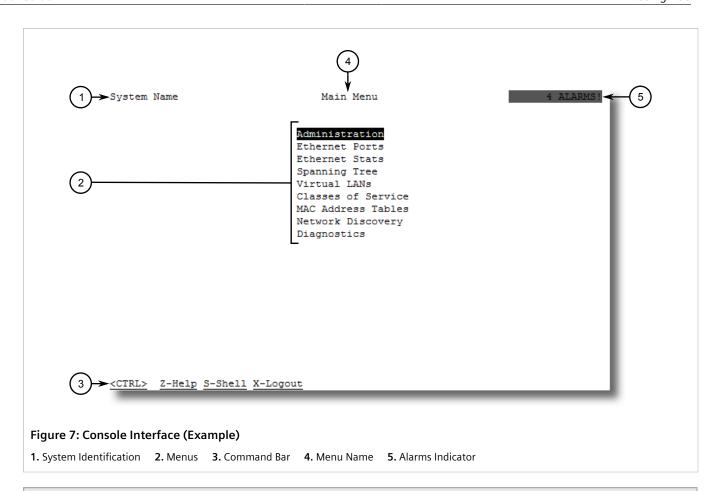
Using the Web Interface 35

NOTE

If desired, the web interface can be disabled. For more information, refer to Section 4.5, "Enabling/Disabling the Web Interface".

Section 2.5

Using the Console Interface


The Console interface is a Graphical User Interface (GUI) organized as a series of menus. It is primarily accessible through a serial console connection, but can also be accessed through IP services, such as a Telnet, RSH (Remote Shell), SSH (Secure Shell) session, or SSH remote command execution.

NOTE

IP services can be restricted to control access to the device. For more information, refer to Section 3.9, "Configuring IP Services".

Each screen consists of a system identifier, the name of the current menu, and a command bar. Alarms are also indicated on each screen in the upper right corner.

NOTE

The system identifier is user configurable. For more information about setting the system name, refer to Section 4.1, "Configuring the System Information".

>> Navigating the Interface

Use the following controls to navigate between screens in the Console interface:

Enter	Select a menu item and press this Enter to enter the sub-menu or screen beneath.
Esc	Press Esc to return to the previous screen.

>> Configuring Parameters

Use the following controls to select and configure parameters in the Console interface:

Up/Down Arrow Keys	Use the up and down arrow keys to select parameters.		
Enter	Select a parameter and press Enter to start editing a parameter. Press Enter again to commit the change.		
Esc	When editing a parameter, press Esc to abort all changes.		

>> Commands

The command bar lists the various commands that can be issued in the Console interface. Some commands are specific to select screens. The standard commands include the following:

Ctrl + A	Commits configuration changes made on the current screen.			
	NOTE Before exiting a screen, RUGGEDCOM ROS will automatically prompt the user to save any changes that have not been committed.			
Ctrl + I	Inserts a new record.			
Ctrl + L	Deletes a record.			
Ctrl + S	Opens the CLI interface.			
Ctrl + X	Terminates the current session. This command is only available from the main menu.			
Ctrl + Z	Displays important information about the current screen or selected parameter.			

Section 2.6

Using the Command Line Interface

The Command Line Interface (CLI) offers a series of powerful commands for updating ROS, generating certificates/ keys, tracing events, troubleshooting and much more. It is accessed via the Console interface by pressing **Ctrl-S**.

CONTENTS

- Section 2.6.1, "Available CLI Commands"
- Section 2.6.2, "Tracing Events"
- Section 2.6.3, "Executing Commands Remotely via RSH"
- Section 2.6.4, "Using SQL Commands"

Section 2.6.1

Available CLI Commands

The following commands are available at the command line:

Command	Description
alarms all	Displays a list of available alarms. Optional and/or required parameters include: • all displays all available alarms
arp	Displays the IP to MAC address resolution table.
clearalarms	Clears all alarms.
clearethstats [all port]	Clears Ethernet statistics for one or more ports. Optional and/or required parameters include: • all clears statistics for all ports

Command	Description				
	• port is a comma separated list of port numbers (e.g. 1,3-5,7)				
clearlogs	Clears the system and crash logs.				
clrcblstats [all port]	Clears cable diagnostics statistics for one or more ports.				
	Optional and/or required parameters include:				
	• all clears statistics for all ports				
	port is a comma separated list of port numbers (e.g. 1,3-5,7)				
clrstpstats	Clears all spanning tree statistics.				
cls	Clears the screen.				
dir	Prints the directory listing.				
exit	Terminates the session.				
factory	Enables factory mode, which includes several factory-level commands used for testing and troubleshooting. Only available to admin users.				
	CAUTION! Misuse of the factory commands may corrupt the operational state of device and/or may permanently damage the ability to recover the device without manufacturer intervention.				
<pre>flashfiles { info filename defrag }</pre>	A set of diagnostic commands to display information about the Flash filesystem and to defragment Flash memory.				
	Optional and/or required parameters include:				
	• info filename displays information about the specified file in the Flash file system				
	defrag defragments files in the Flash file system				
	For more information about the flashfiles command, refer to Section 2.8, "Managing the Flash File System".				
flashleds timeout	Flashes the LED indicators on the device for a specified number of seconds.				
	Optional and/or required parameters include:				
	• timeout is the number of seconds to flash the LED indicators. To stop the LEDs from flashing, set the timeout period to 0 (zero).				
fpgacmd	Provides access to the FPGA management tool for troubleshooting time synchronization.				
help command	Displays a brief description of the specified command. If no command is specified, it displays a list of all available commands, including a description for each.				
	Optional and/or required parameters include:				
	• command is the command name.				
ipconfig	Displays the current IP address, subnet mask and default gateway. This command provides the only way of determining these values when DHCP is used.				
loaddflts	Loads the factory default configuration.				
login	Logs in to the shell.				
logout	Logs out of the shell.				
logs	Displays syslog entries in CLI shell.				
<pre>ping address { count timeout }</pre>	Sends an ICMP echo request to a remotely connected device. For each reply received, the round trip time is displayed. Use this command to verify connectivity to the next connected device. It is a useful tool for testing commissioned links. This command also includes the ability to send a specific number of pings with a specified time for which to wait for a response.				
	Optional and/or required parameters include:				

Available CLI Commands 39

Command	Description				
	 address is the target IP address. count is the number of echo requests to send. The default is 4. timeout is the time in milliseconds to wait for each reply. The range is 2 to 5000 seconds. The default is 300 milliseconds. 				
	NOTE The device to be pinged must support ICMP echo. Upon commencing the ping, an ARP request for the MAC address of the device is issued. If the device to be pinged is not on the same network as the device pinging the other device, the default gateway must be programmed.				
purgemac	Purges the MAC Addrtess table.				
random	Display seeds or random numbers.				
reset	Perform a hard reset of the switch.				
resetport { all ports }	Resets one or more Ethernet ports, which may be useful for forcing re-negotiation of speed and duplex, or in situations where the link partner has latched into an inappropriate state. Optional and/or required parameters include: • all resets all ports • ports is a comma separated list of port numbers (e.g. 1,3-5,7)				
rmon	Displays the names of all RMON alarm eligible objects.				
route	Displays the gateway configuration.				
<pre>sfp port { base alarms diag calibr thr all no parameter specified }</pre>	Displays SFP (Small Form Factor Pluggable) device information and diagnostics. If optional or required parameters are not used, this command displays the base and extended information. Optional and/or required parameters include: • port is the port number for which the data are required • base displays the base information • alarms displays alarms and warning flags • diag displays measured data • calibr displays calibration data for external calibration • thr displays thresholds data • all displays all diagnostic data				
<pre>sql { default delete help info insert save select update }</pre>	Provides an SQL-like interface for manipulating all system configuration and status parameters. All commands, clauses, table, and column names are case insensitive. Optional and/or required parameters include: • default sets all records in a table(s) to factory defaults • delete allows for records to be deleted from a table • help provides a brief description for any SQL command or clause • info displays a variety of information about the tables in the database • insert enables new records to be inserted into a table • save saves the database to non-volatile memory storage • select queries the dtabase and displays selected records • update enable existing records in a table to be updated For more information about the sql command, refer to Section 2.6.4, "Using SQL Commands".				
sshkeygen keytype N	Generates new SSH keys in ssh.keys. Optional and/or required parameters include: • keytype is the type of key, either rsa or dsa • N is the number of bits in length. The allowable sizes are 1024, 2048 or 3072				

40 Available CLI Commands

Command	Description				
sshpubkey	List, remove and update key entries in sshpub.keys file.				
sslkeygen keytype N	 Generates a new SSL certificate in ssl.crt. Optional and/or required parameters include: keytype is the type of key, either rsa or ecc N is the number of bits in length. For RSA keys, the allowable sizes are 1024, 2048 or 3072. For ECC keys, the allowable sizes are 192, 224, 256, 384, or 521. 				
telnet dest	Opens a telnet session. Press Ctrl-C to close the session. Optional and/or required parameters include: • dest is the server's IP address				
<pre>tftp { dest cmd fsource fdest }</pre>	Opens a TFTP session. Press Ctrl-C to close the session. Optional and/or required parameters include: • dest is the remote TFTP server's IP address • cmd is either put (upload) or get (download) • fsource is the source filename • fdest is the destination filename				
trace	Starts event tracing. Run trace ? for more help.				
type filename	Displays the contents of a text file. Optional and/or required parameters include: • filename is the name of the file to be read				
version	Prints the software version.				
<pre>xmodem { send receive } filename</pre>	Opens an XModem session. Optional and/or required parameters include: • send sends the file to the client. • receive receives the file from the client. • filename is the name of the file to be read.				

Section 2.6.2

Tracing Events

The CLI trace command provides a means to trace the operation of various protocols supported by the device. Trace provides detailed information, including STP packet decodes, IGMP activity and MAC address displays.

NOTE

Tracing has been designed to provide detailed information to expert users. Note that all tracing is disabled upon device startup.

To trace an event, do the following:

- 1. Log in to the device as an admin user and access the CLI shell. For more information about accessing the CLI shell, refer to Section 2.6, "Using the Command Line Interface".
- 2. Determine the protocols and associated options available by typing:

trace ?

If an option such as allon or alloff is required, determine which options are available for the desired protocol by typing:

Tracing Events 41

trace protocol ?

NOTE

If required, expand the trace scope by stringing protocols and their associated options together using a vertical bar (|).

3. Select the type of trace to run by typing:

```
trace protocol option
```

Where:

- protocol is the protocol to trace
- option is the option to use during the trace

Example:

```
>trace transport allon
TRANSPORT: Logging is enabled
```

4. Start the trace by typing:

trace

Section 2.6.3

Executing Commands Remotely via RSH

The Remote Shell (RSH) facility can be used from a workstation to cause the product to act upon commands as if they were entered at the CLI prompt. The syntax of the RSH command is usually of the form:

```
rsh ipaddr -1 auth token command string
```

Where:

- ipaddr is the address or resolved name of the device.
- auth_token is the user name (i.e. guest, operator or admin) and corresponding password separated by a comma. For example, admin, secret.
- command string is the RUGGEDCOM ROS CLI command to execute.

NOTE

The access level (corresponding to the user name) selected must support the given command.

NOTE

Any output from the command will be returned to the workstation submitting the command. Commands that start interactive dialogs (such as **trace**) cannot be used.

Section 2.6.4

Using SQL Commands

RUGGEDCOM ROS provides an *SQL-like* command facility that allows expert users to perform several operations not possible under the traditional Web or CLI interface. For instance:

- Restoring the contents of a specific table, but not the whole configuration, to their factory defaults.
- Search tables in the database for specific configurations.
- Make changes to tables predicated upon existing configurations.

When combined with RSH, SQL commands provide a means to query and configure large numbers of devices from a central location.

NOTE

For a list of parameters available under the **sql** command, refer to Section 2.6.1, "Available CLI Commands".

NOTE

Read/write access to tables containing passwords or shared secrets is unavailable using SQL commands.

CONTENTS

- Section 2.6.4.1, "Finding the Correct Table"
- Section 2.6.4.2, "Retrieving Information"
- Section 2.6.4.3, "Changing Values in a Table"
- Section 2.6.4.4, "Resetting a Table"
- Section 2.6.4.5, "Using RSH and SQL"

Section 2.6.4.1

Finding the Correct Table

Many SQL commands operate upon specific tables in the database, and require the table name to be specified. Navigating the menu system in the console interface to the desired menu and pressing **Ctrl-Z** displays the name of the table. The menu name and the corresponding database table name will be cited.

Another way to find a table name is to type the following in the CLI:

```
sql info tables
```

This command also displays menu names and their corresponding database table names depending upon the features supported by the device. For example:

```
Table Description

alarms Alarms
cpuDiags CPU Diagnostics
ethPortCfg Port Parameters
ethPortStats Ethernet Statistics
ethPortStatus Port Status
ipCfg IP Services
```

Section 2.6.4.2

Retrieving Information

The following describes various methods for retrieving information about tables and parameters.

Finding the Correct Table 43

>>> Retrieving Information from a Table

Use the following command to display a summary of the parameters within a table, as well as their values:

```
sql select from table
```

Where:

• table is the name of the table

Example:

```
>sql select from ipAddrtable

IP Address Subnet IfIndex IfStats IfTime IfName
172.30.146.88 255.255.224.0 1001 17007888 2994 vlan1

1 records selected
```

» Retrieving Information About a Parameter from a Table

Use the following command to retrieve information about a specific parameter from a table:

NOTE

The parameter name must be the same as it is displayed in the menu system, unless the name contains spaces (e.g. ip address). Spaces must be replaced with underscores (e.g. ip_address) or the parameter name must be wrapped in double quotes (e.g. "ip address").

```
sql select parameter from table
```

Where:

- parameter is the name of the parameter
- table is the name of the table

Example:

```
>sql select "ip address" from ipSwitchIfCfg

IP Address
192.168.0.1

1 records selected
```

>> Retrieving Information from a Table Using the Where Clause

Use the following command to display specific parameters from a table that have a specific value:

```
sql select from table where parameter = value
```

Where:

- table is the name of the table
- parameter is the name of the parameter
- value is the value of the parameter

Example:

```
>sql select from ethportcfg where media = 1000T
```

44 Retrieving Information

Chapter 2 Using ROS

Port Name	ifName	Media	State	AutoN Sp	peed Dupx	FlowCtrl LFI	Alarm
1 Port 1	1	1000T	Enabled Or	Auto	Auto Off	Off On	
2 Port 2	2	1000T	Enabled Or	Auto	Auto Off	Off On	
3 Port 3	3	1000T	Enabled Or	Auto	Auto Off	Off On	
4 Port 4	4	1000T	Enabled Or	Auto	Auto Off	Off On	
4 records select	ed						
4 lecolus select	.eu						

Further refine the results by using and or or operators:

```
sql select from table where parameter = value [ { and | or } | parameter | = | value ...]
```

Where:

- table is the name of the table
- parameter is the name of the parameter
- value is the value of the parameter

Example:

```
>sql select from ethportcfg where media = 1000T and State = enabled
                          Media
1000T
                                         State AutoN Speed Dupx FlowCtrl LFI Alarm
Port Name
                 ifName
1 Port 1
                1
                                      Enabled On Auto Auto Off
                                                                    Off on
2 Port 2
               2
                           1000T
                                     Enabled On Auto Auto Off
                                                                    Off On
3 Port 3
                3
                           1000T
                                     Enabled On Auto Auto Off
                                                                    Off On
4 Port 4
               4
                           1000T
                                      Enabled On Auto Auto Off
                                                                    Off On
4 records selected
```

Section 2.6.4.3

Changing Values in a Table

Use the following command to change the value of parameters in a table:

```
sql update table set parameter = value
```

Where:

- table is the name of the table
- parameter is the name of the parameter
- value is the value of the parameter

Example:

```
>sql update iplcfg set IP_Address_Type = static
1 records updated
```

Conditions can also be included in the command to apply changes only to parameters that meet specific criteria. In the following example, flow control is enabled on ports that are operating in 100 Mbps full-duplex mode with flow control disabled:

```
>sql update ethportcfg set FlowCtrl = Off where ( Media = 100TX and FlowCtrl = On ) 2 records updated
```

Section 2.6.4.4

Resetting a Table

Use the following command to reset a table back to its factory defaults:

```
sql default into table
```

Where:

• table is the name of the table

Section 2.6.4.5

Using RSH and SQL

The combination of remote shell scripting and SQL commands offers a means to interrogate and maintain a large number of devices. Consistency of configuration across sites may be verified by this method. The following presents a simple example where the devices to interrogate are drawn from the file Devices:

```
C:> type Devices
10.0.1.1
10.0.1.2
C:\> for /F %i in (devices) do rsh %i -l admin,admin sql select from ipAddrtable
C:\rsh 10.0.1.1 -l admin,admin sql select from ipAddrtable
                             IfIndex IfStats IfTime
IP Address
              Subnet
                                                             IfName
              255.255.255.0 1001
192.168.0.31
                                        274409096 2218
                                                              vlan1
1 records selected
C:\>rsh 10.0.1.2 -l admin,admin sql select from ipAddrtable
0 records selected
C:\
```

Section 2.7

Selecting Ports in RUGGEDCOM ROS

Many features in ROS can be configured for one or more ports on the device. The following describes how to specify a single port, a range of ports, or all ports .

Select a single port by specifying the port number:

```
2
```

Select a range of ports using a dash (-) between the first port and the last port in the list:

```
1-4
```

Select multiple ports by defining a comma-separated list:

```
1,4,6,9
```

46 Resetting a Table

Chapter 2 Using ROS

Use the All option to select all ports in the device, or, if available, use the None option to select none of the ports.

Section 2.8

Managing the Flash File System

The following section describes how to manage the flash file system.

CONTENTS

- Section 2.8.1, "Viewing a List of Flash Files"
- Section 2.8.2, "Viewing Flash File Details"
- Section 2.8.3, "Defragmenting the Flash File System"

Section 2.8.1

Viewing a List of Flash Files

To view a list of files currently stored in Flash memory, do the following:

- 1. Log in to the device as an admin user and access the CLI shell. For more information about accessing the CLI shell, refer to Section 2.6, "Using the Command Line Interface".
- 2. Type **flashfiles**. A list of files currently in Flash memory is displayed, along with their locations and the amount of memory they consume. For example:

Filename	Base	Size	Sectors	Used	
boot.bin	00000000	110000	0-16	1095790	
main.bin	00110000	140000	17-36	1258403	
fpga.xsvf	00250000	010000	37-37	55882	
syslog.txt	00260000	140000	38-57	19222	
ssh.keys	003A0000	010000	58-58	915	
ssl.crt	003B0000	010000	59-59	1970	
banner.txt	003C0000	010000	60-60	256	
crashlog.txt	003D0000	010000	61-61	256	
config.bak	003E0000	010000	62-62	15529	
config.csv	003F0000	008000	63-63	15529	
factory.txt	003FC000	004000	66-66	407	

Section 2.8.2

Viewing Flash File Details

To view the details of a file currently stored in Flash memory, do the following:

- 1. Log in to the device as an admin user and access the CLI shell. For more information about accessing the CLI shell, refer to Section 2.6, "Using the Command Line Interface".
- 2. Display information about a file by typing:

flashfiles info filename

Where:

• filename is the name of the file stored in Flash memory

Details, similar to the following, are displayed.

```
>flashfiles info main.bin

Flash file information for main.bin:
Header version : 4
Platform : ROS-CF52

File name : main.bin
Firmware version : v4.3.0
Build date : Sep 27 2014 15:50
File length : 2624659
Board IDs : 3d
Header CRC : 73b4
Header CRC Calc : 73b4
Body CRC : b441
Body CRC Calc : b441
```

Section 2.8.3

Defragmenting the Flash File System

The flash memory is defragmented automatically whenever there is not enough memory available for a binary upgrade. However, fragmentation can occur whenever a new file is uploaded to the unit. Fragmentation causes sectors of available memory to become separated by ones allocated to files. In some cases, the total available memory might be sufficient for a binary upgrade, but that memory may not be available in one contiguous region.

To defragment the flash memory, do the following:

- Log in to the device as an admin user and access the CLI shell. For more information about accessing the CLI shell, refer to Section 2.6, "Using the Command Line Interface".
- 2. Defragment the flash memory by typing:

flashfiles defraq

Section 2.9

Accessing BIST Mode

BIST (Built-In-Self-Test) mode is used by service technicians to test and configure internal functions of the device. It should only be accessed for troubleshooting purposes.

CAUTION!

Mechanical hazard – risk of damage to the device. Excessive use of BIST functions may cause increase wear on the device, which may void the warranty. Avoid using BIST functions unless instructed by a Siemens Customer Support representative.

To access BIST mode, do the following:

IMPORTANT!

Do not connect the device to the network when it is in BIST mode. The device will generate excess multicast traffic in this mode.

- Disconnect the device from the network.
- 2. Connect to RUGGEDCOM ROS through the RS-232 console connection and a terminal application. For more information, refer to Section 2.1.1, "Connecting Directly".
- 3. Reset the device. For more information, refer to Section 3.12, "Resetting the Device".
- 4. During the boot up sequence, press Ctrl-C when prompted. The command prompt for BIST appears.

>

5. Type **help** to view a list of all available options under BIST.

Section 2.10

Managing SSH Public Keys

RUGGEDCOM ROS allows admin users to list, add and delete SSH public keys. Public keys are added as non-volatile storage (i.e. flash) files on RUGGEDCOM ROS devices, and are retrieved at the time of SSH client authentication.

CONTENTS

- Section 2.10.1, "Adding a Public Key"
- Section 2.10.2, "Viewing a List of Public Keys"
- Section 2.10.3, "Updating a Public Key"
- Section 2.10.4, "Deleting a Public Key"

Section 2.10.1

Adding a Public Key

Admin users can add one or more public keys to RUGGEDCOM ROS.

Public keys are stored in a flash file, called *sshpub.keys*. The *sshpub.keys* file consists of ssh user public key entries. Similar to the config.csv file, each entry must be separated by an empty line. An entry has two components. They are, in sequence:

- Header
- Key

The header contains the parameters of the entry, separated by comma. The parameters are, in sequence:

- ID: A number between 0 and 9999
- Entry type: UserKey
- Access Level: (Admin, Operator or Guest)
- Revocation Status: active/inactive (always active for keys)
- User Name: This is the client's user name (not the RUGGEDCOM ROS user name). This will be used by clients to later SSH into the RUGGEDCOM ROS device.

The key must be in RFC4716 or PEM format, with any of the following header and footer lines:

```
----BEGIN PUBLIC KEY----
----END PUBLIC KEY----
----BEGIN SSH2 PUBLIC KEY----
----BEGIN RSA PUBLIC KEY----
----BEGIN RSA PUBLIC KEY----
```

The following is an example of a valid entry in the *sshpub.keys* file in PEM format:

```
1,userkey,admin,active,alice
---- BEGIN SSH2 PUBLIC KEY ----
AAAAB3NzaC1yc2EAAAABIwAAAQEA4mRrqfk+RKXnmGRvzMyWVDsbq5VwpGGrlLQYCrjVEa
NdbXsphqYKop8V5VUeXFRAUFzOy82yk8TF/5JxGPWq6wRNjhnYR7IY2AiMBq0+K8XeURl/
z5K2XNRjnqTZSFwkhaUVJeduvjGgOlNN4yvgUwF3n0idU9k3E1q/na+LmYIeGhOwzCqoAc
ipHAdR4fhD5u0jbmvjv+gDikTSZIbj9eFJfP09ekImMLHwbBry0SSBpqAKbwVdWEXIKQ47
zz7ao2/rs3rSV16IXSq3Qe8VZh2irah0Md6JFMOX2qm9fo1I62q1DDgheCOsOiGPf4xerH
rI2cs6FT31rAdx2JOjvw==
---- END SSH2 PUBLIC KEY ----
```

The following is an example of a valid entry in the sshpub.keys file in in RFC4716 format:

```
2,userkey,admin,active,bob
ssh-rsa AAAAB3NzaClyc2EAAAADAQABAAABAQDH0NivR8zzbTxlecvFPzR/
GR24NrRJa0Lc7scNsWRgi0XulHuGrRLRB5RoQ39+spdig88Y8CqhRI49XJx7uLJe0Su3RvyNYz1jkdSwHq2hSZCpukJxJ6CK95Po/
sVa5Gq2gMaHowiYDSkcx+AJywzK/eM6i/jc1251RxFPdfkj74u+ob3PCvmIWz5z3WAJBrQU1IDPHDets511WMu809/
mAPZRwjqrWhRsqmcXZuv5oo54wIopCAZSo20SPzM2VmXFuUsEwDkvYMXLJK1koJPbDjH7yFFC7mwK2eMU/
oMFFn934cb05N6etsJSvplYQ4pMCw6Ok8Q/bB5cPSOa/rAt bob@work
```


IMPORTANT!

The content of the **sshaddpub.keys** file must follow the same syntax as the **sshpub.keys** file.

RUGGEDCOM ROS allows only 16 user key entries to be stored. Each key entry must meet the following limits:

- Key type must be either RSA 2048 bits or RSA 3072 bits
- Key size must not exceed 4000 base64 encoded characters
- Entry Type in the header must not exceed 8 ASCII characters
- Access Level in the header must not exceed 8 ASCII characters (operator is maximum)
- Revocation status in the header must not exceed 8 ASCII characters (inactive is maximum)
- User Name must not exceed 12 ASCII characters

There are two ways to update *sshpub.keys*. Users can either upload a locally-created file directly to the *sshpub.keys* file, which will replace the content in flash with the uploaded content. Or, users can upload a locally-created file to the *sshaddpub.keys* file, which will keep the existing entries in the *sshpub.keys* file and append the new entries.

To add keys, do the following:

- 1. Create a public key file via a host computer.
- 2. Transfer the public key file to the device using SFTP or Xmodem. For more information about transferring files, refer to Section 3.4, "Uploading/Downloading Files".
- 3. Log in to the device as an admin user and access the CLI shell. For more information about accessing the CLI shell, refer to Section 2.6, "Using the Command Line Interface".

50 Adding a Public Key

4. Check the system log to make sure the files were properly transferred. For more information about viewing the system log, refer to Section 3.5.1, "Viewing Local Logs".

Section 2.10.2

Viewing a List of Public Keys

Admin users can view a list of existing public keys on the device.

To view public keys, do the following:

- 1. Log in to the device as an admin user and access the CLI shell. For more information about accessing the CLI shell, refer to Section 2.6, "Using the Command Line Interface".
- 2. At the CLI prompt, type:

sshpubkey list

A list of public keys will appear, including their key ID, access level, revocation status, user name and key fingerprint.

Section 2.10.3

Updating a Public Key

Admin users can update public keys.

To update public keys, do the following:

- 1. Log in to the device as an admin user and access the CLI shell. For more information about accessing the CLI shell, refer to Section 2.6, "Using the Command Line Interface".
- 2. At the CLI prompt, type:

sshpubkey list

A list of public keys will appear, including their key ID, access level, revocation status, user name and key fingerprint.

3. Type the following commands to update the public keys:

Command		Description		
<pre>sshpubkey update_id new_ID</pre>	current_ID	Updates the ID of user public key. NOTE The user public key ID must be a number between 0 and 9999.		
	 current_ID is the ID currently assigned to the public key new_ID is the ID that will be used to identify the public key going forward 			
sshpubkey update_al	AL	Updates the access level of a user public key. • AL is the access level (admin, operator or guest) of the public key to be updated		
sshpubkey update_rs	RS	Updates the revocation status (active, inactive) of a user public key. • RS is the revocation status of the public key to be updated		
sshpubkey update_un	UN	Updates the user name of a user public key. • UN is the user name of the public key to be updated		

Section 2.10.4

Deleting a Public Key

Admin users can delete one or more public keys.

To delete a public key, do the following:

- 1. Log in to the device as an admin user and access the CLI shell. For more information about accessing the CLI shell, refer to Section 2.6, "Using the Command Line Interface".
- 2. At the CLI prompt, type:

sshpubkey list

A list of public keys will appear, including access level, revocation status, user name and key fingerprint.

3. Type the following commands to delete the public key(s):

Command	Description	
sshpubkey remove ID	Removes a key from the non-volatile storage.	
	ID is the ID of the public key to be removed	

52 Deleting a Public Key

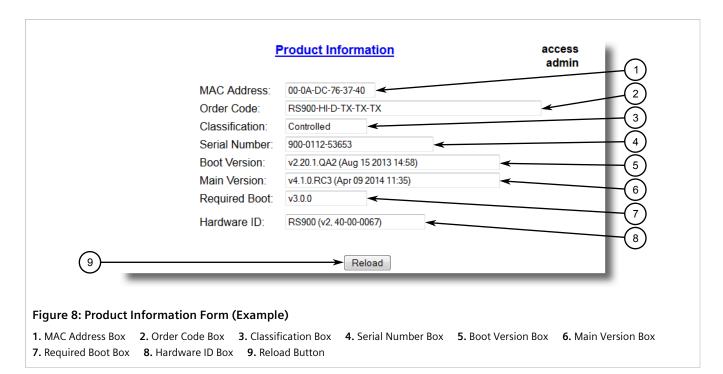
Device Management

This chapter describes how to configure and manage the device and its components, such as module interfaces, logs and files.

NOTE

For information about how to configure the device to work with a network, refer to Chapter 5, Setup and Configuration .

CONTENTS


- Section 3.1, "Viewing Product Information"
- Section 3.2, "Viewing CPU Diagnostics"
- Section 3.3, "Restoring Factory Defaults"
- · Section 3.4, "Uploading/Downloading Files"
- Section 3.5, "Managing Logs"
- Section 3.6, "Managing Ethernet Ports"
- Section 3.7, "Managing IP Interfaces"
- Section 3.8, "Managing IP Gateways"
- Section 3.9, "Configuring IP Services"
- Section 3.10, "Managing Remote Monitoring"
- Section 3.11, "Upgrading/Downgrading Firmware"
- Section 3.12, "Resetting the Device"
- Section 3.13, "Decommissioning the Device"

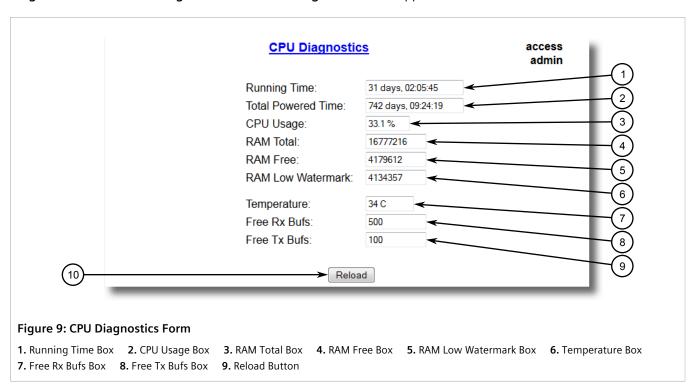
Section 3.1

Viewing Product Information

During troubleshooting or when ordering new devices, Siemens personnel may request specific information about the device, such as the model, order code or serial number.

To view information about the device, navigate to *Diagnostics* » *View Product Information* . The **Product Information** form appears.

This screen displays the following information:


Parameter	Description
MAC Address	Synopsis: ##-##-##-## where ## ranges 0 to FF
	Shows the unique MAC address of the device.
Order Code	Synopsis: Any 57 characters
	Shows the order code of the device.
Classification	Synopsis: Any 15 characters
	Provides system classification.
	The value Controlled indicates the main firmware is a Controlled release. The value Non-Controlled indicates the main firmware is a Non-Controlled release. The Controlled main firmware can run on Controlled units, but it can not run on Non-Controlled units. The Non-Controlled main firmware can run on both Controlled and Non-Controlled units.
Serial Number	Synopsis: Any 31 characters
	Shows the serial number of the device.
Boot Version	Synopsis: Any 47 characters
	Shows the version and the build date of the boot loader software.
Main Version	Synopsis: Any 47 characters
	Shows the version and build date of the main operating system software.
Required Boot	Synopsis: Any 15 characters
	Shows the minimum boot software loader version required by running main.
Hardware ID	Synopsis: { RSMCPU (40-00-0008 Rev B1), RSMCPU2 (40-00-0026 Rev A1), RS400 (40-00-0010 Rev B2), RMC30, RS900 (40-00-0025 Rev B1), RS900 (40-00-0032 Rev B1), RS1600M, RS400 (40-00-0010

Parameter	Description
	Rev C1), RSG2100, RS900G, RSG2200, RS969, RS900 (v2, 40-00-0066), RS900 (v2, 40-00-0067), , RS416 (40-00-0078), RMC30 (v2), RS930 (40-00-0089), RS969 (v2, 40-00-0090), RS910 (40-00-0091-001 Rev A), RS920L (40-00-0102-001 Rev A), RS940G (40-00-0097-000 Rev A), RSi80X series CPU board, RSG2300, RS416v2, }
	Shows the type, part number, and revision level of the hardware.

Section 3.2

Viewing CPU Diagnostics

To view CPU diagnostic information useful for troubleshooting hardware and software performance, navigate to **Diagnostics** » **View CPU Diagnostics** . The **CPU Diagnostics** form appears.

This screen displays the following information:

Parameter	Description
Running Time	Synopsis: DDDD days, HH:MM:SS The amount of time since the device was last powered on.
CPU Usage	Synopsis: 0.0 to 100.0% The percentage of available CPU cycles used for device operation as measured over the last second.
RAM Total	Synopsis: 0 to 4294967295 The total size of RAM in the system.
RAM Free	Synopsis: 0 to 4294967295

Viewing CPU Diagnostics 55

Parameter	Description
	The total size of RAM still available.
RAM Low Watermark	Synopsis: 0 to 4294967295 The size of RAM that have never been used during the system runtime.
Temperature	Synopsis: -32768 to 32767 C The temperature on CPU board.
Free Rx Bufs	Synopsis: 0 to 4294967295 Free Rx Buffers.
Free Tx Bufs	Synopsis: 0 to 4294967295 Free Tx Buffers.

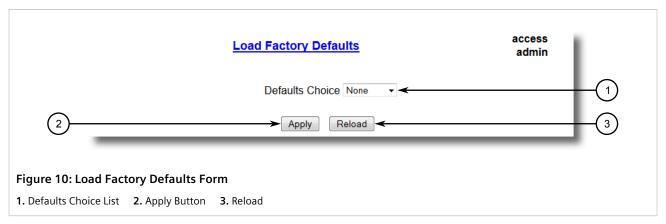
Section 3.3

Restoring Factory Defaults

The device can be completely or partially restored to its original factory default settings. Excluding groups of parameters from the factory reset, such as those that affect basic connectivity and SNMP management, is useful when communication with the device is still required during the reset.

The following categories are not affected by a selective configuration reset:

- IP Interfaces
- IP Gateways
- SNMP Users
- SNMP Security to Group Maps
- SNMP Access
- RUGGEDCOM Discovery Protocol™ (RCDP)


In addition, the following categories are not affected by a full or selective configuration reset:

- Time Zone
- DST Offset
- DST Rule

To restore factory defaults, do the following:

1. Navigate to *Diagnostics* » *Load Factory Defaults* . The *Load Factory Defaults* form appears.

56 Restoring Factory Defaults

2. Configure the following parameter(s) as required:

NOTE

If the VLAN ID for the Management IP interface is not 1, setting **Defaults Choice** to Selected will automatically set it to 1.

Parameter	Description
Defaults Choice	Synopsis: { None, Selected, All } Setting some records like IP Interfaces management interface, default gateway, SNMP settings to default value would cause switch not to be accessible with management applications. This parameter allows user to choose to load defaults to Selected tables, which would preserve configuration for tables that are critical for switch management applications, or to force All tables to default settings.

3. Click Apply.

Section 3.4

Uploading/Downloading Files

Files can be transferred between the device and a host computer using any of the following methods:

- Xmodem using the CLI shell over a Telnet or RS-232 console session
- TFTP client using the CLI shell in a console session and a remote TFTP server
- TFTP server from a remote TFTP client
- SFTP (secure FTP over SSH) from a remote SFTP client

IMPORTANT!

Scripts can be used to automate the management of files on the device. However, depending on the size of the target file(s), a delay between any concurrent write and read commands may be required, as the file may not have been fully saved before the read command is issued. A general delay of five seconds is recommended, but testing is encouraged to optimize the delay for the target file(s) and operating environment.

NOTE

The contents of the internal file system are fixed. New files and directories cannot be created, and existing files cannot be deleted. Only the files that can be uploaded to the device can be overwritten.

Files that may need to be uploaded or downloaded include:

- main.bin the main RUGGEDCOM ROS application firmware image
- boot.bin the boot loader firmware image
- fpga.xsvf the FPGA firmware binary image
- config.csv the complete configuration database, in the form of a comma-delimited ASCII text file
- factory.txt Contains the MAC address, order code and serial number. Factory data must be signed.
- banner.txt contains text that appears on the login screen

CONTENTS

- Section 3.4.1, "Uploading/Downloading Files Using XMODEM"
- Section 3.4.2, "Uploading/Downloading Files Using a TFTP Client"
- Section 3.4.3, "Uploading/Downloading Files Using a TFTP Server"
- Section 3.4.4, "Uploading/Downloading Files Using an SFTP Server"

Section 3.4.1

Uploading/Downloading Files Using XMODEM

To updload or download a file using XMODEM, do the following:

NOTE

This method requires a host computer that has terminal emulation or Telnet software installed and the ability to perform XMODEM transfers.

NOTE

Xmodem transfers can only be performed through the serial console, which is authenticated during login.

- 1. Establish a direct connection between the device and the host computer. For more information, refer to Section 2.1.1, "Connecting Directly".
- 2. Log in to the device as an admin user and access the CLI shell. For more information about accessing the CLI shell, refer to Section 2.6, "Using the Command Line Interface".

NOTE

The send option sends files to the host computer, while the receive option pulls files from the host computer.

3. At the CLI prompt, type:

xmodem [send | receive] filename

Where:

• filename is the name of the file (i.e. main.bin)

NOTE

If available in the terminal emulation or Telnet software, select the **XModem 1K** protocol for transmission over the standard **XModem** option.

4. When the device responds with

```
Press Ctrl-X to cancel
```

, launch the XMODEM transfer from the host computer. The device will indicate when the transfer is complete.

The following is an example from the CLI shell of a successful XMODEM file transfer:

```
>xmodem receive main.bin
Press Ctrl-X to cancel
Receiving data now ...C
Received 1428480 bytes. Closing file main.bin ...
main.bin transferred successfully
```

Section 3.4.2

Uploading/Downloading Files Using a TFTP Client

To updload or download a file using a TFTP client, do the following:

IMPORTANT!

TFTP does not define an authentication scheme. Any use of the TFTP client or server is considered highly insecure.

NOTE

This method requires a TFTP server that is accessible over the network.

- 1. Identify the IP address of the computer running the TFTP server.
- 2. Establish a direct connection between the device and a host computer. For more information, refer to Section 2.1.1, "Connecting Directly".
- 3. Log in to the device as an admin user and access the CLI shell. For more information about accessing the CLI shell, refer to Section 2.6, "Using the Command Line Interface".
- 4. At the CLI prompt, type:

```
tftp address [ get | put ] source-filename destination-filename
```

Where

- get copies files from the host computer to the device
- put copies files from the device to the host computer
- address is the IP address of the computer running the TFTP server
- source-filename is the name of the file to be transferred
- destination-filename is the name of the file (on the device or the TFTP server) that will be replaced during the transfer

The following is an example of a successful TFTP client file transfer:

```
>tftp 10.0.0.1 get ROS-CF52_Main_v3.7.0.bin main.bin
TFTP CMD: main.bin transfer ok. Please wait, closing file ...
```

TFTP CMD: main.bin loading successful.

Section 3.4.3

Uploading/Downloading Files Using a TFTP Server

To updload or download a file using a TFTP server, do the following:

IMPORTANT!

TFTP does not define an authentication scheme. Any use of the TFTP client or server is considered highly insecure.

NOTE

This method requires a host computer that has TFTP server software installed.

IMPORTANT!

Interaction with TFTP servers is strictly controlled within the device to prevent unauthorized access. Make sure the device is configured to accept the TFTP connection. For more information, refer to Section 3.9, "Configuring IP Services".

- 1. Establish a direct connection between the device and the host computer. For more information, refer to Section 2.1.1, "Connecting Directly".
- 2. Initialize the TFTP server on the host computer and launch the TFTP transfer. The server will indicate when the transfer is complete.

The following is an example of a successful TFTP server exchange:

C:\>tftp -i 10.1.0.1 put C:\files\ROD-CF52_Main_v3.7.0.bin main.bin Transfer successful: 1428480 bytes in 4 seconds, 375617 bytes/s

Section 3.4.4

Uploading/Downloading Files Using an SFTP Server

SFTP (Secure File Transfer Protocol) is a file transfer mechanism that uses SSH to encrypt every aspect of file transfer between a networked client and server.

NOTE

The device does not have an SFTP client and, therefore, can only receive SFTP files from an external source. SFTP requires authentication for the file transfer.

To updload or download a file using an SFTP server, do the following:

NOTE

This method requires a host computer that has SFTP client software installed.

- 1. Establish an SFTP connection between the device and the host computer.
- 2. Launch the SFTP transfer. The client will indicate when the transfer is complete.

The following is an example of a successful SFTP server exchange:

```
user@host$ sftp admin@ros_ip
Connecting to ros_ip...
admin@ros_ip's password:
sftp> put ROS-CF52_Main_v3-7-0.bin main.bin
Uploading ROS-CF52_Main_v3-7-0.bin to /main.bin
ROS-CF52_Main_v3-7-0.bin 100% 2139KB 48.6KB/s 00:44
sftp>
```

Section 3.5

Managing Logs

The crash (crashlog.txt) and system (syslog.txt) log files contain historical information about events that have occurred during the operation of the device.

The crash log contains debugging information related to problems that might have resulted in unplanned restarts of the device or which may effect the operation of the device. A file size of 0 bytes indicates that no unexpected events have occurred.

The system log contains a record of significant events including startups, configuration changes, firmware upgrades and database re-initializations due to feature additions.

CONTENTS

- Section 3.5.1, "Viewing Local Logs"
- Section 3.5.2, "Clearing Local Logs"
- Section 3.5.3, "Configuring the Local System Log"
- Section 3.5.4, "Managing Remote Logging"

Section 3.5.1

Viewing Local Logs

The local crash and system logs can both be downloaded from the device and viewed in a text editor. For more information about downloading log files, refer to Section 3.4, "Uploading/Downloading Files".

To view the system log through the Web interface, navigate to **Diagnostics** » **View System Log** . The **syslog.txt** form appears.

Managing Logs 61

Section 3.5.2

Clearing Local Logs

To clear both the local crash and system logs, log in to the CLI shell and type:

clearlogs

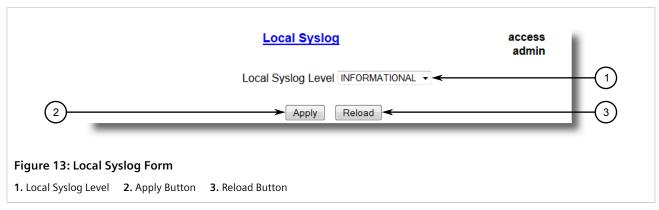
To clear only the local system log, log in to the Web interface and do the following:

1. Navigate to Diagnostics » Clear System Log. The Clear System Log form appears.

2. Click Confirm.

Section 3.5.3

Configuring the Local System Log


To configure the severity level for the local system log, do the following:

NOTE

For maximum reliability, use remote logging. For more information, refer to Section 3.5.4, "Managing Remote Logging".

1. Navigate to Administration » Configure Syslog » Configure Local Syslog . The Local Syslog form appears.

2. Configure the following parameter(s) as required:

62 Clearing Local Logs

Parameter	Description
Local Syslog Level	Synopsis: { EMERGENCY, ALERT, CRITICAL, ERROR, WARNING, NOTICE, INFORMATIONAL, DEBUGGING } Default: INFORMATIONAL
	The severity of the message that has been generated. Note that the severity level selected is considered the minimum severity level for the system. For example, if ERROR is selected, the system sends any syslog messages generated by Error, Critical, Alert and Emergency.

3. Click **Apply**.

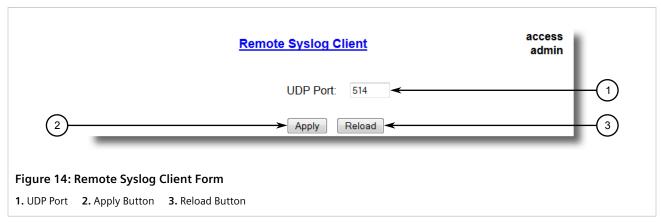
Section 3.5.4

Managing Remote Logging

In addition to the local system log maintained on the device, a remote system log can be configured as well to collect important event messages. The syslog client resides on the device and supports up to 5 collectors (or syslog servers).

The remote syslog protocol, defined in RFC 3164, is a UDP/IP-based transport that enables the device to send event notification messages across IP networks to event message collectors, also known as syslog servers. The protocol is designed to simply transport these event messages from the generating device to the collector(s).

CONTENTS


- Section 3.5.4.1, "Configuring the Remote Syslog Client"
- Section 3.5.4.2, "Viewing a List of Remote Syslog Servers"
- Section 3.5.4.3, "Adding a Remote Syslog Server"
- Section 3.5.4.4, "Deleting a Remote Syslog Server"

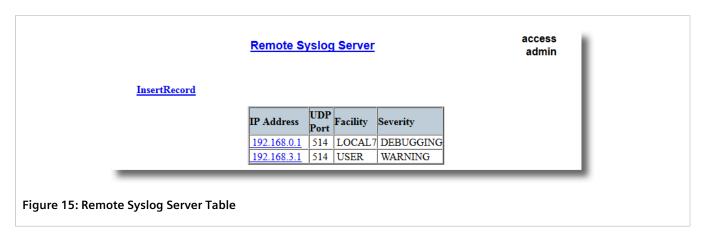
Section 3.5.4.1

Configuring the Remote Syslog Client

To configure the remote syslog client, do the following:

1. Navigate to *Administration* » *Configure Syslog* » *Configure Remote Syslog Client* . The Remote Syslog Client form appears.

2. Configure the following parameter(s) as required:


Parameter	Description
UDP Port	Synopsis: 1025 to 65535 or { 514 } Default: 514
	The local UDP port through which the client sends information to the server(s).

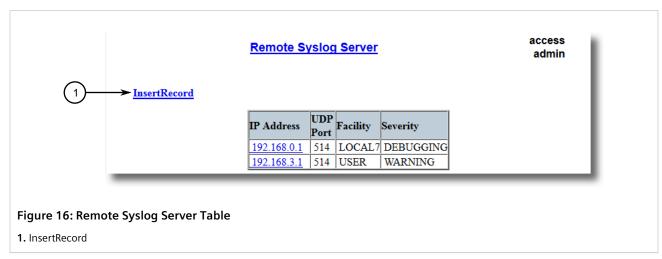
3. Click Apply.

Section 3.5.4.2

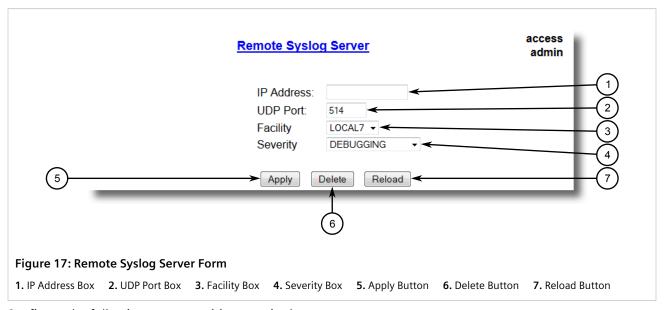
Viewing a List of Remote Syslog Servers

To view a list of known remote syslog servers, navigate to **Administration** » **Configure Syslog** » **Configure Remote Syslog Server** . The **Remote Syslog Server** table appears.

If remote syslog servers have not been configured, add the servers as needed. For more information, refer to Section 3.5.4.3, "Adding a Remote Syslog Server".


Section 3.5.4.3

Adding a Remote Syslog Server


RUGGEDCOM ROS supports up to 5 remote syslog servers (or collectors). Similar to the local system log, a remote system log server can be configured to log information at a specific severity level. Only messages of a severity level equal to or greater than the specified severity level are written to the log.

To add a remote syslog server to the list of known servers, do the following:

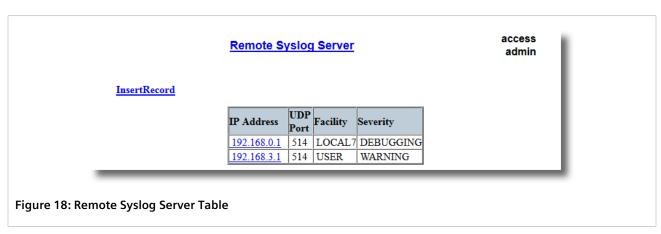
1. Navigate to *Administration* » *Configure Syslog* » *Configure Remote Syslog Server* . The Remote Syslog Server table appears.

2. Click InsertRecord. The Remote Syslog Server form appears.

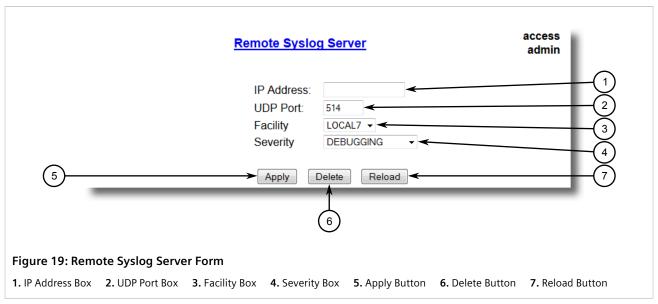
3. Configure the following parameter(s) as required:

Parameter	Description
IP Address	Synopsis: ###.###.### where ### ranges from 0 to 255 Syslog server IP Address.
UDP Port	Synopsis: 1025 to 65535 or { 514 }

Parameter	Description
	Default: 514
	The UDP port number on which the remote server listens.
Facility	Synopsis: { USER, LOCAL0, LOCAL1, LOCAL2, LOCAL3, LOCAL4, LOCAL5, LOCAL6, LOCAL7 } Default: LOCAL7
	Syslog Facility is one information field associated with a syslog message. The syslog facility is the application or operating system component that generates a log message. ROS map all syslog logging information onto a single facility which is configurable by user to facilitate remote syslog server.
Severity	Synopsis: { EMERGENCY, ALERT, CRITICAL, ERROR, WARNING, NOTICE, INFORMATIONAL, DEBUGGING } Default: DEBUGGING The severity level is the severity of the message that has been generated. Please note that the severity level user select is accepted as the minimum severity level for the system. For example, if user selects the severity level as 'Error' then the system send any syslog message originated by Error, Critical, Alert and Emergency.


4. Click Apply.

Section 3.5.4.4


Deleting a Remote Syslog Server

To delete a remote syslog server from the list of known servers, do the following:

1. Navigate to *Administration* » *Configure Syslog* » *Configure Remote Syslog Server* . The Remote Syslog Server table appears.

2. Select the server from the table. The **Remote Syslog Server** form appears.

3. Click Delete.

Section 3.6

Managing Ethernet Ports

The following section describes how to set up and manage Ethernet ports.

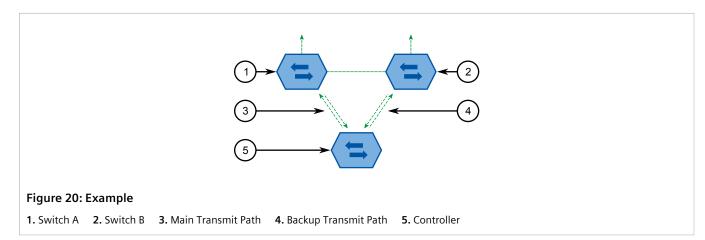
NOTE

For information about configuring remote monitoring for Ethernet ports, refer to Section 3.10, "Managing Remote Monitoring".

CONTENTS

- Section 3.6.1, "Controller Protection Through Link Fault Indication (LFI)"
- Section 3.6.2, "Viewing the Status of Ethernet Ports"
- Section 3.6.3, "Viewing Statistics for All Ethernet Ports"
- Section 3.6.4, "Viewing Statistics for Specific Ethernet Ports"
- Section 3.6.5, "Clearing Statistics for Specific Ethernet Ports"
- Section 3.6.6, "Configuring a PoE Port (For RS416P Only)"
- Section 3.6.7, "Configuring an Ethernet Port"
- Section 3.6.8, "Configuring Port Rate Limiting"
- Section 3.6.9, "Configuring Port Mirroring"
- Section 3.6.10, "Configuring Link Detection"
- Section 3.6.11, "Detecting Cable Faults"

Managing Ethernet Ports 67


Section 3.6.12, "Resetting Ethernet Ports"

Section 3.6.1

Controller Protection Through Link Fault Indication (LFI)

Modern industrial controllers often feature backup Ethernet ports used in the event of a link failure. When these interfaces are supported by media (such as fiber) that employ separate transmit and receive paths, the interface can be vulnerable to failures that occur in only one of the two paths.

Consider for instance two switches (A and B) connected to a controller. Switch A is connected to the main port on the controller, while Switch B is connected to the backup port, which is shut down by the controller while the link with Switch A is active. Switch B must forward frames to the controller through Switch A.

If the transmit path from the controller to Switch A fails, Switch A still generates a link signal to the controller through the receive path. The controller still detects the link with Switch A and does not failover to the backup port.

This situation illustrates the need for a notification method that tells a link partner when the link integrity signal has stopped. Such a method natively exists in some link media, but not all.

100Base-TX, 1000Base-T, 1000Base-X	Includes a built-in auto-negotiation feature (i.e. a special flag called Remote Fault Indication is set in the transmitted auto-negotation signal).
100Base-FX Links	Includes a standard Far-End-Fault-Indication (FEFI) feature defined by the IEEE 802.3 standard for this link type. This feature includes:
	• Transmitting FEFI Transmits a modified link integrity signal in case a link failure is detected (i.e. no link signal is received from the link partner)
	Detecting FEFI Indicates link loss in case an FEFI signal is received from the link partner
10Base-FL Links	No standard support.

10Base-FL links do not have a native link partner notification mechanism and FEFI support in 100Base-FX links is optional according to the IEEE 802.3 standard, which means that some links partners may not support it.

Siemens offers an advanced Link-Fault-Indication (LFI) feature for the links that do not have a native link partner notification mechanism. With LFI enabled, the device bases the generation of a link integrity signal upon its reception of a link signal. In the example described previously, if switch A fails to receive a link signal from the controller, it will stop generating a link signal. The controller will detect the link failure and failover to the backkup port.

IMPORTANT!

If both link partners have the LFI feature, it **must not** be enabled on both sides of the link. If it is enabled on both sides, the link will never be established, as each link partner will be waiting for the other to transmit a link signal.

The switch can also be configured to flush the MAC address table for the controller port. Frames destined for the controller will be flooded to Switch B where they will be forwarded to the controller (after the controller transmits its first frame).

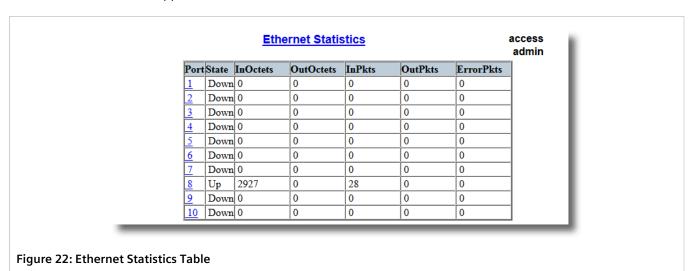
Section 3.6.2

Viewing the Status of Ethernet Ports

To view the current status of each Ethernet port, navigate to *Ethernet Ports » View Port Status* . The **Port Status** table appears.

Port Status					access admin	
Port	Name	Link	Speed	Duplex	Media	
1	Port 1	Down			100TX	
2	Port 2	Down			100TX	
3	Port 3	Down			100TX	
4	Port 4	Down			100TX	
5	Port 5	Down			100TX	
6	Port 6	Down			100TX	
7	Port 7	Down			100TX	
8	Port 8	Up	100M	Full	100TX	
9	Port 9	Down			SFP Unplugged	
10	Port 10	Down			SFP Unplugged	

Figure 21: Port Status Table


This table displays the following information:

Parameter	Description
Port	Synopsis: 1 to maximum port number The port number as seen on the front plate silkscreen of the switch.
Name	Synopsis: Any 15 characters A descriptive name that may be used to identify the device conected on that port.
Link	Synopsis: {,, Down, Up } The port's link status.
Speed	Synopsis: {, 10M, 100M, 1G, 10G } The port's current speed.
Duplex	Synopsis: {, Half, Full } The port's current duplex status.

Section 3.6.3

Viewing Statistics for All Ethernet Ports

To view statistics collected for all Ethernet ports, navigate to **Ethernet Stats » View Ethernet Statistics**. The **Ethernet Statistics** table appears.

This table displays the following information:

Parameter	Description
Port	Synopsis: 1 to maximum port number The port number as seen on the front plate silkscreen of the switch.
State	Synopsis: {, Down, Up }
InOctets	Synopsis: 0 to 4294967295 The number of octets in received good packets (Unicast+Multicast +Broadcast) and dropped packets.
OutOctets	Synopsis: 0 to 4294967295 The number of octets in transmitted good packets.
InPkts	Synopsis: 0 to 4294967295 The number of received good packets (Unicast+Multicast+Broadcast) and dropped packets.
OutPkts	Synopsis: 0 to 4294967295 The number of transmitted good packets.
ErrorPkts	Synopsis: 0 to 4294967295 The number of any type of erroneous packet.

Section 3.6.4

Viewing Statistics for Specific Ethernet Ports

To view statistics collected for specific Ethernet ports, navigate to **Ethernet Stats » View Ethernet Port Statistics**. The **Ethernet Port Statistics** table appears.

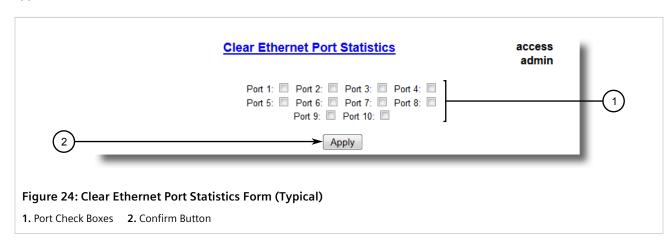
Ethernet Port Statistics					admin	
Port	InOctets	OutOctets	InPkts	OutPkts	TotalInOctets	Tot:
1	2374236	2157956	13627	32698	2374236	136
2	192516	2399229	2049	33996	192516	204
3	0	0	0	0	0	0
4	0	0	0	0	0	0
5	0	0	0	0	0	0
6	0	0	0	0	0	0
7	0	0	0	0	0	0
8	10077906	314359	104258	1010	10077906	104
9	0	0	0	0	0	0
10	0	0	0	0	0	0

Figure 23: Ethernet Port Statistics Table

This table displays the following information:

Parameter	Description
Port	Synopsis: 1 to maximum port number
	The port number as seen on the front plate silkscreen of the switch.
InOctets	Synopsis: 0 to 18446744073709551615
	The number of octets in received good packets (Unicast+Multicast +Broadcast) and dropped packets.
OutOctets	Synopsis: 0 to 18446744073709551615
	The number of octets in transmitted good packets.
InPkts	Synopsis: 0 to 18446744073709551615
	The number of received good packets (Unicast+Multicast+Broadcast) and dropped packets.
OutPkts	Synopsis: 0 to 18446744073709551615
	The number of transmitted good packets.
TotalInOctets	Synopsis: 0 to 18446744073709551615
	The total number of octets of all received packets. This includes data octets of rejected and local packets which are not forwarded to the switching core for transmission. It should reflect all the data octets received on the line.
TotalInPkts	Synopsis: 0 to 18446744073709551615
	The number of received packets. This includes rejected, dropped local, and packets which are not forwarded to the switching core for transmission. It should reflect all packets received ont the line.
InBroadcasts	Synopsis: 0 to 18446744073709551615
	The number of good Broadcast packets received.
InMulticasts	Synopsis: 0 to 18446744073709551615
	The number of good Multicast packets received.
CRCAlignErrors	Synopsis: 0 to 4294967295
	The number of packets received which meet all the following conditions:

Parameter	Description
	Packet data length is between 64 and 1536 octets inclusive.
	Packet has invalid CRC. Callisian Front has not been detected.
	Collision Event has not been detected. Late Collision Event has not been detected.
OversizePkts	Synopsis: 0 to 4294967295
	The number of packets received with data length greater than 1536 octets and valid CRC.
Fragments	Synopsis: 0 to 4294967295
	The number of packets received which meet all the following conditions:
	• Packet data length is less than 64 octets, or packet without SFD and is less than 64 octets in length.
	Collision Event has not been detected.
	Late Collision Event has not been detected.
	Packet has invalid CRC.
Jabbers	Synopsis: 0 to 4294967295
	The number of packets which meet all the following conditions:
	Packet data length is greater that 1536 octets.
	Packet has invalid CRC.
Collisions	Synopsis: 0 to 4294967295
	The number of received packets for which Collision Event has been detected.
LateCollisions	Synopsis: 0 to 4294967295
	The number of received packets for which Late Collision Event has been detected.
Pkt64Octets	Synopsis: 0 to 4294967295
	The number of received and transmitted packets with size of 64 octets. This includes received and transmitted packets as well as dropped and local received packets. This does not include rejected received packets.
Pkt65to127Octets	Synopsis: 0 to 4294967295
	The number of received and transmitted packets with size of 65 to 127 octets. This includes received and transmitted packets as well as dropped and local received packets. This does not include rejected received packets.
Pkt128to255Octets	Synopsis: 0 to 4294967295
	The number of received and transmitted packets with size of 128 to 257 octets. This includes received and transmitted packets as well as dropped and local received packets. This does not include rejected received packets.
Pkt256to511Octets	Synopsis: 0 to 4294967295
	The number of received and transmitted packets with size of 256 to 511 octets. This includes received and transmitted packets as well as dropped and local received packets. This does not include rejected received packets.
Pkt512to1023Octets	Synopsis: 0 to 4294967295
	The number of received and transmitted packets with size of 512 to
	1023 octets. This includes received and transmitted packets as well

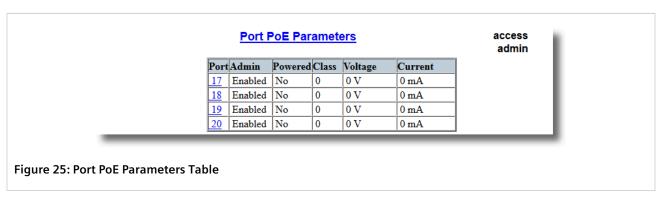

Parameter	Description
	as dropped and local received packets. This does not include rejected received packets.
Pkt1024to1536Octets	Synopsis: 0 to 4294967295
	The number of received and transmitted packets with size of 1024 to 1536 octets. This includes received and transmitted packets as well as dropped and local received packets. This does not include rejected received packets.
DropEvents	Synopsis: 0 to 4294967295
	The number of received packets that are droped due to lack of receive buffers.
OutMulticasts	Synopsis: 0 to 18446744073709551615
	The number of transmitted Multicast packets. This does not include Broadcast packets.
OutBroadcasts	Synopsis: 0 to 18446744073709551615
	The number of transmitted Broadcast packets.
UndersizePkts	Synopsis: 0 to 4294967295
	The number of received packets which meet all the following conditions:
	Packet data length is less than 64 octets.
	Collision Event has not been detected.
	Late Collision Event has not been detected.
	Packet has valid CRC.

Section 3.6.5

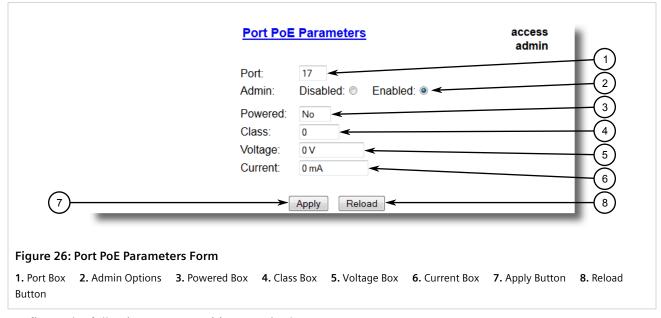
Clearing Statistics for Specific Ethernet Ports

To clear the statistics collected for one or more Ethernet ports, do the following:

1. Navigate to *Ethernet Stats » Clear Ethernet Port Statistics* . The Clear Ethernet Port Statistics form appears.


- 2. Select one or more Ethernet ports.
- 3. Click Confirm.

Section 3.6.6


Configuring a PoE Port (For RS416P Only)

To configure Power-over-Ethernet (PoE) settings for a specific Ethernet port, do the following:

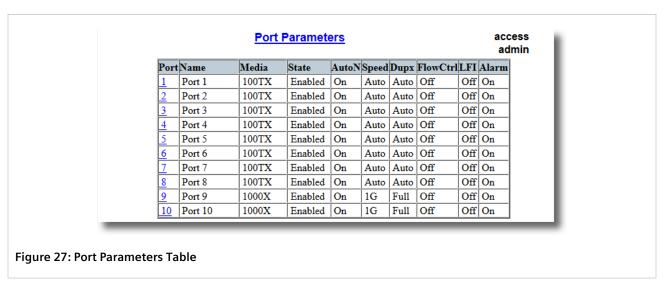
 Navigate to Ethernet Ports » Configure/View PoE Parameters » Configure/View Port PoE Parameters . The Port PoE Parameters table appears.

2. Select an Ethernet port. The **Port PoE Parameters** form appears.

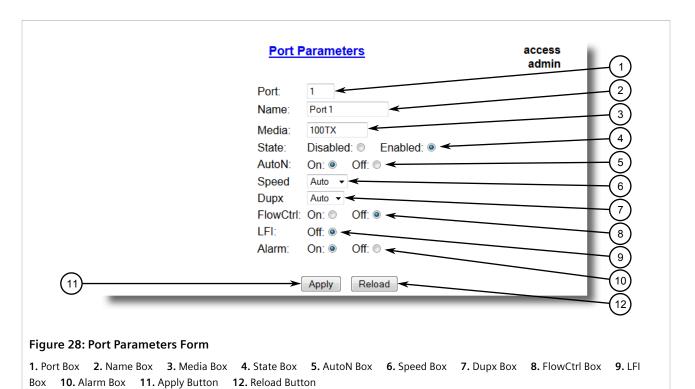
3. Configure the following parameter(s) as required:

Parameter	Description
Port	Default: 1 The port number as seen on the front plate silkscreen of the switch.
Admin	Synopsis: { Disabled, Enabled } Default: Enabled This parameter allows to enable or disable supplying power by the port.
Powered	Synopsis: { No, Yes }

Parameter	Description
	Whether or not power is currently supplied by the port.
Class	Synopsis: 0 to 65535
	PoE Class value that defines the minimum supplied power level. For more information, refer to the IEEE 802.1af and 802.1at standards.
	0 = 15.4 W (default)
	1 = 4.0 W
	2 = 7.0 W
	3 = 15.4 W
	4 = 34.2 W
Voltage	Synopsis: 0 to 65535
	Supplied voltage level.
Current	Synopsis: 0 to 65535
	Supplied current level.


4. Click Apply.

Section 3.6.7


Configuring an Ethernet Port

To configure an Ethernet port, do the following:

1. Navigate to Ethernet Ports » Configure Port Parameters . The Port Parameters table appears.

2. Select an Ethernet port. The **Port Parameters** form appears.

3. Configure the following parameter(s) as required:

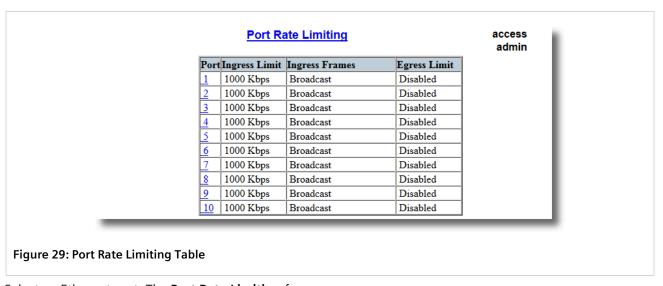
Parameter	Description
Port	Synopsis: 1 to maximum port number Default: 1
	The port number as seen on the front plate silkscreen of the switch.
Name	Synopsis: Any 15 characters Default: Port x
	A descriptive name that may be used to identify the device connected on that port.
Media	Synopsis: { 100TX, 10FL, 100FX, 1000X, 1000T, 802.11g, EoVDSL, 100TX Only, 10FL/100SX, 10GX } Default: 100TX
	The type of the port media.
State	Synopsis: { Disabled, Enabled } Default: Enabled Disabling a port will prevent all frames from being sent and
	received on that port. Also, when disabled link integrity signal is not sent so that the link/activity LED will never be lit. You may want to disable a port for troubleshooting or to secure it from unauthorized connections.
	NOTE Disabling a port whose media type is set to 802.11g disables the corresponding wireless module.
AutoN	Synopsis: { Off, On } Default: On

Parameter	Description
	Enable or disable IEEE 802.3 auto-negotiation. Enabling auto- negotiation results in speed and duplex being negotiated upon link detection; both end devices must be auto-negotiation compliant for the best possible results. 10Mbps and 100Mbps fiber optic media do not support auto-negotiation so these media must be explicitly configured to either half or full duplex. Full duplex operation requires that both ends are configured as such or else severe frame loss will occur during heavy network traffic.
Speed	Synopsis: { Auto, 10M, 100M, 1G } Default: Auto
	Speed (in Megabit-per-second or Gigabit-per-second). If autonegotiation is enabled, this is the speed capability advertised by the auto-negotiation process. If auto-negotiation is disabled, the port is explicitly forced to this speed mode.
_	AUTO means advertise all supported speed modes.
Dupx	Synopsis: { Auto, Half, Full } Default: Auto
	Duplex mode. If auto-negotiation is enabled, this is the duplex capability advertised by the auto-negotiation process. If auto-negotiation is disabled, the port is explicitly forced to this duplex mode.
	AUTO means advertise all supported duplex modes.
Flow Control	Synopsis: { Off, On } Default: On
	Flow Control is useful for preventing frame loss during times of severe network traffic. Examples of this include multiple source ports sending to a single destination port or a higher speed port bursting to a lower speed port.
	When the port is half-duplex it is accomplished using 'backpressure' where the switch simulates collisions causing the sending device to retry transmissions according to the Ethernet backoff algorithm.
	When the port is full-duplex it is accomplished using PAUSE frames which causes the sending device to stop transmitting for a certain period of time.
LFI	Synopsis: { Off, On } Default: Off
	Enabling Link-Fault-Indication (LFI) inhibits transmitting link integrity signal when the receive link has failed. This allows the device at far end to detect link failure under all circumstances.
	NOTE This feature must not be enabled at both ends of a fiber link.
Alarm	Synopsis: { On, Off } Default: On
	Disabling link state alarms will prevent alarms and LinkUp and LinkDown SNMP traps from being sent for that port.

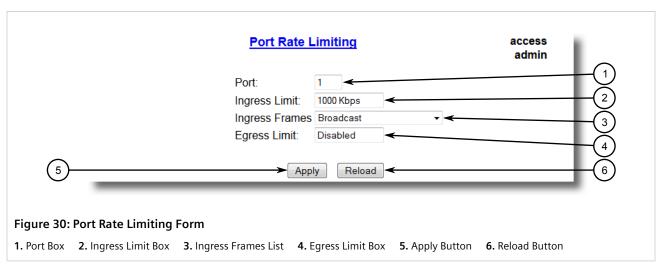
NOTE

If one end of the link is fixed to a specific speed and duplex type and the peer auto-negotiates, there is a strong possibility that the link will either fail to raise, or raise with the wrong settings on the auto-negotiating side. The auto-negotiating peer will fall back to half-duplex operation, even when the fixed side is full duplex. Full-duplex operation requires that both ends are configured

as such or else severe frame loss will occur during heavy network traffic. At lower traffic volumes the link may display few, if any, errors. As the traffic volume rises, the fixed negotiation side will begin to experience dropped packets, while the auto-negotiating side will experience excessive collisions. Ultimately, as traffic load approaches 100%, the link will become entirely unusable. These problems can be avoided by always configuring ports to the appropriate fixed values.


4. Click Apply.

Section 3.6.8


Configuring Port Rate Limiting

To configure port rate limiting, do the following:

1. Navigate to **Ethernet Ports** » **Configure Port Rate Limiting**. The **Port Rate Limiting** table appears.

2. Select an Ethernet port. The **Port Rate Limiting** form appears.

3. Configure the following parameter(s) as required:

Parameter	Description
Port	Synopsis: 1 to maximum port number Default: 1 The port number as seen on the front plate silkscreen of the switch.
Ingress Limit	Synopsis: 62 to 256000 Kbps or { Disabled } Default: 1000 Kbps The rate after which received frames (of the type described by the ingress frames parameter) will be discarded by the switch.
Ingress Frames	Synopsis: { Broadcast, Bcast&Mcast, Bcast&Mcast&FloodUcast, Bcast&FloodUcast, FloodUcast, All } Default: Broadcast This parameter specifies the types of frames to be rate-limited on this port. It applies only to received frames: • Broadcast - only broadcast frames
Egress Limit	Synopsis: { Broadcast, Multicast, Mcast&FloodUcast, All }">62 to 256000 Kbps or { Disabled } Default: Disabled The maximum rate at which the switch will transmit (multicast, broadcast and unicast) frames on this port. The switch will discard frames in order to meet this rate if required.

4. Click Apply.

Section 3.6.9

Configuring Port Mirroring

Port mirroring is a troubleshooting tool that copies, or mirrors, all traffic received or transmitted on a designated port to specified mirror port. If a protocol analyzer is attached to the target port, the traffic stream of valid frames on any source port is made available for analysis.

Select a target port that has a higher speed than the source port. Mirroring a 100 Mbps port onto a 10 Mbps port may result in an improperly mirrored stream.

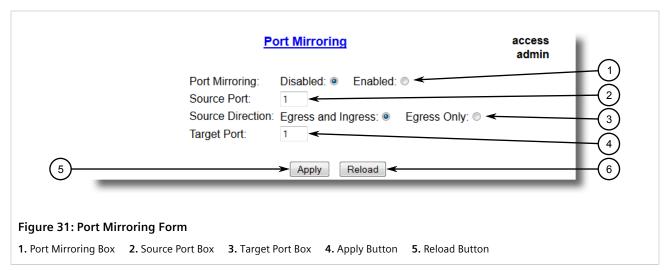
Frames will be dropped if the full-duplex rate of frames on the source port exceeds the transmission speed of the target port. Since both transmitted and received frames on the source port are mirrored to the target port, frames will be discarded if the sum traffic exceeds the target port's transmission rate. This problem reaches its extreme in the case where traffic on a 100 Mbps full-duplex port is mirrored onto a 10 Mbps half-duplex port.

NOTE

Invalid frames received on the source port will not be mirrored. These include CRC errors, oversize and undersize packets, fragments, jabbers, collisions, late collisions and dropped events.

IMPORTANT!

Before configuring port mirroring, note the following limitations:


- Traffic will be mirrored onto the target port irrespective of its VLAN membership. It could be the same as or different from the source port's membership
- Network management frames (such as RSTP, GVRP etc.) may not be mirrored

Configuring Port Mirroring 79

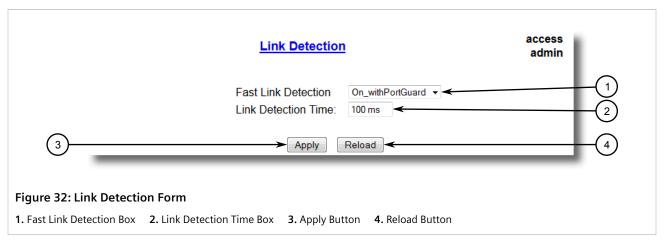
• Switch management frames generated by the switch (such as Telnet, HTTP, SNMP, etc.) may not be mirrored

To configure port mirroring, do the following:

1. Navigate to Ethernet Ports » Configure Port Mirroring. The Port Mirroring form appears.

2. Configure the following parameter(s) as required:

Parameter	Description
Port Mirroring	Synopsis: { Disabled, Enabled } Default: Disabled
	Enabling port mirroring causes all frames received and transmitted by the source port(s) to be transmitted out of the target port.
Source Port	Synopsis: Any combination of numbers valid for this parameter The port(s) being monitored.
Source Direction	Synopsis: Egress and Ingress, Egress Only Default: Egress and Ingress Specifies monitoring whether both egress and ingress traffics or only egress traffic of the source port.
Target Port	Synopsis: 1 to maximum port number Default: 2 The port where a monitoring device should be connected.


3. Click Apply.

Section 3.6.10

Configuring Link Detection

To configure link detection, do the following:

1. Navigate to *Ethernet Ports » Configure Link Detection*. The **Link Detection** form appears.

2. Configure the following parameter(s) as required:

NOTE

When Fast Link Detection is enabled, the system prevents link state change processing from consuming all available CPU resources. However, if Port Guard is not used, it is possible for almost all available CPU time to be consumed by frequent link state changes, which could have a negative impact on overall system responsiveness.

Parameter	Description
Fast Link Detection	Synopsis: { Off, On, On_withPortGuard } Default: On_withPortGuard
	This parameter provides protection against faulty end devices generating an improper link integrity signal. When a faulty end device or a mis-matching fiber port is connected to the unit, a large number of continuous link state changes could be reported in a short period of time. These large number of bogus link state changes could render the system unresponsive as most, if not all, of the system resources are used to process the link state changes. This could in turn cause a serious network problem as the unit's RSTP process may not be able to run, thus allowing network loop to form.
	Three different settings are available for this parameter:
	ON_withPortGuard - This is the recommended setting. With this setting, an extended period (~2 minutes) of excessive link state changes reported by a port will prompt Port Guard feature to disable FAST LINK DETECTION on that port and raise an alarm. By disabling FAST LINK DETECTION on the problematic port, excessive link state changes can no longer consume substantial amount of system resources. However if FAST LINK DETECTION is disabled, the port will need a longer time to detect a link failure. This may result in a longer network recovery time of up to 2s. Once Port Guard disables FAST LINK DETECTION on the port by clearing the alarm.
	ON - In certain special cases where a prolonged excessive link state changes constitute a legitimate link operation, using this setting can prevent Port Guard from disabling FAST LINK DETECTION on the port in question. If excessive link state changes persist for more than 2 minutes, an alarm will be generated to warn user about the observed bouncing link. If the excessive link state changes condition is resolved later on, the alarm will be cleared automatically. Since this option does not disable FAST LINK DETECTION, a persistent bouncing link

Parameter	Description
	could continue affect the system in terms of response time. This setting should be used with caution.
	OFF - Turning this parameter OFF will disable FAST LINK DETECTION completely. The switch will need a longer time to detect a link failure. This will result in a longer network recovery time of up to 2s.
Link Detection Time	Synopsis: 100 ms to 1000 ms Default: 100 ms
	The time that the link has to continuously stay up before the "link up" decision is made by the device.
	(The device performs de-bouncing of Ethernet link detection to avoid multiple responses to an occasional link bouncing event, e.g. when a cable is shaking while being plugged-in or unplugged).

3. Click Apply.

Section 3.6.11

Detecting Cable Faults

Connectivity issues can sometimes be attributed to faults in Ethernet cables. To help detect cable faults, short circuits, open cables or cables that are too long, ROS includes a built-in cable diagnostics utility.

CONTENTS

- Section 3.6.11.1, "Viewing Cable Diagnostics Results"
- Section 3.6.11.2, "Performing Cable Diagnostics"
- Section 3.6.11.3, "Clearing Cable Diagnostics"
- Section 3.6.11.4, "Determining the Estimated Distance To Fault (DTF)"

Section 3.6.11.1

Viewing Cable Diagnostics Results

To view the results of previous diagnostic tests, navigate to **Ethernet Ports** » **Configure/View Cable Diagnostics Parameters** . The **Cable Diagnostics Parameters** table appears.

NOTE

For information about how to start a diagnostic test, refer to Section 3.6.11.2, "Performing Cable Diagnostics".

82 Detecting Cable Faults

Cable Diagnostics Parameters							acces		
Port	State	Runs	Calib.	Good	Open	Short	Imped	Pass /Fail /Total	
1	Stopped	0	0.0 m	0	0	0	0	0/ 0/ 0	
2	Stopped	0	0.0 m	0	0	0	0	0/ 0/ 0	
3	Stopped	0	0.0 m	0	0	0	0	0/ 0/ 0	
4	Stopped	0	0.0 m	0	0	0	0	0/ 0/ 0	
<u>5</u>	Stopped	0	0.0 m	0	0	0	0	0/ 0/ 0	
<u>6</u>	Stopped	0	0.0 m	0	0	0	0	0/ 0/ 0	
7	Stopped	0	0.0 m	0	0	0	0	0/ 0/ 0	
8	Stopped	0	0.0 m	0	0	0	0	0/ 0/ 0	
9	Stopped	0	0.0 m	0	0	0	0	0/ 0/ 0	
10	Stopped	0	0.0 m	0	0	0	0	0/ 0/ 0	

Figure 33: Cable Diagnostics Parameters Table

This table displays the following information:

Parameter	Description
Port	Synopsis: 1 to maximum port number
	The port number as seen on the front plate silkscreen of the switch.
State	Synopsis: { Stopped, Started }
	Control the start/stop of the cable diagnostics on the selected port. If a port does not support cable diagnostics, State will be reported as N/A.
Runs	Synopsis: 0 to 65535
	The total number of times cable diagnostics to be performed on the selected port. If this number is set to 0, cable diagnostics will be performed forever on the selected port.
Calib.	Synopsis: -100.0 to 100.0 m
	This calibration value can be used to adjust or calibrate the estimated distance to fault. User can take following steps to calibrate the cable diagnostics estimated distance to fault:
	Pick a particular port which calibration is needed
	Connect an Ethernet cable with a known length (e.g. 50m) to the port
	DO NOT connect the other end of the cable to any link partner
	Run cable diagnostics a few times on the port. OPEN fault should be detected
	Find the average distance to the OPEN fault recorded in the log and compare it to the known length of the cable. The difference can be used as the calibration value
	Enter the calibration value and run cable diagnostics a few more times
	The distance to OPEN fault should now be at similar distance as the cable length
	Distance to fault for the selected port is now calibrated
Good	Synopsis: 0 to 65535
	The number of times GOOD TERMINATION (no fault) is detected on the cable pairs of the selected port.
Open	Synopsis: 0 to 65535

Parameter	Description
	The number of times OPEN is detected on the cable pairs of the selected port.
Short	Synopsis: 0 to 65535
	The number of times SHORT is detected on the cable pairs of the selected port.
Imped	Synopsis: 0 to 65535
	The number of times IMPEDANCE MISMATCH is detected on the cable pairs of the selected port.
Pass /Fail /Total	Synopsis: Any 19 characters
	This field summarizes the results of the cable diagnostics performed so far.
	Pass - number of times cable diagnostics successfully completed on the selected port.
	Fail - number of times cable diagnostics failed to complete on the selected port.
	Total - total number of times cable diagnostics have been attempted on the selected port.

NOTE

For each successful diagnostic test, the values for **Good**, **Open**, **Short** or **Imped** will increment based on the number of cable pairs connected to the port. For a 100Base-T port, which has two cable pairs, the number will increase by two. For a 1000Base-T port, which has four cable pairs, the number will increase by four.

NOTE

When a cable fault is detected, an estimated distance-to-fault is calculated and recorded in the system log. The log lists the cable pair, the fault that was detected, and the distance-to-fault value. For more information about the system log, refer to Section 3.5.1, "Viewing Local Logs".

Section 3.6.11.2

Performing Cable Diagnostics

To perform a cable diagnostic test on one or more Ethernet ports, do the following:

1. Connect a CAT-5 (or better quality) Ethernet cable to the selected Ethernet port.

IMPORTANT!

Both the selected Ethernet port and its partner port can be configured to run in **Enabled** mode with auto-negotiation, or in **Disabled** mode. Other modes are not recommended, as they may interfere with the cable diagnostics procedure.

- 2. Connect the other end of the cable to a similar network port. For example, connect a 100Base-T port to a 100Base-T port, or a 1000Base-T port to a 1000Base-T port.
- 3. In ROS, navigate to *Ethernet Ports* » *Configure/View Cable Diagnostics Parameters* . The Cable Diagnostics Parameters table appears.

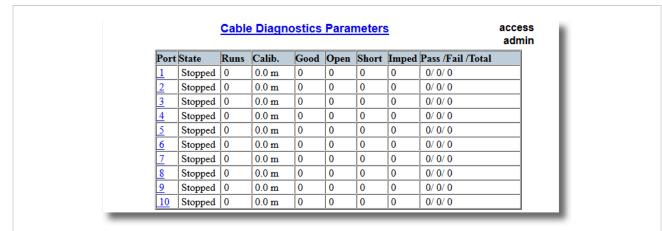
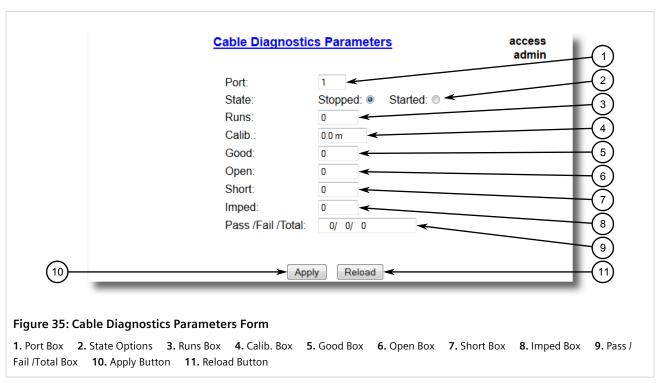
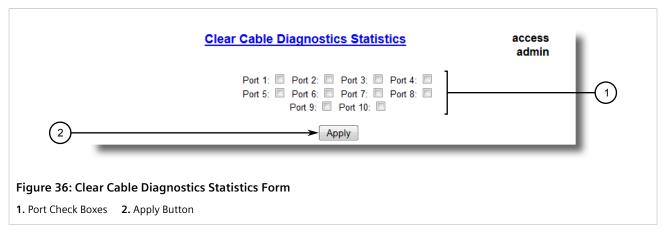



Figure 34: Cable Diagnostics Parameters Table

4. Select an Ethernet port. The **Cable Diagnostics Parameters** form appears.

- 5. Under **Runs**, enter the number of consecutive diagnostic tests to perform. A value of 0 indicates the test will run continuously until stopped by the user.
- 6. Under **Calib.**, enter the estimated Distance To Fault (DTF) value. For information about how to determine the DTF value, refer to Section 3.6.11.4, "Determining the Estimated Distance To Fault (DTF)".
- 7. Select **Started**.

IMPORTANT!


A diagnostic test can be stopped by selecting **Stopped** and clicking **Apply**. However, if the test is stopped in the middle of a diagnostic run, the test will run to completion.

Section 3.6.11.3

Clearing Cable Diagnostics

To clear the cable diagnostic results, do the following:

1. Navigate to *Ethernet Ports » Clear Cable Diagnostics Statistics* . The Clear Cable Diagnostics Statistics form appears.

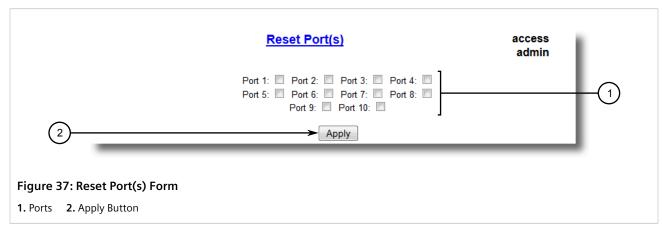
- 2. Select one or more Ethernet ports.
- Click Apply.

Section 3.6.11.4

Determining the Estimated Distance To Fault (DTF)

To determine the estimate Distance To Fault (DTF), do the following:

- 1. Connect a CAT-5 (or better quality) Ethernet cable with a known length to the device. Do not connect the other end of the cable to another port.
- 2. Configure the cable diagnostic utility to run a few times on the selected Ethernet port and start the test. For more information, refer to Section 3.6.11.2, "Performing Cable Diagnostics". Open faults should be detected and recorded in the system log.
- 3. Review the errors recorded in the system log and determine the average distance of the open faults. For more information about the system log, refer to Section 3.5.1, "Viewing Local Logs".
- 4. Subtract the average distance from the cable length to determine the calibration value.
- 5. Configure the cable diagnostic utility to run a few times with the new calibration value. The distance to the open fault should now be the same as the actual length of the cable. The Distance To Fault (DTF) is now calibrated for the selected Ethernet port.


Section 3.6.12

Resetting Ethernet Ports

At times, it may be necessary to reset a specific Ethernet port, such as when the link partner has latched into an inappropriate state. This is also useful for forcing a re-negotiation of the speed and duplex modes.

To reset a specific Ethernet port(s), do the following:

1. Navigate to **Ethernet Ports** » **Reset Port(s)** . The **Reset Port(s)** form appears.

- 2. Select one or more Ethernet ports to reset.
- 3. Click **Apply**. The selected Ethernet ports are reset.

Section 3.7

Managing IP Interfaces

RUGGEDCOM ROS allows one IP interface to be configured for each subnet (or VLAN), up to a maximum of 255 interfaces. One of the interfaces must also be configured to be a management interface for certain IP services, such as DHCP relay agent.

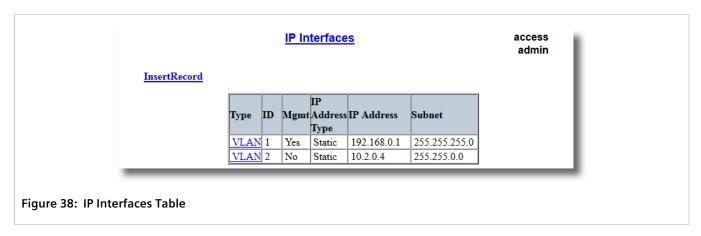
Each IP interface must be assigned an IP address. In the case of the management interface, the IP address type can be either static, DHCP, BOOTP or dynamic. For all other interfaces, the IP address must be static.

CAUTION!

Configuration hazard – risk of communication disruption. Changing the ID for the management VLAN will break any active Raw Socket TCP connections. If this occurs, reset all serial ports.

CONTENTS

- Section 3.7.1, "Viewing a List of IP Interfaces"
- Section 3.7.2, "Adding an IP Interface"

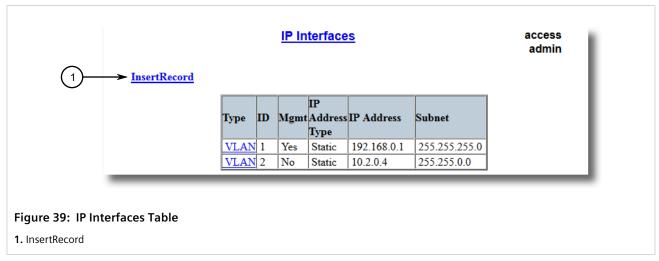

Resetting Ethernet Ports 87

• Section 3.7.3, "Deleting an IP Interface"

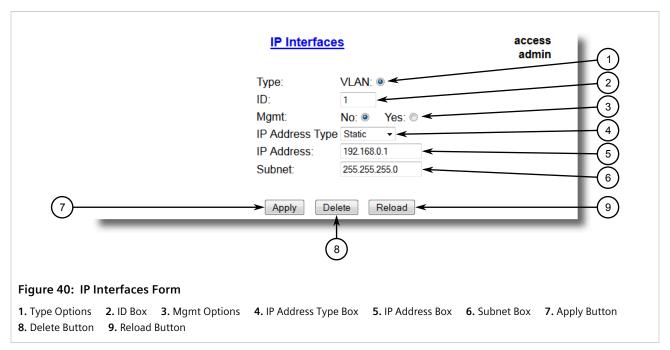
Section 3.7.1

Viewing a List of IP Interfaces

To view a list of IP interfaces configured on the device, navigate to **Administration** » **Configure IP Interfaces** . The **IP Interfaces** table appears.


If IP interfaces have not been configured, add IP interfaces as needed. For more information, refer to Section 3.7.2, "Adding an IP Interface".

Section 3.7.2


Adding an IP Interface

To add an IP interface, do the following:

1. Navigate to Administration » Configure IP Interfaces . The IP Interfaces table appears.

2. Click InsertRecord. The Switch IP Interfaces form appears.

3. Configure the following parameter(s) as required:

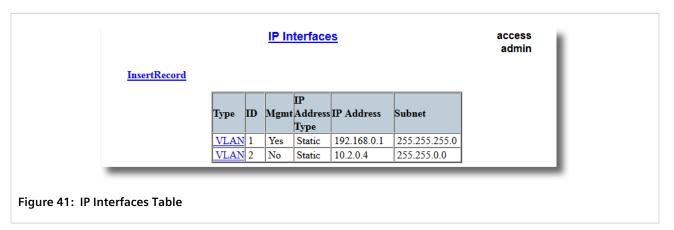
NOTE

The IP address and mask configured for the management VLAN are not changed when resetting all configuration parameters to defaults and will be assigned a default VLAN ID of 1. Changes to the IP address take effect immediately. All IP connections in place at the time of an IP address change will be lost.

Parameter	Description
Туре	Synopsis: { VLAN } Default: VLAN Specifies the type of the interface for which this IP interface is created.
ID	Synopsis: 1 to 4094 Default: 1 Specifies the ID of the interface for which this IP interface is created. If the interface type is VLAN, this represents the VLAN ID.
Mgmt	Synopsis: { No, Yes } Default: No Specifies whether the IP interface is the device management interface.
IP Address Type	Synopsis: { Static, Dynamic, DHCP, BOOTP } Default: Static Specifies whether the IP address is static or is dynamically assigned via DHCP or BOOTP>. The Dynamic option automatically switches between BOOTP and DHCP until it receives a response from the relevant server. The Static option must be used for nonmanagement interfaces.
IP Address	Synopsis: ###.###.### where ### ranges from 0 to 255 Default: 192.168.0.1

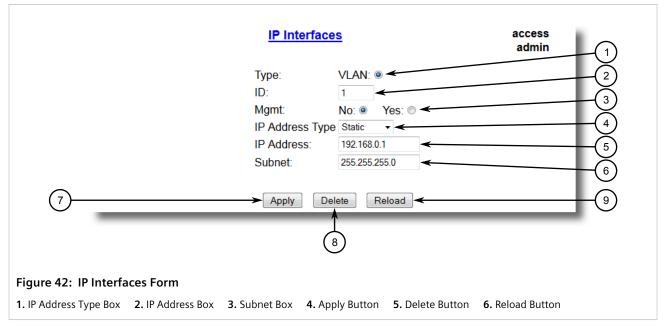
Adding an IP Interface 89

Parameter	Description
	Specifies the IP address of this device. An IP address is a 32-bit number that is notated by using four numbers from 0 through 255, separated by periods. Only a unicast IP address is allowed, which ranges from 1.0.0.0 to 233.255.255.
Subnet	Synopsis: ###.###.### where ### ranges from 0 to 255 Default: 255.255.255.0
	Specifies the IP subnet mask of this device. An IP subnet mask is a 32-bit number that is notated by using four numbers from 0 through 255, separated by periods. Typically, subnet mask numbers use either 0 or 255 as values (e.g. 255.255.255.0) but other numbers can appear.
	IMPORTANT! Each IP interface must have a unique network address.


4. Click **Apply**.

Section 3.7.3

Deleting an IP Interface


To delete an IP interface configured on the device, do the following:

1. Navigate to Administration » Configure IP Interfaces . The IP Interfaces table appears.

2. Select the IP interface from the table. The IP Interfaces form appears.

90 Deleting an IP Interface

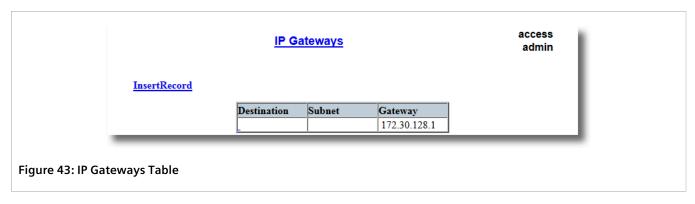
3. Click **Delete**.

Section 3.8

Managing IP Gateways

RUGGEDCOM ROS allows up to ten IP gateways to be configured. When both the **Destination** and **Subnet** parameters are blank, the gateway is considered to be a default gateway.

CONTENTS

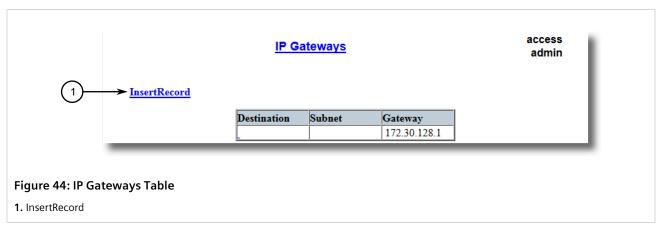

- Section 3.8.1, "Viewing a List of IP Gateways"
- Section 3.8.2, "Adding an IP Gateway"
- Section 3.8.3, "Deleting an IP Gateway"

Section 3.8.1

Viewing a List of IP Gateways

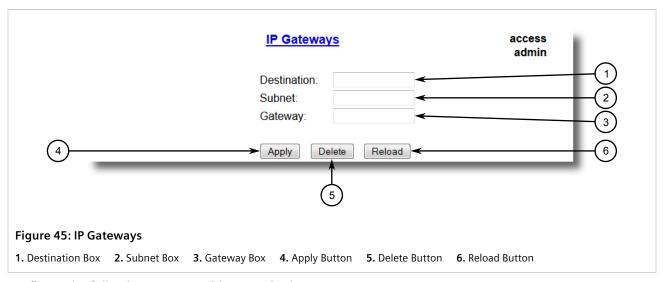
To view a list of IP gateways configured on the device, navigate to *Administration* » *Configure IP Gateways* . The IP Gateways table appears.

Managing IP Gateways 91


If IP gateways have not been configured, add IP gateways as needed. For more information, refer to Section 3.8.2, "Adding an IP Gateway".

Section 3.8.2

Adding an IP Gateway


To add an IP gateway, do the following:

1. Navigate to Administration » Configure IP Gateways . The IP Gateways table appears.

2. Click InsertRecord. The IP Gateways form appears.

92 Adding an IP Gateway

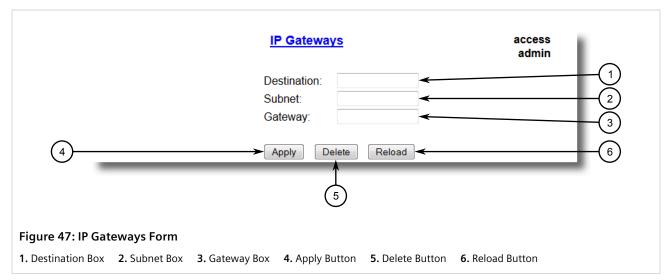
3. Configure the following parameter(s) as required:

Parameter	Description
Destination	Synopsis: ###.###.### where ### ranges from 0 to 255 Specifies the IP address of destination network or host. For default gateway, both the destination and subnet are 0.
Subnet	Synopsis: ###.###.### where ### ranges from 0 to 255 Specifies the destination IP subnet mask. For default gateway, both the destination and subnet are 0.
Gateway	Synopsis: ###.###.### where ### ranges from 0 to 255 Specifies the gateway to be used to reach the destination.


4. Click Apply.

Section 3.8.3

Deleting an IP Gateway

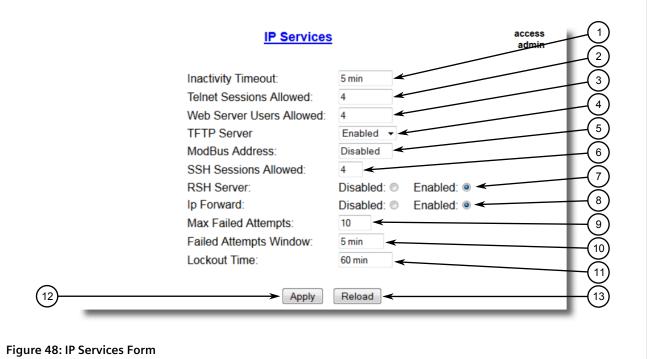

To delete an IP gateway configured on the device, do the following:

1. Navigate to Administration » Configure IP Gateways . The IP Gateways table appears.

Deleting an IP Gateway 93

2. Select the IP gateway from the table. The IP Gateways form appears.

3. Click Delete.


Section 3.9

Configuring IP Services

To configure the IP services provided by the device, do the following:

1. Navigate to **Administration** » **Configure IP Services** . The **IP Services** form appears.

94 Configuring IP Services

1. Inactivity Timeout Box 2. Telnet Sessions Allowed Box 3. Web Server Users Allowed Box 4. TFTP Server Box 5. Modbus Address Box 6. SSH Sessions Allowed Box 7. RSH Server Options 8. IP Forward Options 9. Max Failed Attempts Box 10. Failed Attempts Window Box 11. Lockout Time Box 12. Apply Button 13. Reload Button

2. Configure the following parameter(s) as required:

Parameter	Description	
Inactivity Timeout	Synopsis: 1 to 60 or { Disabled } Default: 5 min	
	Specifies when the console will timeout and display the login screen if there is no user activity. A value of zero disables timeouts. For Web Server users maximum timeout value is limited to 30 minutes.	
Telnet Sessions Allowed	Synopsis: 1 to 4 or { Disabled } Default: Disabled	
	Limits the number of Telnet sessions. A value of zero prevents any Telnet access.	
Web Server Users Allowed	Synopsis: 1 to 4 or { Disabled } Default: 4	
	Limits the number of simultaneous web server users.	
TFTP Server	Synopsis: { Disabled, Get Only, Enabled } Default: Disabled	
	As TFTP is a very insecure protocol, this parameter allows user to limit or disable TFTP Server access	
	DISABLED - disables read and write access to TFTP Server	
	GET ONLY - only allows reading of files via TFTP Server	
	ENABLED - allows reading and writing of files via TFTP Server	
ModBus Address	Synopsis: 1 to 255 or { Disabled } Default: Disabled	

Configuring IP Services 95

Parameter	Description	
	Determines the Modbus address to be used for Management through Modbus.	
SSH Sessions Allowed (Controlled Version Only)	Synopsis: 1 to 4 Default: 4 Limits the number of SSH sessions.	
RSH Server	Synopsis: { Disabled, Enabled } Default: Disabled (controlled version) or Enabled (non-controlled version) Disables/enables Remote Shell access.	
IP Forward	Synopsis: { Disabled, Enabled } Controls the ability of IP Forwarding between VLANs in Serial Server or IP segments.	
	NOTE When upgrading to ROS v4.3, the default will be set to { Enabled }.	
Max Failed Attempts	Synopsis: 1 to 20 Default: 10	
	Maximum number of consecutive failed access attempts on service within Failed Attempts Window before blocking the service.	
Failed Attempts Window	Synopsis: 1 to 30 min Default: 5 min	
	The time in minutes (min) in which the maximum number of failed login attempts must be exceeded before a service is blocked. The counter of failed attempts resets to 0 when the timer expires.	
Lockout Time	Synopsis: 1 to 120 min Default: 60 min	
	The time in minutes (min) the service remains locked out after the maximum number of failed access attempts has been reached.	

Section 3.10

Managing Remote Monitoring

Remote Monitoring (RMON) is used to collect and view historical statistics related to the performance and operation of Ethernet ports. It can also record a log entry and/or generate an SNMP trap when the rate of occurrence of a specified event is exceeded.

CONTENTS

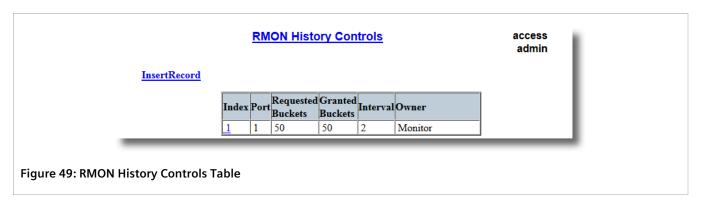
- Section 3.10.1, "Managing RMON History Controls"
- Section 3.10.2, "Managing RMON Alarms"

Section 3.10.3, "Managing RMON Events"

Section 3.10.1

Managing RMON History Controls

The history controls for Remote Monitoring take samples of the RMON-MIB history statistics of an Ethernet port at regular intervals.

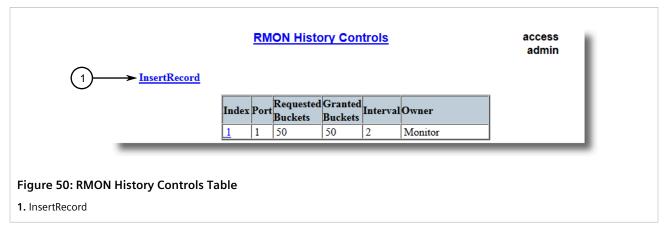

CONTENTS

- Section 3.10.1.1, "Viewing a List of RMON History Controls"
- Section 3.10.1.2, "Adding an RMON History Control"
- Section 3.10.1.3, "Deleting an RMON History Control"

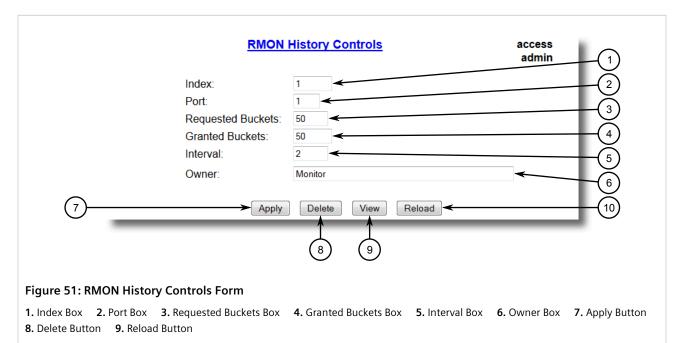
Section 3.10.1.1

Viewing a List of RMON History Controls

To view a list of RMON history controls, navigate to **Ethernet Stats** » **Configure RMON History Controls** . The **RMON History Controls** table appears.


If history controls have not been configured, add controls as needed. For more information, refer to Section 3.10.1.2, "Adding an RMON History Control".

Section 3.10.1.2


Adding an RMON History Control

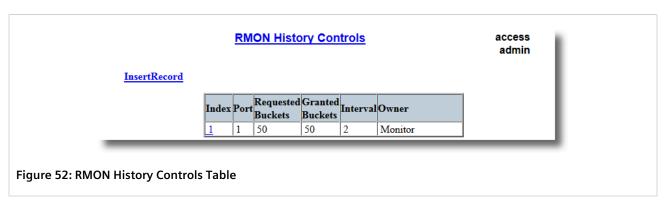
To add an RMON history control, do the following:

1. Navigate to *Ethernet Stats » Configure RMON History Controls* . The RMON History Controls table appears.

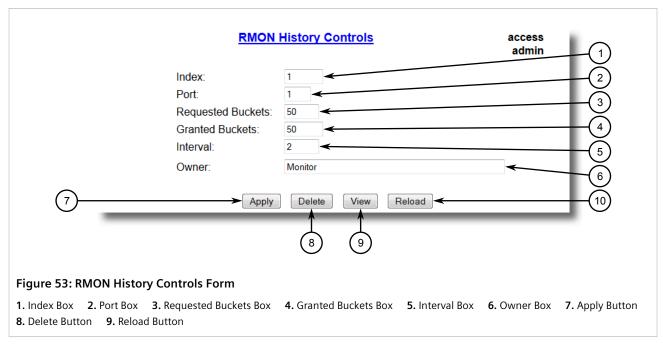
2. Click InsertRecord. The RMON History Controls form appears.

3. Configure the following parameter(s) as required:

Parameter	Description	
Index	Synopsis: 1 to 65535 Default: 1 The index of this RMON History Contol record.	
Port	Synopsis: 1 to maximum port number Default: 1 The port number as seen on the front plate silkscreen of the switch.	
Requested Buckets	Synopsis: 1 to 4000 Default: 50 The maximum number of buckets requested for this RMON collection history group of statistics. The range is 1 to 4000. The default is 50.	


Parameter	Description	
Granted Buckets	Synopsis: 0 to 65535 The number of buckets granted for this RMON collection history. This field is not editable.	
Interval	Synopsis: 1 to 3600 Default: 1800 The number of seconds in over which the data is sampled for each bucket. The range is 1 to 3600. The default is 1800.	
Owner	Synopsis: Any 127 characters Default: Monitor The owner of this record. It is suggested to start this string withword 'monitor'.	

Section 3.10.1.3


Deleting an RMON History Control

To delete an RMON history control, do the following:

1. Navigate to *Ethernet Stats » Configure RMON History Controls* . The RMON History Controls table appears.

2. Select the history control from the table. The **RMON History Controls** form appears.

Click Delete.

Section 3.10.2

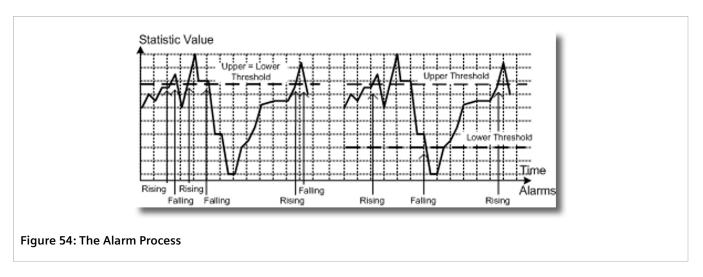
Managing RMON Alarms

When Remote Monitoring (RMON) alarms are configured, RUGGEDCOM ROS examines the state of a specific statistical variable.

Remote Monitoring (RMON) alarms define upper and lower thresholds for legal values of specific statistical variables in a given interval. This allows RUGGEDCOM ROS to detect events as they occur more quickly than a specified maximum rate or less quckly than a minimum rate.

When the rate of change for a statistics value exceeds its limits, an internal INFO alarm is always generated. For information about viewing alarms, refer to Section 4.6.2, "Viewing and Clearing Latched Alarms".

Additionally, a statistic threshold crossing can result in further activity. An RMON alarm can be configured to point to a particular RMON event, which can generate an SNMP trap, an entry in the event log, or both. The RMON event can also direct alarms towards different users defined for SNMP.


The alarm can point to a different event for each of the thresholds. Therefore, combinations such as trap on rising threshold or trap on rising threshold, log and trap on falling threshold are possible.

Each RMON alarm may be configured such that its first instance occurs only for rising, falling, or all thresholds that exceed their limits.

The ability to configure upper and lower thresholds on the value of a measured statistic provides for the ability to add hysteresis to the alarm generation process.

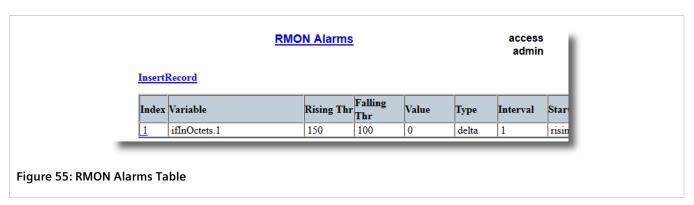
If the value of the measured statistic over time is compared to a single threshold, alarms will be generated each time the statistic crosses the threshold. If the statistic's value fluctuates around the threshold, an alarm can be generated every measurement period. Programming different upper and lower thresholds eliminates spurious alarms. The statistic value must *travel* between the thresholds before alarms can be generated. The following illustrates the very different patterns of alarm generation resulting from a statistic sample and the same sample with hysteresis applied.

100 Managing RMON Alarms

There are two methods to evaluate a statistic in order to determine when to generate an event: delta and absolute.

For most statistics, such as line errors, it is appropriate to generate an alarm when a rate is exceeded. The alarm defaults to the *delta* measurement method, which examines changes in a statistic at the end of each measurement period.

It may be desirable to alarm when the total, or absolute, number of events crosses a threshold. In this case, set the measurement period type to *absolute*.

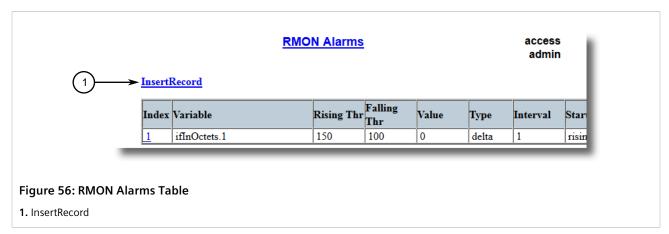

CONTENTS

- Section 3.10.2.1, "Viewing a List of RMON Alarms"
- Section 3.10.2.2, "Adding an RMON Alarm"
- Section 3.10.2.3, "Deleting an RMON Alarm"

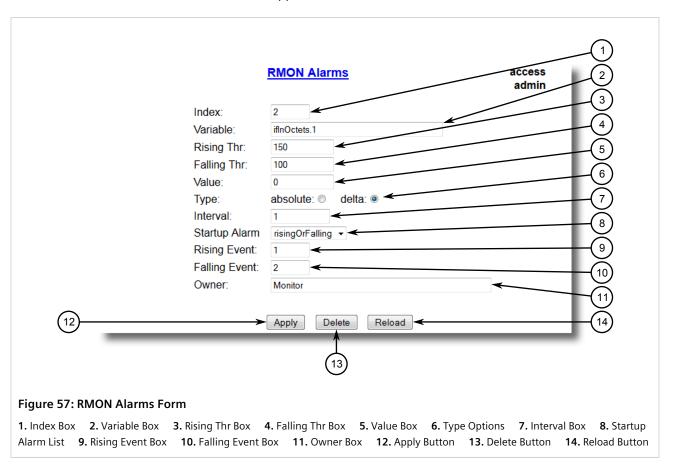
Section 3.10.2.1

Viewing a List of RMON Alarms

To view a list of RMON alarms, navigate to *Ethernet Stats » Configure RMON Alarms*. The RMON Alarms table appears.


If alarms have not been configured, add alarms as needed. For more information, refer to Section 3.10.2.2, "Adding an RMON Alarm".

Section 3.10.2.2


Adding an RMON Alarm

To add an RMON alarm, do the following:

1. Navigate to *Ethernet Stats » Configure RMON Alarms* . The **RMON Alarms** table appears.

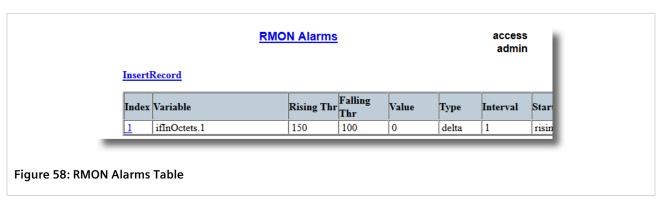
2. Click InsertRecord. The RMON Alarms form appears.

3. Configure the following parameter(s) as required:

102 Adding an RMON Alarm

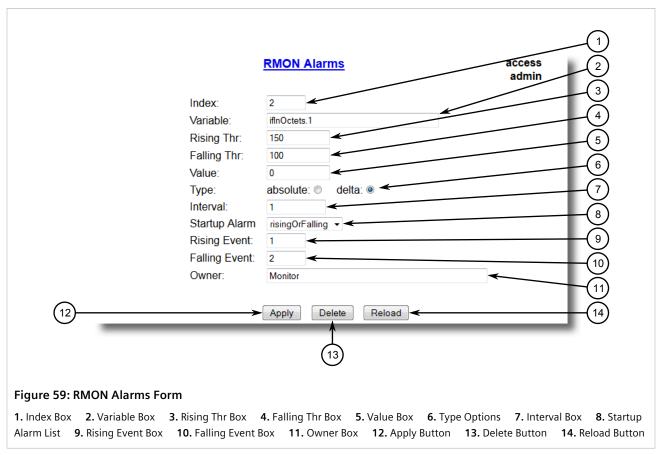
Parameter	Description	
Index	Synopsis: 1 to 65535 Default: 1 The index of this RMON Alarm record.	
<i>\/</i>		
Variable	Synopsis: SNMP Object Identifier - up to 39 characters The SNMP object identifier (OID) of the particular variable to be sampled. Only variables that resolve to an ASN.1 primitive type INTEGER (INTEGER, Integer32,Counter32, Counter64, Gauge, or TimeTicks) may be sampled. A list of objects can be printed using shell command 'rmon'. The OID format: objectName.index1.index2 where index format depends on index object type.	
Rising Thr	Synopsis: -2147483647 to 2147483647 Default: 0 A threshold for the sampled variable. When the current sampled variable value is greater than or equal to this threshold, and the value at the last sampling interval was less than this threshold, a single event will be generated. A single event will also be generated if the first sample after this record is created is greater than or equal to this threshold and the associated startup alarm ils equal to 'rising'. After rising alarm is generated, another such event will not be generated until the sampled value falls below	
Falling Thr	this threshold and reaches the value of FallingThreshold. Synopsis: -2147483647 to 2147483647 Default: 0	
	A threshold for the sampled variable. When the current sampled variable value is less than or equal to this threshold, and the value at the last sampling interval was greater than this threshold, a single event will be generated. A single event will also be generated if the first sample after this record is created is less than or equal to this threshold and the associated startup alarm ils equal to 'falling'. After falling alarm is generated, another such event will not be generated until the sampled value rises above this threshold and reaches the value of RisingThreshold.	
Value	Synopsis: -2147483647 to 2147483647 The value of monitoring object during the last sampling period. The presentation of value depends of sample type ('absolute' or 'delta').	
Туре	Synopsis: { absolute, delta } Default: delta The method of sampling the selected variable and calculating the value to be compared against the thresholds. The value of sample type can be 'absolute' or 'delta'.	
Interval	Synopsis: 0 to 2147483647 Default: 60 The number of seconds in over which the data is sampled and compared with the rising and falling thresholds.	
Startup Alarm	Synopsis: { rising, falling, risingOrFalling } Default: risingOrFalling The alarm that may be sent when this record is first created if condition for raising alarm is met. The value of startup alarm can be 'rising', 'falling' or 'risingOrFalling'.	
Rising Event	Synopsis: 0 to 65535 Default: 0	

Adding an RMON Alarm 103


Parameter	Description	
	The index of the event that is used when a falling threshold is crossed. If there is no corresponding entryl in the Event Table, then no association exists. In particular, if this value is zero, no associated event will be generated.	
Falling Event	Synopsis: 0 to 65535 Default: 0	
	The index of the event that is used when a rising threshold is crossed. If there is no corresponding entryl in the Event Table, then no association exists. In particular, if this value is zero, no associated event will be generated.	
Owner	Synopsis: Any 127 characters Default: Monitor	
	The owner of this record. It is suggested to start this string withword 'monitor'.	

Section 3.10.2.3

Deleting an RMON Alarm


To delete an RMON alarm, do the following:

1. Navigate to *Ethernet Stats* » *Configure RMON Alarms* . The **RMON Alarms** table appears.

2. Select the alarm from the table. The **RMON Alarms** form appears.

104 Deleting an RMON Alarm

Click Delete.

Section 3.10.3

Managing RMON Events

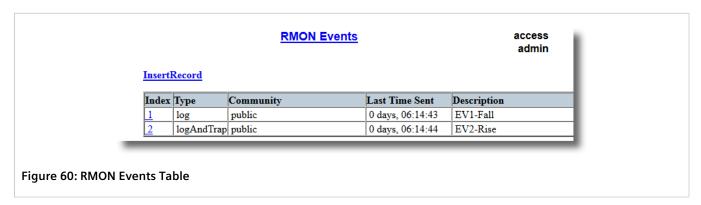
Remote Monitoring (RMON) events define behavior profiles used in event logging. These profiles are used by RMON alarms to send traps and log events.

Each alarm may specify that a log entry be created on its behalf whenever the event occurs. Each entry may also specify that a notification should occur by way of SNMP trap messages. In this case, the user for the trap message is specified as the *Community*.

Two traps are defined: risingAlarm and fallingAlarm.

CONTENTS

- Section 3.10.3.1, "Viewing a List of RMON Events"
- Section 3.10.3.2, "Adding an RMON Event"

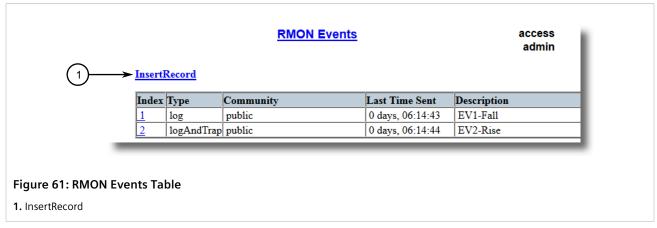

Managing RMON Events 105

Section 3.10.3.3, "Deleting an RMON Event"

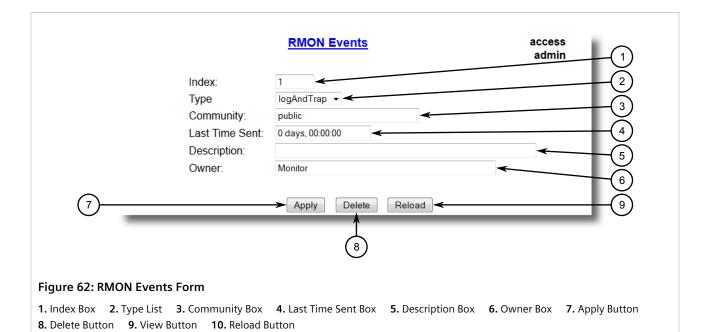
Section 3.10.3.1

Viewing a List of RMON Events

To view a list of RMON events, navigate to **Ethernet Stats** » **Configure RMON Events** . The **RMON Events** table appears.


If events have not been configured, add events as needed. For more information, refer to Section 3.10.3.2, "Adding an RMON Event".

Section 3.10.3.2


Adding an RMON Event

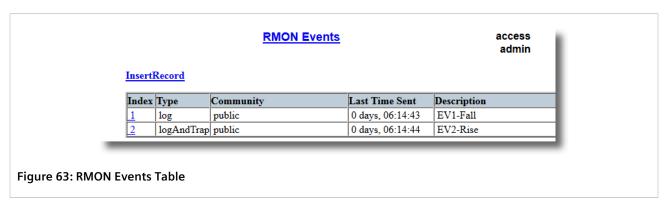
To add an RMON alarm, do the following:

1. Navigate to *Ethernet Stats* » *Configure RMON Events* . The RMON Events table appears.

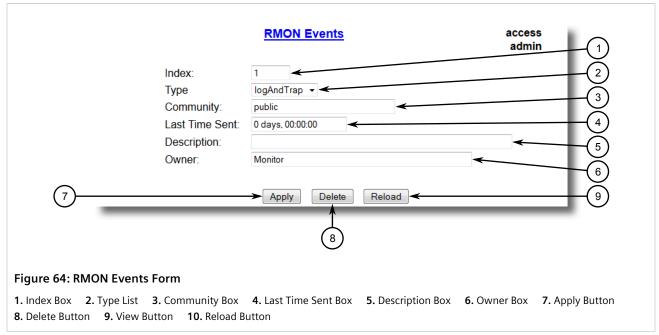
2. Click InsertRecord. The RMON Events form appears.

3. Configure the following parameter(s) as required:

Parameter	Description	
Index	Synopsis: 1 to 65535 Default: 3 The index of this RMON Event record.	
Туре	Synopsis: { none, log, snmpTrap, logAndTrap } Default: logAndTrap The type of notification that the probe will make about this event. In the case of 'log', an entry is made in the RMON Log table for each event. In the case of snmp_trap, an SNMP trap is sent to one or more management stations.	
Community	Synopsis: Any 31 characters Default: public If the SNMP trap is to be sent, it will be sent to the SNMP community specified by this string.	
Last Time Sent	Synopsis: DDDD days, HH:MM:SS The time from last reboot at the time this event entry last generated an event. If this entry has not generated any events, this value will be 0.	
Description	Synopsis: Any 127 characters Default: EV2-Rise A comment describing this event.	
Owner	Synopsis: Any 127 characters Default: Monitor The owner of this event record. It is suggested to start this string withword 'monitor'.	


Adding an RMON Event 107

Section 3.10.3.3


Deleting an RMON Event

To delete an RMON event, do the following:

1. Navigate to *Ethernet Stats* » *Configure RMON Events* . The RMON Events table appears.

2. Select the event from the table. The **RMON Events** form appears.

3. Click **Delete**.

Section 3.11

Upgrading/Downgrading Firmware

The following section describes how to upgrade and downgrade the firmware.

CONTENTS

• Section 3.11.1, "Upgrading Firmware"

108 Deleting an RMON Event

Section 3.11.2, "Downgrading Firmware"

Section 3.11.1

Upgrading Firmware

Upgrading RUGGEDCOM ROS firmware, including the main, bootloader and FPGA firmware, may be necessary to take advantage of new features or bug fixes. Binary firmware images are available from Siemens. Visit www.siemens.com/ruggedcom to determine which versions/updates are available or contact Siemens Customer Support.

Binary firmware images transferred to the device are stored in non-volatile Flash memory and require a device reset in order to take effect.

IMPORTANT!

Non-Controlled (NC) versions of RUGGEDCOM ROS can not be upgraded to Controlled firmware versions. However, Controlled firmware versions can be upgraded to an NC firmware version.

NOTE

The IP address set for the device will not be changed following a firmware upgrade.

To upgrade the RUGGEDCOM ROS firmware, do the following:

- 1. Upload a different version of the binary firmware image to the device. For more information, refer to Section 3.4, "Uploading/Downloading Files".
- 2. Reset the device to complete the installation. For more information, refer to Section 3.12, "Resetting the Device".
- 3. Access the CLI shell and verify the new software version has been installed by typing **version**. The currently installed versions of the main and boot firmware are displayed.

Section 3.11.2

Downgrading Firmware

Downgrading the RUGGEDCOM ROS firmware is generally not recommended, as it may have unpredictable effects. However, if a downgrade is required, do the following:

IMPORTANT!

Before downgrading the firmware, make sure the hardware and FPGA code types installed in the device are supported by the older firmware version. Refer to the Release Notes for the older firmware version to confirm.

IMPORTANT!

Non-Controlled (NC) versions of RUGGEDCOM ROS can not be downgraded to Controlled firmware versions. However, Controlled firmware versions can be downgraded to an NC firmware version.

CAUTION!

Do not downgrade the RUGGEDCOM ROS boot version.

Disconnect the device from the network.

Upgrading Firmware 109

- 2. Log in to the device as an admin user. For more information, refer to Section 2.2, "Logging In".
- 3. Make a local copy of the current configuration file. For more information, refer to Section 3.4, "Uploading/Downloading Files".

IMPORTANT!

Never downgrade the RUGGEDCOM ROS software version beyond RUGGEDCOM ROS v4.3 when encryption is enabled. Make sure the device has been restored to factory defaults before downgrading.

- 4. Restore the device to its factory defaults. For more information, refer to Section 3.3, "Restoring Factory Defaults".
- 5. Upload and apply the older firmware version and its associated FPGA files using the same methods used to install newer firmware versions. For more information , refer to Section 3.11.1, "Upgrading Firmware" .
- 6. Press Ctrl-S to access the CLI.
- 7. Clear all logs by typing:

clearlogs

8. Clear all alarms by typing:

clearalarms

IMPORTANT!

After downgrading the firmware and FPGA files, be aware that some settings from the previous configuration may be lost or reverted back to the factory defaults (including user passwords if downgrading from a security related version), as those particular tables or fields may not exist in the older firmware version. Because of this, the unit must be configured after the downgrade.

9. Configure the device as required.

Section 3.12

Resetting the Device

To reset the device, do the following:

1. Navigate to *Diagnostics* » *Reset Device* . The **Reset Device** form appears.

2. Click Confirm.

110 Resetting the Device

Section 3.13

Decommissioning the Device

Before taking the device out of service, either permanently or for maintenance by a third-party, make sure the device has been fully decommissioned. This includes removing any sensitive, proprietary information.

To decommission the device, do the following:

- 1. Disconnect all network cables from the device.
- 2. Connect to the device via the RS-232 serial console port. For more information, refer to Section 2.1.1, "Connecting Directly".
- 3. Restore all factory default settings for the device. For more information, refer to Section 3.3, "Restoring Factory Defaults".
- 4. Access the CLI. For more information, refer to Section 2.6, "Using the Command Line Interface".
- 5. Upload a blank version of the banner.txt file to the device to replace the existing file. For more information about uploading a file, refer to Section 3.4, "Uploading/Downloading Files".
- 6. Confirm the upload was successful by typing:

```
type banner.txt
```

7. Clear the system and crash logs by typing:

clearlog

8. Generate a random SSL certificate by typing:

sslkeygen

This may take several minutes to complete. To verify the certificate has been generated, type:

```
type syslog.txt
```

When the phrase

```
Generated ssl.crt was saved
```

appears in the log, the SSL certificate has been generated.

9. Generate random SSH keys by typing:

sshkeygen

This may take several minutes to complete. To verify the keys have been generated, type:

```
type syslog.txt
```

When the phrase

```
Generated ssh.keys was saved
```

appears in the log, the SSH keys have been generated.

10. De-fragment and erase all free flash memory by typing:

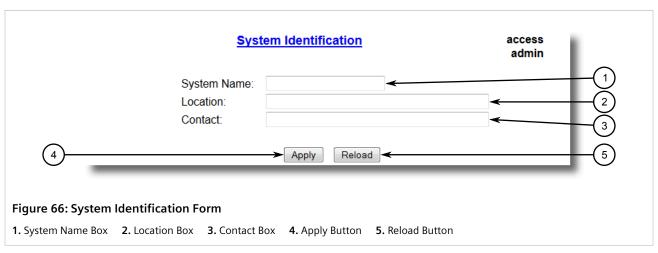
flashfile defrag

This may take several minutes to complete.

System Administration

This chapter describes how to perform various administrative tasks related to device identification, user permissions, alarm configuration, certificates and keys, and more.

CONTENTS


- Section 4.1, "Configuring the System Information"
- Section 4.2, "Customizing the Login Screen"
- Section 4.3, "Configuring Passwords"
- Section 4.4, "Clearing Private Data"
- Section 4.5, "Enabling/Disabling the Web Interface"
- Section 4.6, "Managing Alarms"
- Section 4.7, "Managing the Configuration File"
- Section 4.8, "Managing an Authentication Server"

Section 4.1

Configuring the System Information

To configure basic information that can be used to identify the device, its location, and/or its owner, do the following:

1. Navigate to Administration » Configure System Identification . The System Identification form appears.

2. Configure the following parameter(s) as required:

Parameter	Description
System Name	Synopsis: Any 24 characters

Parameter	Description	
	The system name is displayed in all RUGGEDCOM ROS menu screens. This can make it easier to identify the switches within your network provided that all switches are given a unique name.	
Location	Synopsis: Any 49 characters The location can be used to indicate the physical location of the switch. It is displayed in the login screen as another means to ensure you are dealing with the desired switch.	
Contact	Synopsis: Any 49 characters The contact can be used to help identify the person responsible for managing the switch. You can enter name, phone number, email, etc. It is displayed in the login screen so that this person may be contacted should help be required.	

Section 4.2

Customizing the Login Screen

To display a custom welcome message, device information or any other information on the login screen for the Web and console interfaces, add text to the banner.txt file stored on the device.

If the banner.txt file is empty, only the Username and Password fields appear on the login screen.

To update the banner.txt file, download the file from the device, modify it and then load it back on to the device. For information about uploading and downloading files, refer to Section 3.4, "Uploading/Downloading Files".

Section 4.3

Configuring Passwords

RUGGEDCOM ROS allows for up to three user profiles to be configured locally on the device. Each profile corresponds to one of the following access levels:

- Guest
- Operator
- Admin

The access levels provide or restrict the user's ability to change settings and execute various commands.

Rights	User Type		
	Guest	Operator	Admin
View Settings	✓	✓	✓
Clear Logs	×	✓	✓
Reset Alarms	×	✓	✓
Clear Statistics	×	✓	✓

Rights	User Type		
	Guest	Operator	Admin
Change Basic Settings	×	✓	✓
Change Advanced Settings	×	×	✓
Run Commands	×	*	✓

Default passwords are configured for each user type initially. It is strongly recommended that these be changed before the device is commissioned.

NOTE

Users can also be verified through a RADIUS or TACACS+ server. When enabled for authentication and authorization, the RADIUS or TACACS+ server will be used in the absence of any local settings. For more information about configuring a RADIUS or TACACS+ server, refer to Section 4.8, "Managing an Authentication Server".

CAUTION!

To prevent unauthorized access to the device, make sure to change the default passwords for each profile before commissioning the device.

To configure passwords for one or more of the user profiles, do the following:

1. Navigate to *Administration* » *Configure Passwords* . The *Configure Passwords* form appears.

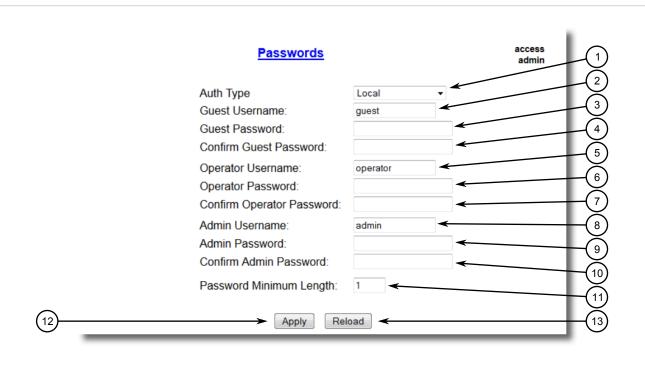


Figure 67: Configure Passwords Form

Auth Type Box
 Guest Username Box
 Guest Password Box
 Confirm Guest Password Box
 Admin Username Box
 Admin Password Box
 Admin Password Box
 Apply Button
 Reload Button

Configuring Passwords 115

NOTE

RUGGEDCOM ROS requires that all user passwords meet strict guidelines to prevent the use of weak passwords. When creating a new password, make sure it adheres to the following rules:

- Must not be less than 8 characters in length.
- Must not include the username or any 4 continous characters found in the username. For example, if the username is **Subnet25**, the password may not be **subnet25admin**, **subnetadmin** or **net25admin**. However, **net-25admin** or **Sub25admin** is permitted.
- Must have at least one alphabetic character and one number. Special characters are permitted.
- Must not have more than 3 continuously incrementing or decrementing numbers. For example, **Sub123** and **Sub19826** are permitted, but **Sub12345** is not.

An alarm will generate if a weak password is configured. The weak password alarm can be disabled by the user. For more information about disabling alarms, refer to Section 4.6, "Managing Alarms".

2. Configure the following parameter(s) as required:

Parameter	Description
Auth Type	Synopsis: { Local, RADIUS, TACACS+, RADIUSorLocal, TACACS +orLocal } Default: Local
	Password can be authenticated using localy configured values, or remote RADIUS or TACACS+ server. Setting value to any of combinations that involve RADIUS or TACACS+ require Security Server Table to be configured.
	Settings:
	Local - Authentication from the local Password Table.
	RADIUS - Authentication using a RADIUS server.
	TACACS+ - Authentication using a TACACS+ server.
	• RADIUSOrLocal - Authentication using RADIUS. If the server cannot be reached, authenticate from the local Password Table.
	TACACS+OrLocal - Authentication using TACACS+. If the server cannot be reached, authenticate from the local Password Table
	For console access, local credentials will always be checked first regardless of the device configuration. If server authentication is required, requests to the server will be sent only if local authentication fails.
Guest Username	Synopsis: Any 15 characters Default: quest
	Related password is in field Guest Password; view only, cannot change settings or run any commands.
Guest Password	Synopsis: 19 character ASCII string
	Related username is in field Guest Username; view only, cannot change settings or run any commands.
Confirm Guest Password	Synopsis: 19 character ASCII string
	Related username is in field Guest Username; view only, cannot change settings or run any commands.
Operator Username	Synopsis: Any 15 characters Default: operator

116 Configuring Passwords

Parameter	Description
	Related password is in field Oper Password; cannot change settings; can reset alarms, statistics, logs, etc.
Operator Password	Synopsis: 19 character ASCII string Related username is in field Oper Username; cannot change settings; can reset alarms, statistics, logs, etc
Confirm Operator Password	Synopsis: 19 character ASCII string Related username is in field Oper Username; cannot change settings; can reset alarms, statistics, logs, etc.
Admin Username	Synopsis: Any 15 characters Default: admin Related password is in field Admin Password; full read/write access to all settings and commands.
Admin Password	Synopsis: 19 character ASCII string Related username is in field Admin Username; full read/write access to all settings and commands.
Confirm Admin Password	Synopsis: 19 character ASCII string Related username is in field Admin Username; full read/write access to all settings and commands.
Password Minimum Length	Synopsis: 1 to 17 Default: 1 Configure the password string minimum length. The new password shorter than the minimum length will be rejected.

Section 4.4

Clearing Private Data

When enabled, during system boot up, a user with serial console access can clear all configuration data and keys stored on the device, and restore all user names and passwords to factory default settings.

To clear private data, do the following:

NOTE

The commands used in the following procedure are time-sensitive. If the specified time limits are exceeded before providing the appropriate response, the device will continue normal boot up.

- 1. Connect to the device via the RS-232 serial console port. For more information, refer to Section 2.1.1, "Connecting Directly".
- 2. Cycle power to the device. As the device is booting up, the following prompt will appear:

Press any key to start

3. Within four seconds, press CTRL + r. The access banner will appear, followed by the command prompt:

>

4. Type the following command, then press **Enter** within 30 seconds:

Clearing Private Data 117

clear private data

5. When prompted "Do you want to clear private data (Yes/No)?", answer yes and press **Enter** within five seconds. All configuration and keys in flash will be zeroized. An entry in the event log will be created. Crashlog.txt files (if existing) and syslog.txt files will be preserved. The device will reboot automatically.

Section 4.5

Enabling/Disabling the Web Interface

In some cases, users may want to disable the web interface to increase cyber security.

To disable or enable the web interface, do the following:

NOTE

The web interface can be disabled via the web UI by configuring the Web Server Users Allowed parameter in the **IP Services form**. For more information, refer to Section 3.9, "Configuring IP Services"

- 1. Log in to the device as an admin user and access the CLI shell. For more information about accessing the CLI shell, refer to Section 2.6, "Using the Command Line Interface".
- 2. Navigate to Administration » Configure IP Services » Web Server Users Allowed .
- 3. Select **Disabled** to disable the web interface, or select the desired number of web server users allowed to enable the interface.

Section 4.6

Managing Alarms

Alarms indicate the occurrence of events of either importance or interest that are logged by the device.

There are two types of alarms:

- Active alarms signify states of operation that are not in accordance with normal operation. Examples include links that should be up, but are not, or error rates that repeatedly exceed a certain threshold. These alarms are continuously active and are only cleared when the problem that triggered the alarms is resolved.
- Passive alarms are a record of abnormal conditions that occurred in the past and do not affect th current
 operation state of the device. Examples include authentication failures, Remote Network MONitoring (RMON)
 MIB generated alarms, or error states that temporarily exceeded a certain threshold. These alarms can be
 cleared from the list of alarms.

NOTE

For more information about RMON alarms, refer to Section 3.10.2, "Managing RMON Alarms".

When either type of alarm occurs, a message appears in the top right corner of the user interface. If more than one alarm has occurred, the message will indicate the number of alarms. Active alarms also trip the Critical Failure Relay LED on the device. The message and the LED will remain active until the alarm is cleared.

NOTE

Alarms are volatile in nature. All alarms (active and passive) are cleared at startup.

CONTENTS

- Section 4.6.1, "Viewing a List of Pre-Configured Alarms"
- Section 4.6.2, "Viewing and Clearing Latched Alarms"
- Section 4.6.3, "Configuring an Alarm"
- Section 4.6.4, "Authentication Related Security Alarms"

Section 4.6.1

Viewing a List of Pre-Configured Alarms

To view a list of alarms pre-configured for the device, navigate to *Diagnostic* » *Configure Alarms* . The Alarms table appears.

		Ala	<u>rms</u>				
<u>InsertRecord</u>							
	Name	Level	Latch	Trap	Log	LED&Relay	Refresh Time
	BPDU Guard activated	ERRO	On	On	On	On	60 s
	Clock manager alarm	WARN	On	On	On	On	60 s
	Configuration changed	INFO	Off	On	On	Off	60 s
	Default keys in use	WARN	On	On	On	Off	0 s
	Excessive failed login attempts	WARN	On	On	On	On	60 s
	GMRP cannot learn more addresses	WARN	On	On	On	On	1 s
	GPS/IRIGB error	ERRO	On	On	On	Off	0 s
	GPS/IRIGB status	NOTE	On	On	On	Off	0 s
	GVRP cannot learn more VLANs	WARN	On	On	On	On	1 s
	IEEE1588 alarm	WARN	On	On	On	On	60 s
	IGMP Group						

NOTE

This list of alarms (configurable and non-configurable) is accessible through the Command Line Interface (CLI) using the alarms. For more information, refer to Section 2.6.1, "Available CLI Commands".

For information about modifying a pre-configured alarm, refer to Section 4.6.3, "Configuring an Alarm".

Section 4.6.2

Viewing and Clearing Latched Alarms

To view a list of alarms that are configured to latch, navigate to **Diagnostics** » **View Latched Alarms** . The **Latched Alarms** table appears.

To clear the passive alarms from the list, do the following:

1. Navigate to Diagnostics » Clear Latched Alarms . The Clear Latched Alarms form appears.

2. Click Confirm.

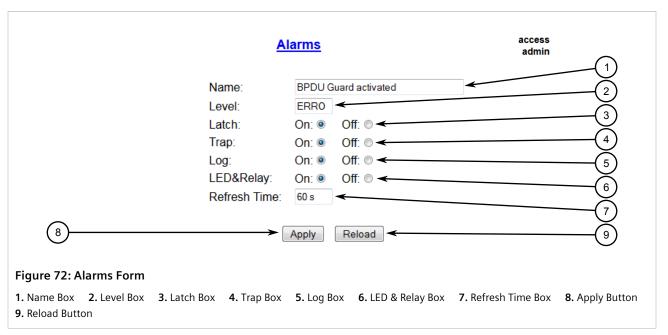
Section 4.6.3

Configuring an Alarm

While all alarms are pre-configured on the device, some alarms can be modified to suit the application. This includes enabling/disabling certain features and changing the refresh time.

To configuring an alarm, do the following:

IMPORTANT!


Critical and Alert level alarms are not configurable and cannot be disabled.

1. Navigate to *Diagnostic » Configure Alarms* . The **Alarms** table appears.

		Ala	<u>rms</u>					access admin
<u>InsertRecord</u>								
	Name	Level	Latch	Trap	Log	LED&Relay	Refresh Time	
	BPDU Guard activated	ERRO	On	On	On	On	60 s	
	Can't create more mcast IP groups	WARN	On	On	On	On	60 s	
	Clock manager alarm	WARN	On	On	On	On	60 s	
	Configuration changed	INFO	Off	On	On	Off	60 s	
	Default keys in use	WARN	On	On	On	Off	0 s	
	Excessive failed login attempts	WARN	On	On	On	On	60 s	
	GMRP cannot learn more addresses	WARN	On	On	On	On	1 s	
	GVRP cannot learn more VLANs	WARN	On	On	On	On	1 s	
	IEEE1588 alarm	WARN	On	On	On	On	60 s	
	Inconsistent speed/dpx in trunk	ERRO	On	On	On	On	1 s	

2. Select an alarm. The **Alarms** form appears.

Configuring an Alarm 121

3. Configure the following parameter(s) as required:

Parameter	Description
Name	Synopsis: Any 34 characters Default: sys_alarm
	The alarm name, as obtained through the alarms CLI command.
Level	Synopsis: { EMRG, ALRT, CRIT, ERRO, WARN, NOTE, INFO, DEBG }
	Severity level of the alarm:
	EMERG - The device has had a serious failure that caused a system reboot.
	ALERT - The device has had a serious failure that did not cause a system reboot.
	• CRITICAL - The device has a serious unrecoverable problem.
	• ERROR - The device has a recoverable problem that does not seriously affect operation.
	WARNING - Possibly serious problem affecting overall system operation.
	NOTIFY - Condition detected that is not expected or not allowed.
	• INFO - Event which is a part of normal operation, e.g. cold start, user login etc.
	DEBUG - Intended for factory troubleshooting only.
	This parameter is not configurable.
Latch	Synopsis: { On, Off } Default: Off
	Enables latching occurrence of this alarm in the Alarms Table.
Trap	Synopsis: { On, Off } Default: Off
	Enables sending an SNMP trap for this alarm.
Log	Synopsis: { On, Off } Default: Off

122 Configuring an Alarm

Parameter	Description
	Enables logging the occurrence of this alarm in syslog.txt.
LED & Relay	Synopsis: { On, Off } Default: Off Enables LED and fail-safe relay control for this alarm. If latching is not enabled, this field will remain disabled.
Refresh Time	Synopsis: 0 s to 60 s Default: 60 s Refreshing time for this alarm.

Section 4.6.4

Authentication Related Security Alarms

This section describes the authentication-related security messages that can be generated by RUGGEDCOM ROS.

CONTENTS

- Section 4.6.4.1, "Security Alarms for Login Authentication"
- Section 4.6.4.2, "Security Messages for Port Authentication"

Section 4.6.4.1

Security Alarms for Login Authentication

RUGGEDCOM ROS provides various logging options related to login authentication. A user can log into a RUGGEDCOM ROS device in three different ways: Console, SSH or Telnet. RUGGEDCOM ROS can log messages in the syslog, send a trap to notify an SNMP manager, and/or raise an alarm when a successful and unsuccessful login event occurs. In addition, when a weak password is configured on a unit or when the primary authentication server for TACACS+ or RADIUS is not reachable, RUGGEDCOM ROS will raise alarms, send SNMP traps and log messages in the syslog.

The following is a list of log and alarm messages related to user authentication:

- Weak Password Configured
- · Login and Logout Information
- Excessive Failed Login Attempts
- RADIUS Server Unreachable
- TACACS Server Unreachable
- TACACS Response Invalid
- SNMP Authentication Failure

NOTE

All alarms and log messages related to login authentication are configurable. For more information about configuring alarms, refer to Section 4.6.3, "Configuring an Alarm".

>> Weak Password Configured

RUGGEDCOM ROS generates this alarm and logs a message in the syslog when a weak password is configured in the **Passwords** table.

Message Name	Alarm	SNMP Trap	Syslog
Weak Password Configured	Yes	Yes	Yes

» Default Keys In Use

RUGGEDCOM ROS generates this alarm and logs a message in the syslog when default keys are in use. For more information about default keys, refer to Section 1.9, "SSH and SSL Keys and Certificates".

NOTE

For Non-Controlled (NC) versions of RUGGEDCOM ROS, this alarm is only generated when default SSL keys are in use.

Message Name	Alarm	SNMP Trap	Syslog
Default Keys In Use	Yes	Yes	Yes

>> Login and Logout Information

RUGGEDCOM ROS generates this alarm and logs a message in the syslog when a successful and unsuccessful login attempt occurs. A message is also logged in the syslog when a user with a certain privilege level is logged out from the device.

Login attempts are logged regardless of how the user accesses the device (i.e. SSH, Web, Console, Telnet or RSH). However, when a user logs out, a message is only logged when the user is accessing the device through SSH, Telnet or Console.

Message Name	Alarm	SNMP Trap	Syslog
Successful Login	Yes	Yes	Yes
Failed Login	Yes	Yes	Yes
User Logout	No	No	Yes

>> Excessive Failed Login Attempts

RUGGEDCOM ROS generates this alarm and logs a message in the syslog after 10 failed login attempts by a user occur within a span of five minutes. Furthermore, the service the user attempted to access will be blocked for one hour to prevent further attempts.

Message Name	Alarm	SNMP Trap	Syslog
Excessive Failed Login Attempts	Yes	Yes	Yes

>> RADIUS Server Unreachable

RUGGEDCOM ROS generates this alarm and logs a message in the syslog when the primary RADIUS server is unreachable.

Message Name	Alarm	SNMP Trap	Syslog
Primary RADIUS Server Unreachable	Yes	Yes	Yes

>> TACACS+ Server Unreachable

RUGGEDCOM ROS generates this alarm and logs a message in the syslog when the primary TACACS+ server is unreachable.

Message Name	Alarm	SNMP Trap	Syslog
Primary TACACS Server Unreachable	Yes	Yes	Yes

>> TACACS+ Response Invalid

RUGGEDCOM ROS generate this alarm and logs a message in the syslog when the response from the TACACS+ server is received with an invalid CRC.

Message Name	Alarm	SNMP Trap	Syslog
TACACS Response Invalid	Yes	Yes	Yes

>> SNMP Authentication Failure

RUGGEDCOM ROS generates this alarm, sends an authentication failure trap, and logs a message in the syslog when an SNMP manager with incorrect credentials communicates with the SNMP agent in RUGGEDCOM ROS.

Message Name	Alarm	SNMP Trap	Syslog
SNMP Authentication Failure	Yes	Yes	Yes

Section 4.6.4.2

Security Messages for Port Authentication

The following is the list of log and alarm messages related to port access control in RUGGEDCOM ROS:

- MAC Address Authorization Failure
- Secure Port X Learned MAC Addr on VLAN X
- Port Security Violated

>> MAC Address Authorization Failure

RUGGEDCOM ROS generates this alarm and logs a message in the syslog when a host connected to a secure port on the device is communicating using a source MAC address which has not been authorized by RUGGEDCOM ROS, or the dynamically learned MAC address has exceeded the total number of MAC addresses configured to be learned dynamically on the secured port. This message is only applicable when the port security mode is set to *Static MAC*.

Message Name	Alarm	SNMP Trap	Syslog
MAC Address Authorization Failure	Yes	Yes	Yes

Secure Port X Learned MAC Addr on VLAN X

RUGGEDCOM ROS logs a message in the syslog and sends a configuration change trap when a MAC address is learned on a secure port. Port X indicates the secured port number and VLAN number on that port. This message is not configurable in RUGGEDCOM ROS.

Message Name	SNMP Trap	Syslog
Secure Port X Learned MAC Addr on VLAN X	Yes	Yes

>> Port Security Violated

This message is only applicable when the security mode for a port is set to "802.1X or 802.1X/MAC-Auth" RUGGEDCOM ROS this alarm and logs a message in the syslog when the host connected to a secure port tries to communicate using incorrect login credentials.

Message Name	Alarm	SNMP Trap	Syslog
802.1X Port X Authentication Failure	Yes	Yes	Yes
802.1X Port X Authorized Addr. XXX	No	No	Yes

Section 4.7

Managing the Configuration File

The device configuration file for RUGGEDCOM ROS is a single CSV (Comma-Separate Value) formatted ASCII text file, named <code>config.csv</code>. It can be downloaded from the device to view, compare against other configuration files, or store for backup purposes. It can also be overwritten by a complete or partial configuration file uploaded to the device.

To prevent unauthorized access to the contents of the configuration file, the file can be encrypted and given a password/passphrase key.

CONTENTS

- Section 4.7.1, "Configuring Data Encryption"
- Section 4.7.2, "Updating the Configuration File"

Section 4.7.1

Configuring Data Encryption

To encrypt the configuration file and protect it with a password/passphrase, do the following:

NOTE

Data encryption is not available in Non-Controlled (NC) versions of RUGGEDCOM ROS. When switching between Controlled and Non-Controlled (NC) versions of RUGGEDCOM ROS, make sure data encryption is disabled. Otherwise, the NC version of RUGGEDCOM ROS will ignore the encrypted configuration file and load the factory defaults.

NOTE

Only configuration data is encrypted. All comments and table names in the configuration file are saved as clear text.

NOTE

When sharing a configuration file between devices, make sure both devices have the same passphrase configured. Otherwise, the configuration file will be rejected.

NOTE


Encryption must be disabled before the device is returned to Siemens or the configuration file is shared with Customer Support.

IMPORTANT!

Never downgrade the RUGGEDCOM ROS software version beyond RUGGEDCOM ROS v4.3 when encryption is enabled. Make sure the device has been restored to factory defaults before downgrading.

1. Navigate to Administration » Configure Data Storage . The Data Storage form appears.

2. Configure the following parameter(s) as required:

Parameter	Description
Encryption	Synopsis: { On, Off }
	Enable/disable encryption of data in configuration file.
Passphrase	Synopsis: 31 character ascii string
	This passphrase is used as a secret key to encrypt the configuration data.
	Encrypted data can be decrypted by any device configured with the same passphrase.
Confirm Passphrase	Synopsis: 31 character ascii string

Parameter	Description
	This passphrase is used as a secret key to encrypt the configuration data.
	Encrypted data can be decrypted by any device configured with the same passphrase.

3. Click Apply.

Section 4.7.2

Updating the Configuration File

Once downloaded from the device, the configuration file can be updated using a variety of different tools:

NOTE

For information about uploading/downloading files, refer to Section 3.4, "Uploading/Downloading Files".

- · Any text editing program capable of reading and writing ASCII files
- Difference/patching tools (e.g. the UNIX diff and patch command line utilities)
- Source Code Control systems (e.g. CVS, SVN)

CAUTION!

Configuration hazard – risk of data loss. Do not edit an encrypted configuration file. Any line that has been modified manually will be ignored.

RUGGEDCOM ROS also has the ability to accept partial configuration updates. For example, to update only the parameters for Ethernet port 1 and leave all other parameters unchanged, transfer a file containing only the following lines to the device:

Port Parameters
ethPortCfg
Port, Name, Media, State, AutoN, Speed, Dupx, FlowCtrl, LFI, Alarm,
1, Port 1,100TX, Enabled, On, Auto, Auto, Off, Off, On,

Section 4.8

Managing an Authentication Server

The following section describes how to setup and configure an authentication server.

CONTENTS

Section 4.8.1, "Managing RADIUS Authentication"

Section 4.8.2, "Managing TACACS+ Authentication"

Section 4.8.1

Managing RADIUS Authentication

RUGGEDCOM ROS can be configured to act as a RADIUS client and forward user credentials to a RADIUS (Remote Authentication Dial In User Service) server for remote authentication and authorization.

RADIUS is a UDP-based protocol used for carrying authentication, authorization and configuration information between a Network Access Server (NAS) that desires to authenticate its links and a shared authentication server. It provides centralized authentication and authorization for network access.

RADIUS is also widely used in conjunction with the IEEE 802.1X standard for port security using the Extensible Authentication Protocol (EAP).

NOTE

For more information about the RADIUS protocol, refer to RFC 2865.

For more information about the Extensible Authentication Protocol (EAP), refer to RFC 3748.

IMPORTANT!

RADIUS messages are sent as UDP messages. The switch and the RADIUS server must use the same authentication and encryption key.

IMPORTANT!

RUGGEDCOM ROS supports both Protected Extensible Authentication Protocol (PEAP) and EAP-MD5. PEAP is more secure and is recommended if available in the supplicant.

In a RADIUS access request, the following attributes and values are typically sent by the RADIUS client to the RADIUS server:

Attribute	Value
User-Name	{ Guest, Operator, Admin }
User-Password	{ password }
Service-Type	1
Vendor-Specific	Vendor-ID: 15004 Type: 1 Length: 11 String: RuggedCom

A RADIUS server may also be used to authenticate access on ports with 802.1X security support. When this is required, the following attributes are sent by the RADIUS client to the RADIUS server:

Attribute	Value
User-Name	{ The username as derived from the client's EAP identity response }
NAS-IP-Address	{ The Network Access Server IP address }
Service-Type	2
Frame-MTU	1500

Attribute	Value
EAP-Message ^a	{ A message(s) received from the authenticating peer }

^a EAP-Message is an extension attribute for RADIUS, as defined by RFC 2869.

CONTENTS

- Section 4.8.1.1, "Configuring the RADIUS Server"
- Section 4.8.1.2, "Configuring the RADIUS Client"

Section 4.8.1.1

Configuring the RADIUS Server

The Vendor-Specific attribute (or VSA) sent to the RADIUS server as part of the RADIUS request is used to determine the access level from the RADIUS server. This attribute may be configured within the RADIUS server with the following information:

Attribute	Value
Vendor-Specific	Vendor-ID: 15004 Format: String Number: 2 Attribute: { Guest, Operator, Admin }

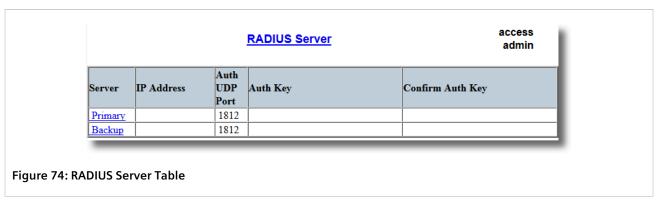
NOTE

If no access level is received in the response packet from the RADIUS server, access is denied.

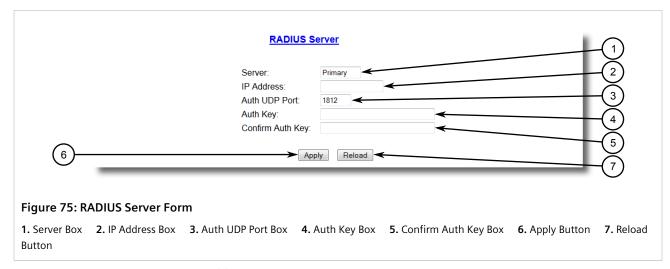
Section 4.8.1.2

Configuring the RADIUS Client

The RADIUS client can be configured to use two RADIUS servers: a primary server and a backup server. If the primary server is unavailable, the device will automatically attempt to connect with the backup server.



NOTE


The RADIUS client uses the Password Authentication Protocol (PAP) to verify access.

To configure access to either the primary or backup RADIUS servers, do the following:

Navigate to Administration » Configure Security Server » Configure RADIUS Server . The RADIUS Server table appears.

2. Select either **Primary** or **Backup** from the table. The **RADIUS Server** form appears.

3. Configure the following parameter(s) as required:

Parameter	Description
Server	Synopsis: Any 8 characters Default: Primary This field tells whether this configuration is for a Primary or a Backup Server.
IP Address	Synopsis: ###.###.### where ### ranges from 0 to 255 The Server IP Address.
Auth UDP Port	Synopsis: 1 to 65535 Default: 1812 The IP Port on server.
Auth Key	Synopsis: 31 character ASCII string The authentication key to be shared with server.
Confirm Auth Key	Synopsis: 31 character ASCII string The authentication key to be shared with server.

4. Click Apply.

Section 4.8.2

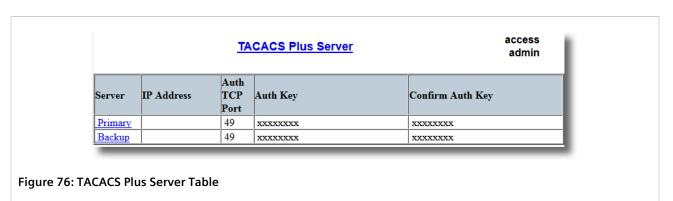
Managing TACACS+ Authentication

TACACS+ (Terminal Access Controller Access-Control System Plus) is a TCP-based access control protocol that provides authentication, authorization and accounting services to routers, Network Access Servers (NAS) and other networked computing devices via one or more centralized servers.

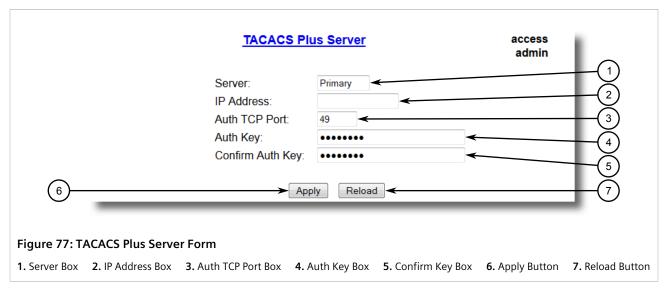
The following section describes how to configure TACACs+ authentication.

CONTENTS

- Section 4.8.2.1, "Configuring TACACS+"
- Section 4.8.2.2, "Configuring User Privileges"


Section 4.8.2.1

Configuring TACACS+


RUGGEDCOM ROS can be configured to use two TACACS+ servers: a primary server and a backup server. If the primary server is unavailable, the device will automatically attempt to connect with the backup server.

To configure access to either the primary or backup TACACS+ servers, do the following:

1. Navigate to **Administration** » **Configure Security Server** » **Configure TacPlus Server** » **Configure TACACS Plus Server** table appears.

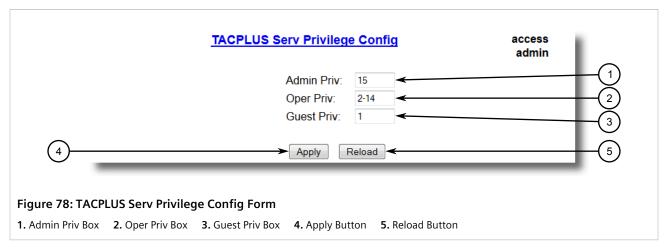
2. Select either **Primary** or **Backup** from the table. The **TACACS Plus Server** form appears.

3. Configure the following parameter(s) as required:

Parameter	Description
Server	Synopsis: Any 8 characters Default: Primary This field tells whether this configuration is for a Primary or a Backup Server.
IP Address	Synopsis: ###.###.### where ### ranges from 0 to 255 The Server IP Address.
Auth TCP Port	Synopsis: 1 to 65535 Default: 49 The IP Port on server.
Auth Key	Synopsis: 31 character ascii string Default: mySecret The authentication key to be shared with server.
Confirm Auth Key	Synopsis: 31 character ascii string The authentication key to be shared with server.

- 4. Set the privilege levels for each user type (i.e. admin, operator and guest). For more information, refer to Section 4.8.2.2, "Configuring User Privileges".
- 5. Click Apply.

Section 4.8.2.2


Configuring User Privileges

Each TACACS+ authentication request includes a *priv_lvl* attribute that is used to grant access to the device. By default, the attribute uses the following ranges:

- 15 represents the admin access level
- 2-14 represents the operator access level
- 1 represents the guest access level

To configure the privilege levels for each user type, do the following:

1. Navigate to Administration » Configure Security Server » Configure TacPlus Server » Configure TACPLUS Serv Privilege Config . The TACPLUS Serv Privilege Config form appears.

2. Configure the following parameter(s) as required:

Parameter	Description
Admin Priv	Synopsis: (0 to 15)-(0 to 15) Default: 15 Privilege level to be assigned to the user.
Oper Priv	Synopsis: (0 to 15)-(0 to 15) Default: 2-14 Privilege level to be assigned to the user.
Guest Priv	Synopsis: (0 to 15)-(0 to 15) Default: 1 Privilege level to be assigned to the user.

3. Click Apply.

Setup and Configuration

This chapter describes how to setup and configure the device for use on a network using the various features available in RUGGEDCOM ROS.

CONTENTS

- Section 5.1, "Managing Virtual LANs"
- Section 5.2, "Managing Spanning Tree Protocol"
- Section 5.3, "Managing Classes of Service"
- Section 5.4, "Managing Time Services"
- Section 5.5, "Managing SNMP"
- Section 5.6, "Managing Network Discovery"
- Section 5.7, "Managing Multicast Filtering"
- · Section 5.8, "Managing Port Security"
- Section 5.9, "Managing Link Aggregation"
- Section 5.10, "Managing Serial Protocols"

Section 5.1

Managing Virtual LANs

A Virtual Local Area Network (VLAN) is a group of devices on one or more LAN segments that communicate as if they were attached to the same physical LAN segment. VLANs are extremely flexible because they are based on logical connections, rather than physical connections.

When VLANs are introduced, all traffic in the network must belong to one VLAN or another. Traffic on one VLAN cannot pass to another, except through an inter-network router or Layer 3 switch.

VLANs are created in three ways:

Explicitly

Static VLANs can be created in the switch. For more information about static VLANs, refer to Section 5.1.5, "Managing Static VLANs".

Implicitly

When a VLAN ID (VID) is set for a port-based VLAN, static MAC address or IP interface, an appropriate VLAN is automatically created if it does not yet exist.

Dynamically

VLANs can be learned through GVRP. For more information about GVRP, refer to Section 5.1.1.8, "GARP VLAN Registration Protocol (GVRP)"

For more information about VLANs, refer to Section 5.1.1, "VLAN Concepts".

CONTENTS

• Section 5.1.1, "VLAN Concepts"

Managing Virtual LANs 135

- Section 5.1.2, "Viewing a List of VLANs"
- Section 5.1.3, "Configuring VLANs Globally"
- Section 5.1.4, "Configuring VLANs for Specific Ethernet Ports"
- Section 5.1.5, "Managing Static VLANs"

Section 5.1.1

VLAN Concepts

The following section describes some of the concepts important to the implementation of VLANs in RUGGEDCOM ROS.

CONTENTS

- Section 5.1.1.1, "Tagged vs. Untagged Frames"
- Section 5.1.1.2, "Native VLAN"
- Section 5.1.1.3, "The Management VLAN"
- Section 5.1.1.4, "Edge and Trunk Port Types"
- Section 5.1.1.5, "Ingress and Egress Rules"
- Section 5.1.1.6, "Forbidden Ports List"
- Section 5.1.1.7, "VLAN-Aware and VLAN-Unaware Modes"
- Section 5.1.1.8, "GARP VLAN Registration Protocol (GVRP)"
- Section 5.1.1.9, "PVLAN Edge"
- Section 5.1.1.10, "QinQ"
- Section 5.1.1.11, "VLAN Advantages"

Section 5.1.1.1

Tagged vs. Untagged Frames

VLAN tags identify frames as part of a VLAN network. When a switch receives a frame with a VLAN (or 802.1Q) tag, the VLAN identifier (VID) is extracted and the frame is forwarded to other ports on the same VLAN.

When a frame does not contain a VLAN tag, or contains an 802.1p (prioritization) tag that only has prioritization information and a VID of 0, it is considered an untagged frame.

Section 5.1.1.2

Native VLAN

Each port is assigned a native VLAN number, the Port VLAN ID (PVID). When an untagged frame ingresses a port, it is associated with the port's native VLAN.

By default, when a switch transmits a frame on the native VLAN, it sends the frame untagged. The switch can be configured to transmit tagged frames on the native VLAN.

136 VLAN Concepts

Section 5.1.1.3

The Management VLAN

Management traffic, like all traffic on the network, must belong to a specific VLAN. The management VLAN is configurable and always defaults to VLAN 1. This VLAN is also the default native VLAN for all ports, thus allowing all ports the possibility of managing the product. Changing the management VLAN can be used to restrict management access to a specific set of users.

Section 5.1.1.4

Edge and Trunk Port Types

Each port can be configured as an edge or trunk port.

An edge port attaches to a single end device, such as a PC or Intelligent Electronic Device (IED). An edge port carries traffic on the native VLAN.

Trunk ports are part of the network and carry traffic for all VLANs between switches. Trunk ports are automatically members of all VLANs configured in the switch.

The switch can 'pass through' traffic, forwarding frames received on one trunk port out of another trunk port. The trunk ports must be members of all VLANs that the 'pass through' traffic is part of, even if none of those VLANs are used on edge ports.

Frames transmitted out of the port on all VLANs other than the port's native VLAN are always sent tagged.

NOTE

It may be desirable to manually restrict the traffic on the trunk to a specific group of VLANs. For example, when the trunk connects to a device, such as a Layer 3 router, that supports a subset of the available LANs. To prevent the trunk port from being a member of the VLAN, include it in the VLAN's Forbidden Ports list.

For more information about the Forbidden Ports list, refer to Section 5.1.1.6, "Forbidden Ports List".

Port Type	VLANs Supported	PVID Format	Usage
Edge	1 (Native) Configured	Untagged	VLAN Unaware Networks: All frames are sent and received without the need for VLAN tags.
		Tagged	VLAN Aware Networks: VLAN traffic domains are enforced on a single VLAN.
Trunk	All Configured	Tagged or Untagged	Switch-to-Switch Connections: VLANs must be manually created and administered, or can be dynamically learned through GVRP.
			Multiple-VLAN End Devices: Implement connections to end devices that support multiple VLANs at the same time.

Section 5.1.1.5

Ingress and Egress Rules

Ingress and egress rules determine how traffic is received and transmitted by the switch.

Ingress rules are applied as follows to all frame when they are received by the switch:

The Management VLAN 137

Frame Received ^a	Untagged	Priority Tagged (VID = 0)	Tagged (Valid VID)
VLAN ID associated with the frame	PVID	PVID	VID in the Tag
Frame dropped due to its tagged/untagged format	No	No	No
Frame dropped if the ingress port is not a member of the VLAN the frame is associated with and ingress filtering is enabled			Yes

^a Does not depend on the ingress port's VLAN configuration parameters.

Egress rules are applied as follows to all frames when they are transmitted by the switch.

		On Other VLAN		
Egress Port Type	On Egress Port's Native VLAN	Port Is a Member Of the VLAN	Port Is Not a Member Of the VLAN	
Edge	According to the egress port's PVID Format parameter	Drop	pped	
Trunk	PVID FORMAL parameter	Tagged	Dropped	

Section 5.1.1.6

Forbidden Ports List

Each VLAN can be configured to exclude ports from membership in the VLAN using the forbidden ports list. For more information, refer to Section 5.1.5.2, "Adding a Static VLAN".

Section 5.1.1.7

VLAN-Aware and VLAN-Unaware Modes

The native operation mode for an IEEE 802.1Q compliant switch is VLAN-aware. Even if a specific network architecture does not use VLANs, RUGGEDCOM ROS's default VLAN settings allow the switch to still operate in a VLAN-aware mode, while providing functionality required for almost any network application. However, the IEEE 802.1Q standard defines a set of rules that must be followed by all VLAN-aware switches:

- Valid VIDs are within the range of 1 to 4094. VIDs equal to 0 or 4095 are invalid.
- Each frame ingressing a VLAN-aware switch is associated with a valid VID.
- Each frame egressing a VLAN-aware switch is either untagged or tagged with a valid VID. Priority-tagged frames with an invalid VID will never sent out by a VLAN-aware switch.

NOTE

Some applications have requirements conflicting with IEEE 802.Q1 native mode of operation. For example, some applications explicitly require priority-tagged frames to be received by end devices.

To avoid conflicts and provide full compatibility with legacy (VLAN-unaware) devices, RUGGEDCOM ROS can be configured to work in VLAN-unaware mode.

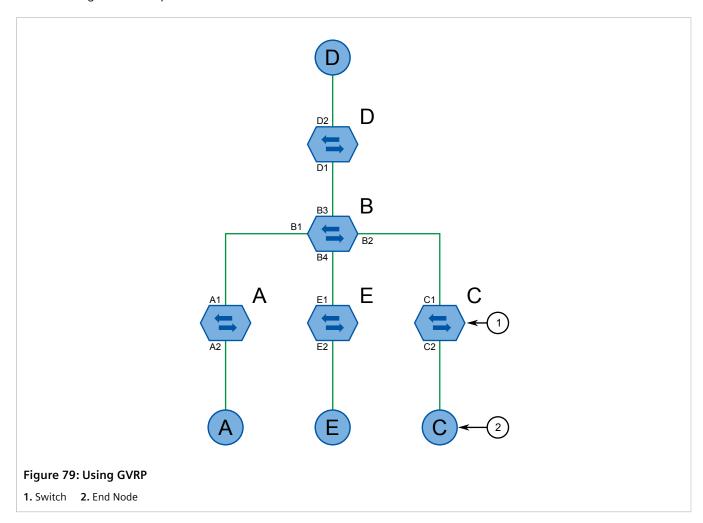
In that mode:

- Frames ingressing a VLAN-unaware device are not associated with any VLAN
- Frames egressing a VLAN-unaware device are sent out unmodified (i.e. in the same untagged, 802.1Q-tagged or priority-tagged format as they were received)

138 Forbidden Ports List

Section 5.1.1.8

GARP VLAN Registration Protocol (GVRP)


GARP VLAN Registration Protocol (GVRP) is a standard protocol built on GARP (Generic Attribute Registration Protocol) to automatically distribute VLAN configuration information in a network. Each switch in a network needs only to be configured with VLANs it requires locally. VLANs configured elsewhere in the network are learned through GVRP. A GVRP-aware end station (i.e. PC or Intelligent Electronic Device) configured for a particular VID can be connected to a trunk on a GVRP-aware switch and automatically become part of the desired VLAN.

When a switch sends GVRP bridge protocol data units (BPDUs) out of all GVRP-enabled ports, GVRP BPDUs advertise all the VLANs known to that switch (configured manually or learned dynamically through GVRP) to the rest of the network.

When a GVRP-enabled switch receives a GVRP BPDU advertising a set of VLANs, the receiving port becomes a member of those advertised VLANs and the switch begins advertising those VLANs through all the GVRP-enabled ports (other than the port on which the VLANs were learned).

To improve network security using VLANs, GVRP-enabled ports may be configured to prohibit the learning of any new dynamic VLANs but at the same time be allowed to advertise the VLANs configured on the switch.

The following is an example of how to use GVRP:

- Switch B is the core switch, all others are edge switches
- Ports A1, B1 to B4, C1, D1, D2 and E1 are GVRP aware

- Ports B1 to B4, D1 and D2 are set to advertise and learn
- Ports A1, C1 and E1 are set to advertise only
- Ports A2, C2 and E2 are edge ports
- End node D is GVRP aware
- End nodes A, E and C are GVRP unaware
- Ports A2 and C2 are configured with PVID 7
- Port E2 is configured with PVID 20
- End node D is interested in VLAN 20, hence VLAN 20 is advertised by it towards switch D
- D2 becomes a member of VLAN 20
- Ports A1 and C1 advertise VID 7
- Ports B1 and B2 become members of VLAN 7
- Ports B1, B2 and D1 advertise VID 20
- Ports B3, B4 and D1 become members of VLAN 20

For more information about how to configure GVRP, refer to Section 5.1.4, "Configuring VLANs for Specific Ethernet Ports".

Section 5.1.1.9

PVLAN Edge

Private VLAN (PVLAN) Edge isolates multiple VLAN Edge ports from each other on a single device. When VLAN Edge ports are configured as *protected*, they are prohibited from sending frames to one another, but are still permitted to send frames to other, non-protected ports within the same VLAN. This protection extends to all traffic on the VLAN, including unicast, multicast and broadcast traffic.

For more information about how to configure a port as *protected*, refer to Section 5.1.4, "Configuring VLANs for Specific Ethernet Ports".

NOTE

This feature is strictly local to the switch. PVLAN Edge ports are not prevented from communicating with ports outside of the switch, whether protected (remotely) or not.

Section 5.1.1.10

QinQ

QinQ, also referred to as Stacked VLANs, port bridging, double VLAN-tagging and Nested VLANs, is used to overlay a private Layer 2 network over a public Layer 2 network.

A large network service provider, for example, might have several clients whose networks each use multiple VLANs. It is likely the VLAN IDs used by these different client networks would conflict with one another, were they mixed together in the provider's network. Using double QinQ, each client network could be further tagged using a client-specific VID at the edges where the clients' networks are connected to the network service provider's infrastructure.

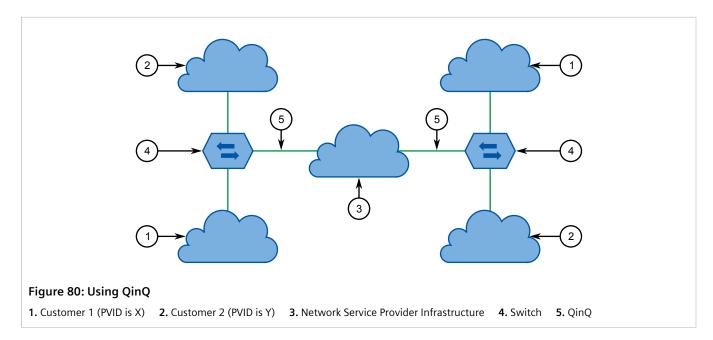
Any tagged frames ingressing an edge port of the service provider's switch are tagged with VIDs of the customer's private network. When those frames egress the switch's QinQ-enabled port into the service provider network, the switch always adds an extra tag (called an *outer tag*) on top of the frame's original VLAN tag (called an *inner tag*).

140 PVLAN Edge

The outer tag VID is the PVID of the frame's ingress edge port. This means that traffic from an individual customer is tagged with their unique VID and is thus segregated from other customer's traffic. For untagged ingress frames, the switch will only add the outer VLAN tag.

Within the service provider network, switching is based on the VID in the outer tag.

When double-tagged frames leave the service provider network, they egress a QinQ-enabled port of another switch. The switch strips the outer tag while associating the frames with the VID extracted from it before stripping. Thus, the frames are switched to appropriate edge ports (i.e. customers).


The following figure shows an example of traffic flow using QinQ.

For tagged frames:

- Frames received from customer 1 with VID 100 would carry an inner tag of 100 and an outer tag of VID X (i.e. VLAN 110) which is configured on the edge port connected to customer 1.
- Next, the frames from customer 1 are forwarded through the QinQ port carrying an inner and an outer tag.
- Finally, upon arrival of the frames in the peer switch, the outer VLAN tag is removed and the frames are forwarded with the inner VLAN tag towards customer 1.

For untagged frames:

- Frames received from customer 2 would carry an outer tag of VID Y(i.e VLAN 220) which is configured on the edge port connected to customer 2.
- Next, the frames from customer 2 are forwarded through the QinQ port carrying the outer tag.
- Finally, upon arrival of the frames in the peer switch, the outer VLAN tag is removed before the frames are forwarded to customer 2.

NOTE

Depending on the hardware installed, some switch models allow only one switch port be configured to QinQ mode at a time.

NOTE

When QinQ is enabled, all non-QinQ ports will be untagged and cannot be changed, and all QinQ ports will be tagged, and cannot be changed.

QinQ 141

Section 5.1.1.11

VLAN Advantages

The following are a few of the advantages offered by VLANs.

>> Traffic Domain Isolation

VLANs are most often used for their ability to restrict traffic flows between groups of devices.

Unnecessary broadcast traffic can be restricted to the VLAN that requires it. Broadcast storms in one VLAN need not affect users in other VLANs.

Hosts on one VLAN can be prevented from accidentally or deliberately assuming the IP address of a host on another VLAN.

The use of creative bridge filtering and multiple VLANs can carve seemingly unified IP subnets into multiple regions policed by different security/access policies.

Multi-VLAN hosts can assign different traffic types to different VLANs.

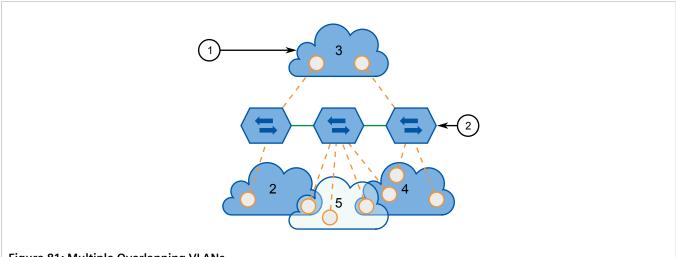
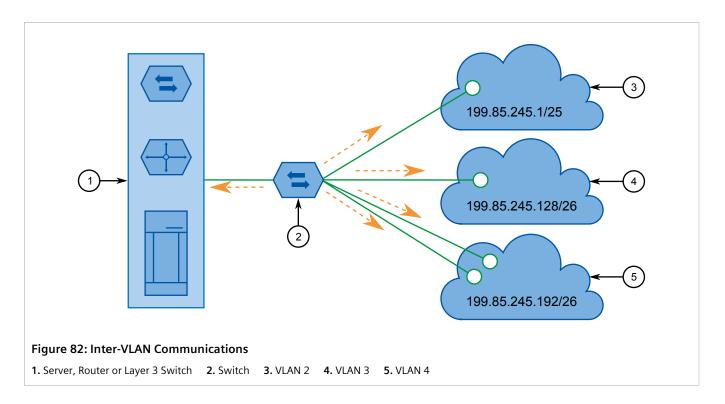


Figure 81: Multiple Overlapping VLANs

1. VLAN 2. Switch

>> Administrative Convenience

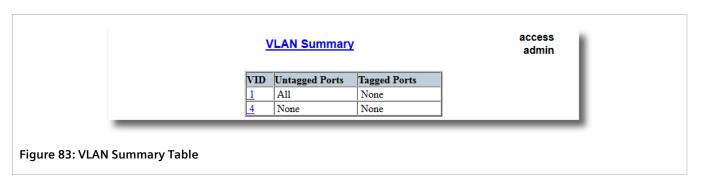
VLANs enable equipment moves to be handled by software reconfiguration instead of by physical cable management. When a host's physical location is changed, its connection point is often changed as well. With VLANs, the host's VLAN membership and priority are simply copied to the new port.


>> Reduced Hardware

Without VLANs, traffic domain isolation requires the use of separate bridges for separate networks. VLANs eliminate the need for separate bridges.

The number of network hosts may often be reduced. Often, a server is assigned to provide services for independent networks. These hosts may be replaced by a single, multi-horned host supporting each network on its own VLAN. This host can perform routing between VLANs.

Multi-VLAN hosts can assign different traffic types to different VLANs.

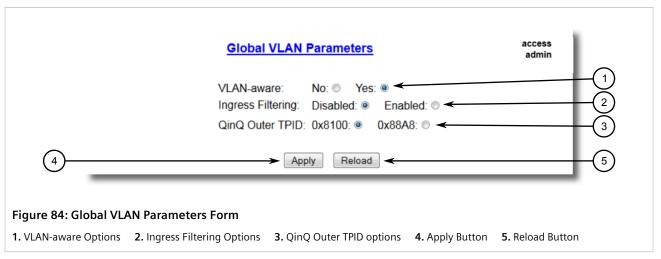

142 VLAN Advantages

Section 5.1.2

Viewing a List of VLANs

To view a list of all VLANs, whether they were created statically, implicitly or dynamically, navigate to **Virtual LANs** » **View VLAN Summary**. The **VLAN Summary** table appears.

If a VLANs are not listed, add static VLANs as needed. For more information, refer to Section 5.1.5.2, "Adding a Static VLAN".


Section 5.1.3

Configuring VLANs Globally

To configure global settings for all VLANs, do the following:

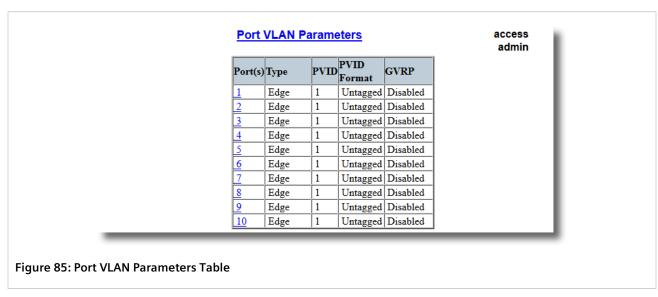
1. Navigate to *Virtual LANs* » *Configure Global VLAN Parameters* . The Global VLAN Parameters form appears.

Viewing a List of VLANs 143

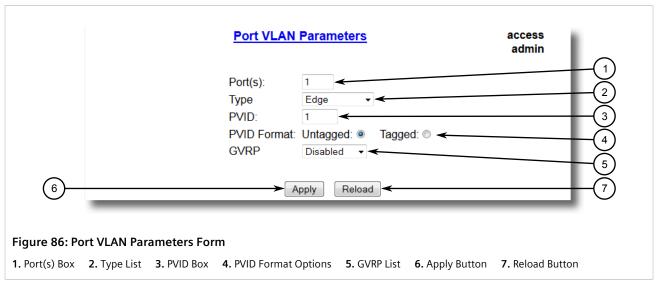
2. Configure the following parameter(s) as required:

Parameter	Description
VLAN-aware	Synopsis: { No, Yes } Default: Yes Set either VLAN-aware or VLAN-unaware mode of operation.
Ingress Filtering	Synopsis: { Disabled, Enabled } Default: Disabled Enables or disables VLAN ingress filtering on all ports. When enabled, any tagged packet arriving at a port, which is not a member of a VLAN with which that packet is associated, is dropped. When disabled, packets are not dropped. NOTE Ingress filtering has no effect when ports are in either VLAN-unaware mode or Q-in-Q mode.
QinQ Outer TPID	Synopsis: { 0x8100, 0x88A8 } Default: 0x8100 Selects an Ethertype to be used as the Tag Protocol Identifier (TPID) on VLAN QinQ ports when QinQ is enabled. Frames that ingress a VLAN QinQ port will be identified as outer VLAN tagged if the first Ethertype matches this value; an outer VLAN tag with the TPID field assigned to this value will be inserted to frames that egress a VLAN QinQ port.
	When QinQ is enabled, all non-QinQ ports will be untagged and cannot be changed, and all QinQ ports will be tagged, and cannot be changed.

3. Click **Apply**.


Section 5.1.4

Configuring VLANs for Specific Ethernet Ports


When a VLAN ID is assigned to an Ethernet port, the VLAN appears in the VLAN Summary table where it can be further configured.

To configure a VLAN for a specific Ethernet port, do the following:

1. Navigate to Virtual LANs » Configure Port VLAN Parameters . The Port VLAN Parameters table appears.

2. Select a port. The **Port VLAN Parameters** form appears.

3. Configure the following parameter(s) as required:

Parameter	Description
Port(s)	Synopsis: Any combination of numbers valid for this parameter The port number as seen on the front plate silkscreen of the switch (or a list of ports, if aggregated in a port trunk).
Туре	Synopsis: { Edge, Trunk, PVLANEdge, QinQ }

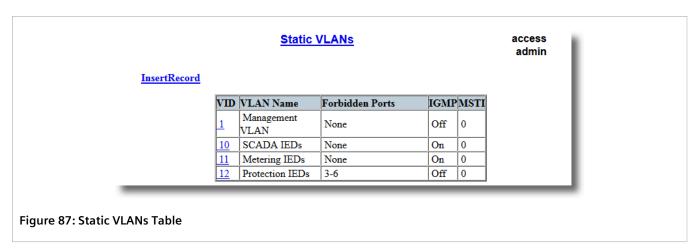
Parameter	Description
	Default: Edge
	This parameter specifies how the port determines its membership in VLANs. There are few types of ports:
	• Edge - the port is only a member of one VLAN (its native VLAN specified by the PVID parameter).
	 Trunk - the port is automatically a member of all configured VLANs. Frames transmitted out of the port on all VLANs except the port's native VLAN will be always tagged. It can also be configured to use GVRP for automatic VLAN configuration. PVLANEdge - the port is only a member of one VLAN (its native VLAN specified by the PVID parameter), and does not forward traffic to other PVLANedge ports within the same VLAN.
	 QinQ - the port is a trunk port using double-VLAN tagging, or nested VLANs. An extra VLAN tag is always added to all frames egressing this port. VID in the added extra tag is the PVID of the frame's ingress port. VLAN tag is always stripped from frames ingressing this port.
	NOTE Depending on the hardware installed, some switch models allow only one switch port be configured to QinQ mode at a time.
PVID	Synopsis: 1 to 4094 Default: 1
	The Port VLAN Identifier specifies the VLAN ID associated with untagged (and 802.1p priority tagged) frames received on this port.
	Frames tagged with a non-zero VLAN ID will always be associated with the VLAN ID retrieved from the frame tag.
	Modify this parameter with care! By default, the switch is programmed to use VLAN 1 for management and every port on the switch is programmed to use VLAN 1. If you modify a switch port to use a VLAN other than the management VLAN, devices on that port will not be able to manage the switch.
PVID Format	Synopsis: { Untagged, Tagged } Default: Untagged
	Specifies whether frames transmitted out of the port on its native VLAN (specified by the <i>PVID</i> parameter) will be tagged or untagged.
	When QinQ is enabled, all non-QinQ ports will be untagged and cannot be changed, and all QinQ ports will be tagged, and cannot be changed.
GVRP	Synopsis: { Adv&Learn, Adv Only, Disabled } Default: Disabled
	Configures GVRP (Generic VLAN Registration Protocol) operation on the port. There are several GVRP operation modes:
	DISABLED - the port is not capable of any GVRP processing.
	 ADVERTISE ONLY - the port will declare all VLANs existing in the switch (configured or learned) but will not learn any VLANs. ADVERTISE & LEARN - the port will declare all VLANs existing in
	the switch (configured or learned) and can dynamically learn VLANs.
	Only Trunk ports are GVRP-capable.

4. Click Apply.

Section 5.1.5

Managing Static VLANs

The following section describes how to configure and manage static VLANs.


CONTENTS

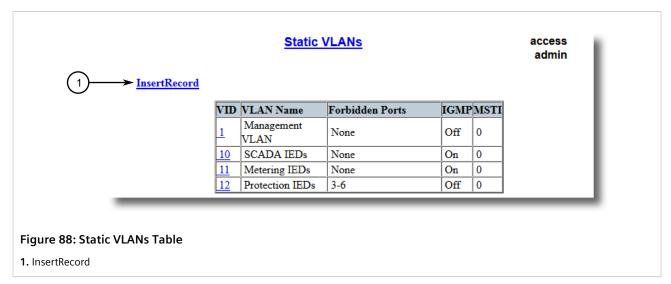
- Section 5.1.5.1, "Viewing a List of Static VLANs"
- Section 5.1.5.2, "Adding a Static VLAN"
- Section 5.1.5.3, "Deleting a Static VLAN"

Section 5.1.5.1

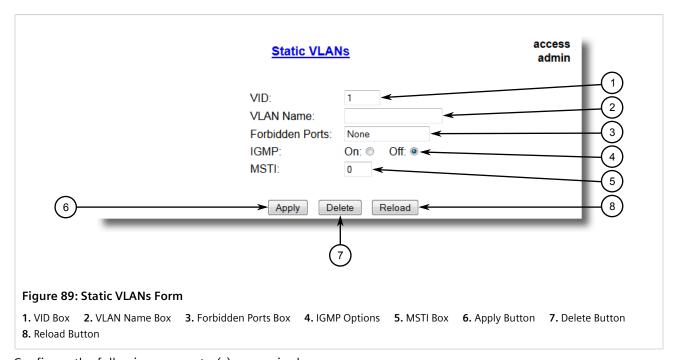
Viewing a List of Static VLANs

To view a list of static VLANs, navigate to *Virtual LANs » Configure Static VLANs* . The **Static VLANs** table appears.

If a static VLAN is not listed, add the VLAN. For more information, refer to Section 5.1.5.2, "Adding a Static VLAN".


Section 5.1.5.2

Adding a Static VLAN


To add a static VLAN, do the following:

1. Navigate to Virtual LANs » Configure Static VLANs . The Static VLANs table appears.

Managing Static VLANs 147

2. Click InsertRecord. The Static VLANs form appears.

3. Configure the following parameter(s) as required:

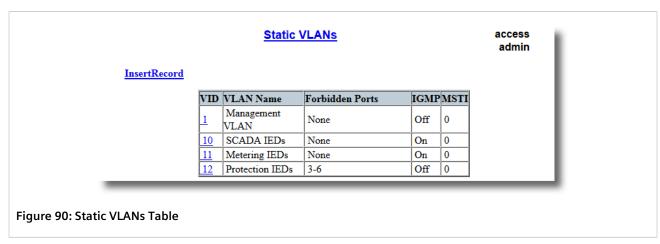
NOTE

If **IGMP Options** is not enabled for the VLAN, both IGMP messages and multicast streams will be forwarded directly to all members of the VLAN. If any one member of the VLAN joins a multicast group, then all members of the VLAN will receive the multicast traffic.

Parameter	Description
VID	Synopsis: 1 to 4094 Default: 1
	The VLAN Identifier is used to identify the VLAN in tagged Ethernet frames according to IEEE 802.1Q.

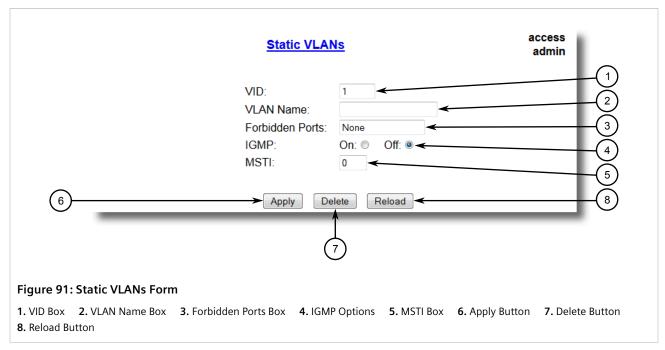
148 Adding a Static VLAN

Parameter	Description
VLAN Name	Synopsis: Any 19 characters The VLAN name provides a description of the VLAN purpose (for example, Engineering VLAN).
Forbidden Ports	 Synopsis: Any combination of numbers valid for this parameter These are ports that are not allowed to be members of the VLAN. Examples: None - all ports of the switch are allowed to be members of the VLAN 2,4-6,8 - all ports except ports 2, 4, 6, 7 and 8 are allowed to be members of the VLAN
IGMP	Synopsis: { Off, On } Default: Off This parameter enables or disables IGMP Snooping on the VLAN.
MSTI	Synopsis: 0 to 16 Default: 0 This parameter is only valid for Multiple Spanning Tree Protocol (MSTP) and has no effect if MSTP is not used. The parameter specifies the Multiple Spanning Tree Instance (MSTI) to which the VLAN should be mapped.


4. Click Apply.

Section 5.1.5.3

Deleting a Static VLAN


To delete a static VLAN, do the following:

1. Navigate to *Virtual LANs* » *Configure Static VLANs* . The **Static VLANs** table appears.

2. Select the static VLAN from the table. The **Static VLANs** form appears.

Deleting a Static VLAN 149

3. Click Delete.

Section 5.2

Managing Spanning Tree Protocol

CONTENTS

- Section 5.2.1, "RSTP Operation"
- Section 5.2.2, "RSTP Applications"
- Section 5.2.3, "MSTP Operation"
- Section 5.2.4, "Configuring STP Globally"
- Section 5.2.5, "Configuring STP for Specific Ethernet Ports"
- Section 5.2.6, "Configuring eRSTP"
- Section 5.2.7, "Viewing Global Statistics for STP"
- Section 5.2.8, "Viewing STP Statistics for Ethernet Ports"
- Section 5.2.9, "Managing Multiple Spanning Tree Instances"
- Section 5.2.10, "Clearing Spanning Tree Protocol Statistics"

Section 5.2.1

RSTP Operation

The 802.1D Spanning Tree Protocol (STP) was developed to enable the construction of robust networks that incorporate redundancy while pruning the active topology of the network to prevent loops. While STP is effective,

it requires that frame transfer halt after a link outage until all bridges in the network are guaranteed to be aware of the new topology. Using the values recommended by 802.1D, this period lasts 30 seconds.

The Rapid Spanning Tree Protocol (RSTP, IEEE 802.1w) was a further evolution of the 802.1D Spanning Tree Protocol. It replaced the settling period with an active handshake between bridges that guarantees the rapid propagation of topology information throughout the network. RSTP also offers a number of other significant innovations, including:

- Topology changes in RSTP can originate from and be acted upon by any designated bridges, leading to more rapid propagation of address information, unlike topology changes in STP, which must be passed to the root bridge before they can be propagated to the network.
- RSTP explicitly recognizes two blocking roles Alternate and Backup Port which are included in computations of when to learn and forward. STP, however, recognizes only one state Blocking for ports that should not forward.
- RSTP bridges generate their own configuration messages, even if they fail to receive any from the root bridge. This leads to quicker failure detection. STP, by contrast, must relay configuration messages received on the root port out its designated ports. If an STP bridge fails to receive a message from its neighbor, it cannot be sure where along the path to the root a failure occurred.
- RSTP offers edge port recognition, allowing ports at the edge of the network to forward frames immediately after activation, while at the same time protecting them against loops.

While providing much better performance than STP, IEEE 802.1w RSTP still required up to several seconds to restore network connectivity when a topology change occurred.

A revised and highly optimized RSTP version was defined in the IEEE standard 802.1D-2004 edition. IEEE 802.1D-2004 RSTP reduces network recovery times to just milliseconds and optimizes RSTP operation for various scenarios.

RUGGEDCOM ROS supports IEEE 802.1D-2004 RSTP.

CONTENTS

- Section 5.2.1.1, "RSTP States and Roles"
- Section 5.2.1.2, "Edge Ports"
- Section 5.2.1.3, "Point-to-Point and Multipoint Links"
- Section 5.2.1.4, "Path and Port Costs"
- Section 5.2.1.5, "Bridge Diameter"
- Section 5.2.1.6, "eRSTP"
- Section 5.2.1.7, "Fast Root Failover"

Section 5.2.1.1

RSTP States and Roles

RSTP bridges have roles to play, either root or designated. One bridge - the Root Bridge - is the logical center of the network. All other bridges in the network are Designated bridges. RSTP also assigns each port of the bridge a state and a role. The RSTP state describes what is happening at the port in relation to address learning and frame forwarding. The RSTP role basically describes whether the port is facing the center or the edges of the network and whether it can currently be used.

RSTP States and Roles 151

>> State

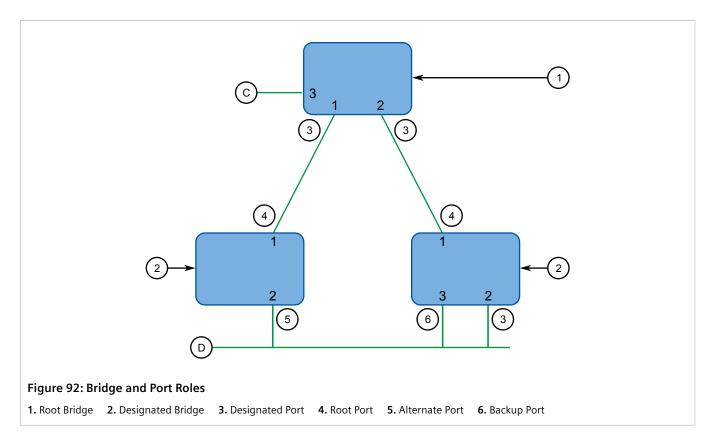
There are three RSTP states: Discarding, Learning and Forwarding.

The discarding state is entered when the port is first put into service. The port does not learn addresses in this state and does not participate in frame transfer. The port looks for RSTP traffic in order to determine its role in the network. When it is determined that the port will play an active part in the network, the state will change to learning.

The learning state is entered when the port is preparing to play an active part in the network. The port learns addresses in this state but does not participate in frame transfer. In a network of RSTP bridges, the time spent in this state is usually quite short. RSTP bridges operating in STP compatibility mode will spend six to 40 seconds in this state.

After *learning*, the bridge will place the port in the forwarding state. The port both learns addresses and participates in frame transfer while in this state.

IMPORTANT!


RUGGEDCOM ROS introduces two more states - Disabled and Link Down. Introduced purely for purposes of management, these states may be considered subclasses of the RSTP Discarding state. The Disabled state refers to links for which RSTP has been disabled. The Link Down state refers to links for which RSTP is enabled but are currently down.

>> Role

There are four RSTP port roles: Root, Designated, Alternate and Backup. If the bridge is not the root bridge, it must have a single Root Port. The Root Port is the "best" (i.e. quickest) way to send traffic to the root bridge.

A port is marked as Designated if it is the best port to serve the LAN segment it is connected to. All bridges on the same LAN segment listen to each others' messages and agree on which bridge is the Designated Bridge. The ports of other bridges on the segment must become either Root, Alternate or Backup ports.

152 RSTP States and Roles

A port is alternate when it receives a better message from another bridge on the LAN segment it is connected to. The message that an Alternate Port receives is better than the port itself would generate, but not good enough to convince it to become the Root Port. The port becomes the alternate to the current Root Port and will become the new Root Port should the current Root Port fail. The Alternate Port does not participate in the network.

A port is a Backup Port when it receives a better message from the LAN segment it is connected to, originating from another port on the same bridge. The port is a backup for another port on the bridge and will become active if that port fails. The Backup Port does not participate in the network.

Section 5.2.1.2

Edge Ports

A port may be designated as an Edge Port if it is directly connected to an end station. As such, it cannot create bridging loops in the network and can thus directly transition to forwarding, skipping the listening and learning stages.

Edge ports that receive configuration messages immediately lose their Edge Port status and become normal spanning tree ports. A loop created on an improperly connected edge port is thus quickly repaired.

Because an Edge Port services only end stations, topology change messages are not generated when its link toggles.

Edge Ports 153

Section 5.2.1.3

Point-to-Point and Multipoint Links

RSTP uses a peer-peer protocol called Proposing-Agreeing to ensure transitioning in the event of a link failure. This protocol is point-to-point and breaks down in multipoint situations, i.e. when more than two bridges operate on a shared media link.

If RSTP detects this circumstance (based upon the port's half duplex state after link up) it will switch off Proposing-Agreeing. The port must transition through the learning and forwarding states, spending one forward delay in each state.

There are circumstances in which RSTP will make an incorrect decision about the point-to-point state of the link simply by examining the half-duplex status, namely:

- The port attaches only to a single partner, but through a half-duplex link.
- The port attaches to a shared media hub through a full-duplex link. The shared media link attaches to more than one RSTP enabled bridge.

In such cases, the user may configure the bridge to override the half-duplex determination mechanism and force the link to be treated in the proper fashion.

Section 5.2.1.4

Path and Port Costs

The STP path cost is the main metric by which root and designated ports are chosen. The path cost for a designated bridge is the sum of the individual port costs of the links between the root bridge and that designated bridge. The port with the lowest path cost is the best route to the root bridge and is chosen as the root port.

NOTE

In actuality the primary determinant for root port selection is the root bridge ID. Bridge ID is important mainly at network startup when the bridge with the lowest ID is elected as the root bridge. After startup (when all bridges agree on the root bridge's ID) the path cost is used to select root ports. If the path costs of candidates for the root port are the same, the ID of the peer bridge is used to select the port. Finally, if candidate root ports have the same path cost and peer bridge ID, the port ID of the peer bridge is used to select the root port. In all cases the lower ID, path cost or port ID is selected as the best.

>> How Port Costs Are Generated

Port costs can be generated either as a result of link auto-negotiation or manual configuration. When the link auto-negotiation method is used, the port cost is derived from the speed of the link. This method is useful when a well-connected network has been established. It can be used when the designer is not too concerned with the resultant topology as long as connectivity is assured.

Manual configuration is useful when the exact topology of the network must be predictable under all circumstances. The path cost can be used to establish the topology of the network exactly as the designer intends.

>> STP vs. RSTP Costs

The IEEE 802.1D-1998 specification limits port costs to values of 1 to 65536. Designed at a time when 9600 bps links were state of the art, this method breaks down in modern use, as the method cannot represent a link speed higher than 10 gigabits per second.

To remedy this problem in future applications, the IEEE 802.1w specification limits port costs to values of 1 to 20000000, and a link speed up to 10 Tb per second can be represented with a value of 2.

RUGGEDCOM bridges support interoperability with legacy STP bridges by selecting the style to use. In practice, it makes no difference which style is used as long as it is applied consistently across the network, or if costs are manually assigned.

Section 5.2.1.5

Bridge Diameter

The bridge diameter is the maximum number of bridges between any two possible points of attachment of end stations to the network.

The bridge diameter reflects the realization that topology information requires time to propagate hop by hop through a network. If configuration messages take too long to propagate end to end through the network, the result will be an unstable network.

There is a relationship between the bridge diameter and the maximum age parameter. To achieve extended ring sizes, Siemens eRSTP™ uses an age increment of ¼ of a second. The value of the maximum bridge diameter is thus four times the configured maximum age parameter.

NOTE

The RSTP algorithm is as follows:

- STP configuration messages contain **age** information.
- Messages transmitted by the root bridge have an age of 0. As each subsequent designated bridge transmits the configuration message it must increase the age by at least 1 second.
- When the age exceeds the value of the maximum age parameter the next bridge to receive the message immediately discards it.

IMPORTANT!

Raise the value of the maximum age parameter if implementing very large bridged networks or rings.

Section 5.2.1.6

eRSTP

Siemens's enhanced Rapid Spanning Tree Protocol (eRSTP) improves the performance of RSTP in two ways:

- Improves the fault recovery time performance (< 5 ms per hop)
- Improves performance for large ring network topologies (up to 80 switches)

eRSTP is also compatible with standard RSTP for interoperability with commercial switches.

For example, in a network comprised of 15 RUGGEDCOM hardened Ethernet switches in a ring topology, the expected fault recovery time would be less than 75 ms (i.e. 5 ms x 15). However, with eRSTP, the worst case fault recovery time is less than 26 ms.

Bridge Diameter 155

Section 5.2.1.7

Fast Root Failover

Siemens's Fast Root Failover feature is an enhancement to RSTP that may be enabled or disabled. Fast Root Failover improves upon RSTP's handling of root bridge failures in mesh-connected networks.

IMPORTANT!

In networks mixing RUGGEDCOM and non-RUGGEDCOM switches, or in those mixing Fast Root Failover algorithms, RSTP Fast Root Failover will not function properly and root bridge failure will result in an unpredictable failover time. To avoid potential issues, note the following:

- When using the Robust algorithm, all switches must be RUGGEDCOM switches
- When using the Relaxed algorithm, all switches must be RUGGEDCOM switches, with the exception of the root switch
- All RUGGEDCOM switches in the network must use the same Fast Root Failover algorithm

Two Fast Root Failover algorithms are available:

- Robust Guarantees a deterministic root failover time, but requires support from all switches in the network, including the root switch
- **Relaxed** Ensures a deterministic root failover time in most network configurations, but allows the use of a standard bridge in the root role

NOTE

The minimum interval for root failures is one second. Multiple, near simultaneous root failures (within less than one second of each other) are not supported by Fast Root Failover.

>> Fast Root Failover and RSTP Performance

- Running RSTP with Fast Root Failover disabled has no impact on RSTP performance in ring-connected networks.
- Fast Root Failover has no effect on RSTP performance in the case of failures that do not involve the root bridge
 or one of its links.
- The extra processing introduced by Fast Root Failover significantly decreases the worst-case failover time due to root bridge failure in mesh networks.

>> Recommendations On the Use of Fast Root Failover

- It is not recommended to enable Fast Root Failover in single ring network topologies.
- It is strongly recommended to always connect the root bridge to each of its neighbor bridges using more than one link when enabled in ring-connected networks.

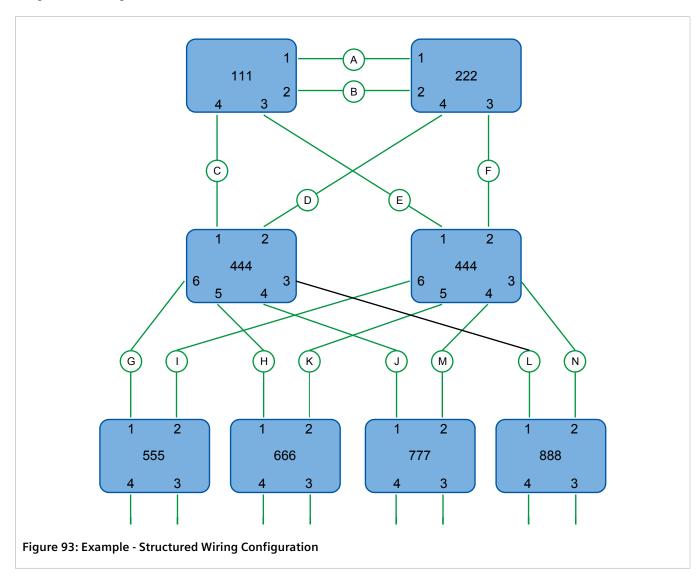
Section 5.2.2

RSTP Applications

The following section describes various applications of RSTP.

CONTENTS

Section 5.2.2.1, "RSTP in Structured Wiring Configurations"


156 Fast Root Failover

- Section 5.2.2.2, "RSTP in Ring Backbone Configurations"
- Section 5.2.2.3, "RSTP Port Redundancy"

Section 5.2.2.1

RSTP in Structured Wiring Configurations

RSTP may be used to construct structured wiring systems where connectivity is maintained in the event of link failures. For example, a single link failure of any link between A and N in Figure 93 would leave all the ports of bridges 555 through 888 connected to the network.

To design a structured wiring configuration, do the following:

1. Select the design parameters for the network.

What are the requirements for robustness and network failover/recovery times? Are there any special requirements for diverse routing to a central host computer? Are there any special port redundancy requirements?

2. Identify required legacy support.

Are STP bridges used in the network? These bridges do not support rapid transitioning to forwarding. If these bridges are present, can they be re-deployed closer to the network edge?

3. Identify edge ports and ports with half-duplex/shared media restrictions.

Ports that connect to host computers, Intelligent Electronic Devices (IEDs) and controllers may be set to edge ports in order to guarantee rapid transitioning to forwarding as well as to reduce the number of topology change notifications in the network. Ports with half-duplex/shared media restrictions require special attention in order to guarantee that they do not cause extended fail-over/recovery times.

4. Choose the root bridge and backup root bridge carefully.

The root bridge should be selected to be at the concentration point of network traffic. Locate the backup root bridge adjacent to the root bridge. One strategy that may be used is to tune the bridge priority to establish the root bridge and then tune each bridge's priority to correspond to its distance from the root bridge.

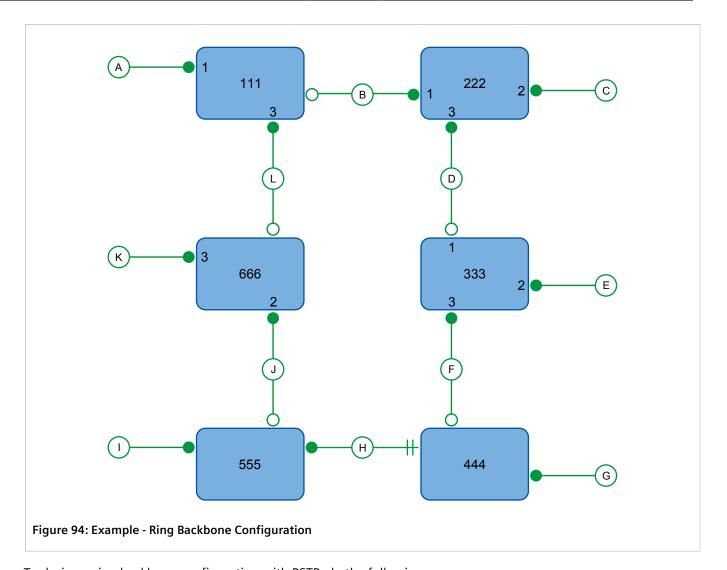
5. Identify desired steady state topology.

Identify the desired steady state topology taking into account link speeds, offered traffic and QOS. Examine of the effects of breaking selected links, taking into account network loading and the quality of alternate links.

6. Decide upon a port cost calculation strategy.

Select whether fixed or auto-negotiated costs should be used? It is recommended to use the auto-negotiated cost style, unless it is necessary for the network design to change the auto-negotiated cost style. Select whether the STP or RSTP cost style should be used. Make sure to configure the same cost style on all devices on the network.

7. Enable RSTP Fast Root Failover option.


This is a proprietary feature of Siemens. In a mesh network with only RUGGEDCOM devices in the core of the network, it is recommended to enable the RSTP Fast Root Failover option to minimize the network downtime in the event of a Root bridge failure.

- 8. Calculate and configure priorities and costs.
- 9. Implement the network and test under load.

Section 5.2.2.2

RSTP in Ring Backbone Configurations

RSTP may be used in ring backbone configurations where rapid recovery from link failure is required. In normal operation, RSTP will block traffic on one of the links, for example, as indicated by the double bars through link H in Figure 94 . In the event of a failure on link D, bridge 444 will unblock link H. Bridge 333 will communicate with the network through link F.

To design a ring backbone configuration with RSTP, do the following:

1. Select the design parameters for the network.

What are the requirements for robustness and network fail-over/recovery times? Typically, ring backbones are chosen to provide cost effective but robust network designs.

2. Identify required legacy support and ports with half-duplex/shared media restrictions.

These bridges should not be used if network fail-over/recovery times are to be minimized.

3. Identify edge ports.

Ports that connect to host computers, Intelligent Electronic Devices (IEDs) and controllers may be set to edge ports in order to guarantee rapid transitioning to forwarding as well as to reduce the number of topology change notifications in the network.

4. Choose the root bridge.

The root bridge can be selected to equalize either the number of bridges, number of stations or amount of traffic on either of its legs. It is important to realize that the ring will always be broken in one spot and that traffic always flows through the root.

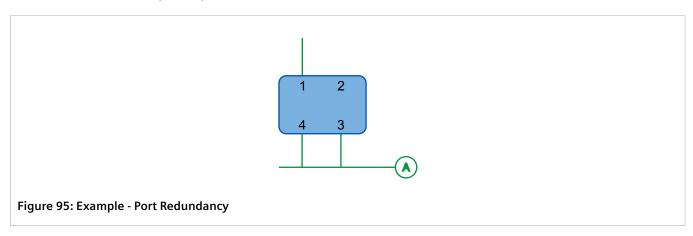
5. Assign bridge priorities to the ring.

The strategy that should be used is to assign each bridge's priority to correspond to its distance from the root bridge. If the root bridge is assigned the lowest priority of 0, the bridges on either side should use a priority of 4096 and the next bridges 8192 and so on. As there are 16 levels of bridge priority available, this method provides for up to 31 bridges in the ring.

6. Decide upon a port cost calculation strategy.

It is recommended to use the auto-negotiated cost style, unless it is necessary for the network design to change the auto-negotiated cost style. Select whether the STP or RSTP cost style should be used. Make sure to configure the same cost style on all devices on the network.

7. Disable RSTP Fast Root Failover option.


This is a proprietary feature of Siemens. In RUGGEDCOM ROS, the RSTP Fast Root Failover option is enabled by default. It is recommended to disable this feature when operating in a Ring network.

8. Implement the network and test under load.

Section 5.2.2.3

RSTP Port Redundancy

In cases where port redundancy is essential, RSTP allows more than one bridge port to service a LAN. In the following example, if port 3 is designated to carry the network traffic of LAN A, port 4 will block traffic. Should an interface failure occur on port 3, port 4 will assume control of the LAN.

Section 5.2.3

MSTP Operation

The Multiple Spanning Tree (MST) algorithm and protocol provide greater control and flexibility than RSTP and legacy STP. MSTP (Multiple Spanning Tree Protocol) is an extension of RSTP, whereby multiple spanning trees may be maintained on the same bridged network. Data traffic is allocated to one or another of several spanning trees by mapping one or more VLANs onto the network.

The sophistication and utility of the Multiple Spanning Tree implementation on a given bridged network is proportional to the amount of planning and design invested in configuring MSTP.

If MSTP is activated on some or all of the bridges in a network with no additional configuration, the result will be a fully and simply connected network, but at best, the result will be the same as a network using only RSTP. Taking full advantage of the features offered by MSTP requires a potentially large number of configuration variables

160 RSTP Port Redundancy

to be derived from an analysis of data traffic on the bridged network, and from requirements for load sharing, redundancy, and path optimization. Once these parameters have all been derived, it is also critical that they are consistently applied and managed across all bridges in an MST region.

By design, MSTP processing time is proportional to the number of active STP instances. This means that MSTP will likely be significantly slower than RSTP. Therefore, for mission critical applications, RSTP should be considered a better network redundancy solution than MSTP.

CONTENTS

- Section 5.2.3.1, "MSTP Regions and Interoperability"
- Section 5.2.3.2, "MSTP Bridge and Port Roles"
- Section 5.2.3.3, "Benefits of MSTP"
- Section 5.2.3.4, "Implementing MSTP on a Bridged Network"

Section 5.2.3.1

MSTP Regions and Interoperability

In addition to supporting multiple spanning trees in a network of MSTP-capable bridges, MSTP is capable of interoperating with bridges that support only RSTP or legacy STP, without requiring any special configuration.

An MST region may be defined as the set of interconnected bridges whose MST Region Identification is identical. The interface between MSTP bridges and non-MSTP bridges, or between MSTP bridges with different MST Region Identification information, becomes part of an MST Region boundary.

Bridges outside an MST region will see the entire region as though it were a single (R)STP bridge; the internal detail of the MST region is hidden from the rest of the bridged network. In support of this, MSTP maintains separate *hop counters* for spanning tree information exchanged at the MST region boundary versus that propagated inside the region. For information received at the MST region boundary, the (R)STP Message Age is incremented only once. Inside the region, a separate Remaining Hop Count is maintained, one for each spanning tree instance. The external Message Age parameter is referred to the (R)STP Maximum Age Time, whereas the internal Remaining Hop Counts are compared to an MST region-wide Maximum Hops parameter.

>> MSTI

An MSTI (Multiple Spanning Tree Instance) is one of sixteen independent spanning tree instances that may be defined in an MST region (not including the IST – see below). An MSTI is created by mapping a set of VLANs (in RUGGEDCOM ROS, via the VLAN configuration) to a given MSTI ID. The same mapping must be configured on all bridges that are intended to be part of the MSTI. Moreover, all VLAN to MSTI mappings must be identical for all bridges in an MST region.

RUGGEDCOM ROS supports 16 MSTIs in addition to the IST.

Each MSTI has a topology that is independent of every other. Data traffic originating from the same source and bound to the same destination but on different VLANs on different MSTIs may therefore travel a different path across the network.

>> IST

An MST region always defines an IST (Internal Spanning Tree). The IST spans the entire MST region, and carries all data traffic that is not specifically allocated (by VLAN) to a specific MSTI. The IST is always computed and is defined to be MSTI zero.

The IST is also the extension inside the MST region of the CIST (see below), which spans the entire bridged network, inside and outside of the MST region and all other RSTP and STP bridges, as well as any other MST regions.

>>> CST

The CST (Common Spanning Tree) spans the entire bridged network, including MST regions and any connected STP or RSTP bridges. An MST region is seen by the CST as an individual bridge, with a single cost associated with its traversal

>> CIST

The CIST (Common and Internal Spanning Tree) is the union of the CST and the ISTs in all MST regions. The CIST therefore spans the entire bridged network, reaching into each MST region via the latter's IST to reach every bridge on the network.

Section 5.2.3.2

MSTP Bridge and Port Roles

MSTP supports the following bridge and port roles:

>>> Bridge Roles

Role	Description
CIST Root	The CIST Root is the elected root bridge of the CIST (Common and Internal Spanning Tree), which spans all connected STP and RSTP bridges and MSTP regions.
CIST Regional Root	The root bridge of the IST within an MSTP region. The CIST Regional Root is the bridge within an MSTP region with the lowest cost path to the CIST Root. Note that the CIST Regional Root will be at the boundary of an MSTP region. Note also that it is possible for the CIST Regional Root to be the CIST Root.
MSTI Regional Root	The root bridge for an MSTI within an MSTP region. A root bridge is independently elected for each MSTI in an MSTP region.

>> Port Roles

Each port on an MSTP bridge may have more than one CIST role depending on the number and topology of spanning tree instances defined on the port.

Role	Description
CIST Port Roles	 The Root Port provides the minimum cost path from the bridge to the CIST Root via the CIST Regional Root. If the bridge itself happens to be the CIST Regional Root, the Root Port is also the Master Port for all MSTIs, and provides the minimum cost path to a CIST Root located outside the region. A Designated Port provides the minimum cost path from an attached LAN, via the bridge to the CIST Regional Root.

162 MSTP Bridge and Port Roles

Role	Description
	 Alternate and Backup Ports function the same as they do in RSTP, but relative to the CIST Regional Root.
MSTI Port Roles	For each MSTI on a bridge:
	The Root Port provides the minimum cost path from the bridge to the MSTI Regional Root, if the bridge itself is not the MSTI Regional Root.
	A Designated Port provides the minimum cost path from an attached LAN, via the bridge to the MSTI Regional Root.
	• Alternate and Backup Ports function the same as they do in RSTP, but relative to the MSTI Regional Root.
	The Master Port, which is unique in an MSTP region, is the CIST Root Port of the CIST Regional Root, and provides the minimum cost path to the CIST Root for all MSTIs.
Boundary Ports	A Boundary Port is a port on a bridge in an MSTP region that connects to either: a bridge belonging to a different MSTP region, or a bridge supporting only RSTP or legacy STP. A Boundary Port blocks or forwards all VLANs from all MSTIs and the CIST alike.
	A Boundary Port may be:
	The CIST Root Port of the CIST Regional Root (and therefore also the MSTI Master Port).
	• A CIST Designated Port, CIST Alternate/Backup Port, or Disabled. At the MSTP region boundary, the MSTI Port Role is the same as the CIST Port Role.
	A Boundary Port connected to an STP bridge will send only STP BPDUs. One connected to an RSTP bridge need not refrain from sending MSTP BPDUs. This is made possible by the fact that the MSTP carries the CIST Regional Root Identifier in the field that RSTP parses as the Designated Bridge Identifier.

Section 5.2.3.3

Benefits of MSTP

Despite the fact that MSTP is configured by default to arrive automatically at a spanning tree solution for each configured MSTI, advantages may be gained from influencing the topology of MSTIs in an MST region. The fact that the Bridge Priority and each port cost are configurable per MST makes it possible to control the topology of each MSTI within a region.

>> Load Balancing

MSTP can be used to balance data traffic load among sets of VLANs, enabling more complete utilization of a multiply interconnected bridged network.

A bridged network controlled by a single spanning tree will block redundant links by design, in order to avoid harmful loops. Using MSTP, however, any given link may have a different blocking state for MSTI, as maintained by MSTP. Any given link, therefore, might be in blocking state for some VLANs, and in forwarding state for other VLANs, depending on the mapping of VLANs to MSTIs.

It is possible to control the spanning tree solution for each MSTI, especially the set of active links for each tree, by manipulating, per MSTI, the bridge priority and the port costs of links in the network. If traffic is allocated judiciously to multiple VLANs, redundant interconnections in a bridged network which, using a single spanning tree, would have gone unused, can now be made to carry traffic.

Benefits of MSTP 163

>> Isolation of Spanning Tree Reconfiguration.

A link failure in an MSTP region that does not affect the roles of Boundary ports will not cause the CST to be reconfigured, nor will the change affect other MSTP regions. This is due to the fact that MSTP information does not propagate past a region boundary.

>> MSTP versus PVST

An advantage of MSTP over the Cisco Systems Inc. proprietary PVST protocol is the ability to map multiple VLANs onto a single MSTI. Since each spanning tree requires processing and memory, the expense of keeping track of an increasing number of VLANs increases much more rapidly for PVST than for MSTP.

>> Compatibility with STP and RSTP

No special configuration is required for the bridges of an MST region to connect fully and simply to non-MST bridges on the same bridged network. Careful planning and configuration is, however, recommended in order to arrive at an optimal network.

Section 5.2.3.4

Implementing MSTP on a Bridged Network

It is recommended the configuration of MSTP on a network proceed in the sequence outlined below.

Naturally, it is also recommended that network analysis and planning inform the steps of configuring the VLAN and MSTP parameters in particular.

Begin with a set of MSTP-capable Ethernet bridges and MSTP disabled. For each bridge in the network:

NOTE

MSTP does not need to be enabled to map a VLAN to an MSTI. However, the mapping must be identical for each bridge that belongs to the MSTP region.

1. Configure and enable STP globally and/or for specific Ethernet ports. For more information, refer to Section 5.2.4, "Configuring STP Globally" or Section 5.2.5, "Configuring STP for Specific Ethernet Ports".

NOTE

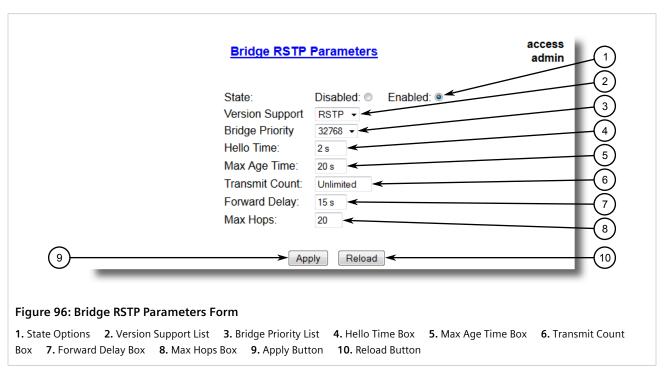
Static VLANs must be used in an MSTP configuration. GVRP is not supported.

 Add static VLANs and map them to MSTIs. For more information, refer to Section 5.1.5.2, "Adding a Static VLAN".

NOTE

The Region Identifier and Revision Level must be the same for each bridge in the MST region.

- 3. Configure the revision level for the MST Region Identifier. For more information, refer to Section 5.2.9.3, "Configuring the MST Region Identifier".
- 4. Make sure the read-only digest for the MST Region Identifier is identical for each bridge in the MST region. If the digest is different, the set of mappings from VLANs to MSTIs differs.
- 5. Configure the Bridge Priority for the global MSTI. For more information, refer to Section 5.2.9.4, "Configuring a Global MSTI".


- 6. Configure the Port Cost and Priority per Port for each MSTI. For more information, refer to Section 5.2.9.5, "Configuring an MSTI for an Ethernet Port".
- 7. Set the STP Protocol Version to MSTP and enable STP. For more information, refer to Section 5.2.4, "Configuring STP Globally"

Section 5.2.4

Configuring STP Globally

To configure global settings for the Spanning Tree Protocol (STP), do the following:

1. Navigate to **Spanning Tree** » **Configure Bridge RSTP Parameters** . The **Bridge RSTP Parameters** form appears.

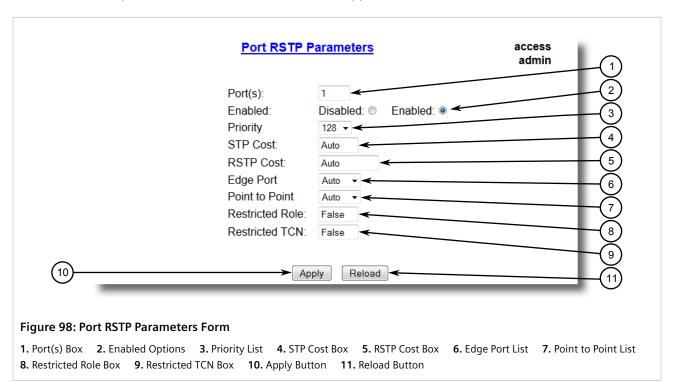
2. Configure the following parameter(s) as required:

Parameter	Description
State	Synopsis: { Disabled, Enabled } Default: Enabled Enable STP/RSTP/MSTP for the bridge globally. Note that STP/RSTP/ MSTP is enabled on a port when it is enabled globally and along with enabling per port setting.
Version Support	Synopsis: { STP, RSTP, MSTP } Default: RSTP Selects the version of Spanning Tree Protocol to support, either only STP or Rapid STP or Multiple STP.
Bridge Priority	Synopsis: { 0, 4096, 8192, 12288, 16384, 20480, 24576, 28672, 32768, 36864, 40960, 45056, 49152, 53248, 57344, 61440 } Default: 32768

Configuring STP Globally 165

Parameter	Description
	Bridge Priority provides a way to control the topology of the STP connected network. The desired Root and Designated bridges can be configured for a particular topology. The bridge with the lowest priority will become root. In the event of a failure of the root bridge, the bridge with the next lowest priority will then become root. Designated bridges that (for redundancy purposes) service a common LAN also use priority to determine which bridge is active. In this way careful selection of Bridge Priorities can establish the path of traffic flows in normal and abnormal conditions.
Hello Time	Synopsis: 1 to 10 s Default: 2 s
	Time between configuration messages issued by the root bridge. Shorter hello times result in faster detection of topology changes at the expense of moderate increases in STP traffic.
Max Age Time	Synopsis: 6 to 40 s Default: 20 s
	The time for which a configuration message remains valid after being issued by the root bridge. Configure this parameter with care when many tiers of bridges exist, or slow speed links (such as those used in WANs) are part of the network
Transmit Count	Synopsis: 3 to 100 or { Unlimited } Default: Unlimited
	Maximum number of BPDUs on each port that may be sent in one second. Larger values allow the network to recover from failed links/bridges more quickly.
Forward Delay	Synopsis: 4 to 30 s Default: 15 s
	The amount of time a bridge spends learning MAC addresses on a rising port before beginning to forward traffic. Lower values allow the port to reach the forwarding state more quickly, but at the expense of flooding unlearned addresses to all ports.
Max Hops	Synopsis: 6 to 40 Default: 20
	Only applicable to MSTP. The maximum possible bridge diameter inside an MST region.
	MSTP BPDUs propagating inside an MST region specify a time-to-live that is decremented by every switch that propagates the BPDU. If the maximum number of hops inside the region exceeds the configured maximum, BPDUs may be discarded due to their time-to-live setting.

Section 5.2.5


Configuring STP for Specific Ethernet Ports

To configure the Spanning Tree Protocol (STP) for a specific Ethernet port, do the following:

1. Navigate to **Spanning Tree** » **Configure Port RSTP Parameters** . The **Port RSTP Parameters** table appears.

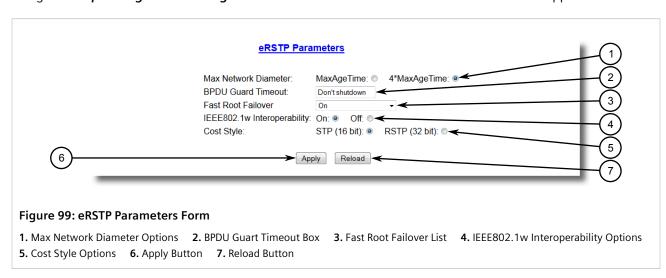
			STP	RSTP	Edge	Point	Restricted	Restricted	
Port(s)Enabled	abled Priority	Cost	Cost		to Point	Role	TCN	
1	Enabled	128	Auto	Auto	Auto	Auto	False	False	
2	Enabled	128	Auto	Auto	Auto	Auto	False	False	
3	Enabled	128	Auto	Auto	Auto	Auto	False	False	
4	Enabled	128	Auto	Auto	Auto	Auto	False	False	
5	Enabled	128	Auto	Auto	Auto	Auto	False	False	
6	Enabled	128	Auto	Auto	Auto	Auto	False	False	
7	Enabled	128	Auto	Auto	Auto	Auto	False	False	
8	Enabled	128	Auto	Auto	Auto	Auto	False	False	
9	Enabled	128	Auto	Auto	Auto	Auto	False	False	
10	Enabled	128	Auto	Auto	Auto	Auto	False	False	

2. Select an Ethernet port. The **Port RSTP Parameters** form appears.

3. Configure the following parameter(s) as required:

Parameter	Description
Port(s)	Synopsis: Any combination of numbers valid for this parameter The port number as seen on the front plate silkscreen of the switch (or a list of ports, if aggregated in a port trunk).
Enabled	Synopsis: { Disabled, Enabled } Default: Enabled

Parameter	Description
	Enabling STP activates the STP or RSTP protocol for this port per the configuration in the STP Configuration menu. STP may be disabled for the port ONLY if the port does not attach to an STP enabled bridge in any way. Failure to meet this requirement WILL result in an undetectable traffic loop in the network. A better alternative to disabling the port is to leave STP enabled but to configure the port as an edge port. A good candidate for disabling STP would be a port that services only a single host computer.
Priority	Synopsis: { 0, 16, 32, 48, 64, 80, 96, 112, 128, 144, 160, 176, 194, 208, 224, 240 } Default: 128
	Selects the STP port priority. Ports of the same cost that attach to a common LAN will select the port to be used based upon the port priority.
STP Cost	Synopsis: 0 to 65535 or { Auto } Default: Auto
	Selects the cost to use in cost calculations, when the Cost Style parameter is set to STP in the Bridge RSTP Parameters configuration. Setting the cost manually provides the ability to preferentially select specific ports to carry traffic over others. Leave this field set to "auto" to use the standard STP port costs as negotiated (4 for 1Gbps, 19 for 100 Mbps links and 100 for 10 Mbps links).
	For MSTP, this parameter applies to both external and internal path cost.
RSTP Cost	Synopsis: 0 to 2147483647 or { Auto } Default: Auto
	Selects the cost to use in cost calculations, when the Cost Style parameter is set to RSTP in the Bridge RSTP Parameters configuration. Setting the cost manually provides the ability to preferentially select specific ports to carry traffic over others. Leave this field set to "auto" to use the standard RSTP port costs as negotiated (20,000 for 1Gbps, 200,000 for 100 Mbps links and 2,000,000 for 10 Mbps links).
	For MSTP, this parameter applies to both external and internal path cost.
Edge Port	Synopsis: { False, True, Auto } Default: Auto
	Edge ports are ports that do not participate in the Spanning Tree, but still send configuration messages. Edge ports transition directly to frame forwarding without any listening and learning delays. The MAC tables of Edge ports do not need to be flushed when topology changes occur in the STP network. Unlike an STP disabled port, accidentally connecting an edge port to another port in the spanning tree will result in a detectable loop. The "Edgeness" of the port will be switched off and the standard RSTP rules will apply (until the next link outage).
Point to Point	Synopsis: { False, True, Auto } Default: Auto
	RSTP uses a peer-to-peer protocol that provides rapid transitioning on point-to-point links. This protocol is automatically turned off in situations where multiple STP bridges communicate over a shared (non point-to-point) LAN. The bridge will automatically take point-to-point to be true when the link is found to be operating in full-duplex mode. The point-to-point parameter allows this behavior or overrides it, forcing point-to-point to be true or false. Force the parameter true when the port operates a point-to-point link but


Parameter	Description
	cannot run the link in full-duplex mode. Force the parameter false when the port operates the link in full-duplex mode, but is still not point-to-point (e.g. a full-duplex link to an unmanaged bridge that concentrates two other STP bridges).
Restricted Role	Synopsis: { True or False } Default: False
	A boolean value set by management. If TRUE, causes the Port not to be selected as the Root Port for the CIST or any MSTI, even if it has the best spanning tree priority vector. Such a Port will be selected as an Alternate Port after the Root Port has been selected. This parameter should be FALSE by default. If set, it can cause a lack of spanning tree connectivity. It is set by a network administrator to prevent bridges that are external to a core region of the network from influencing the spanning tree active topology. This may be necessary, for example, if those bridges are not under the full control of the administrator.
Restricted TCN	Synopsis: { True or False } Default: False A boolean value set by management. If TRUE, it causes the Port not to propagate received topology change notifications and topology changes to other Ports. If set, it can cause temporary loss of connectivity after changes in a spanning tree's active topology as a result of persistent, incorrectly learned, station location information. It is set by a network administrator to prevent bridges that are external to a core region of the network from causing address flushing in that region. This may be necessary, for example, if those bridges are not under the full control of the administrator or if the MAC_Operational status parameter for the attached LANs transitions frequently.

Section 5.2.6

Configuring eRSTP

To configure eRSTP, do the following:

1. Navigate to **Spanning Tree** » **Configure eRSTP Parameters** . The **eRSTP Parameters** form appears.

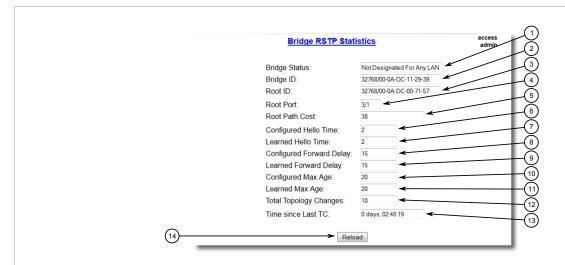
Configuring eRSTP 169

2. Configure the following parameter(s) as required:

Parameter	Description
Max Network Diameter	Synopsis: { MaxAgeTime, 4*MaxAgeTime } Default: 4*MaxAgeTime
	The RSTP standard puts a limit on the maximum network size that can be controlled by the RSTP protocol. The network size is described by the term 'maximum network diameter', which is the number of switches that comprise the longest path that RSTP BPDUs have to traverse. The standard supported maximum network diameter is equal to the value of the 'MaxAgeTime' RSTP configuration parameter.
	eRSTP offers an enhancement to RSTP which allows it to cover
	networks larger than ones defined by the standard. This configuration parameter selects the maximum supported
	network size.
BPDU Guard Timeout	Synopsis: 1 to 86400 s or { Until reset, Don't shutdown } Default: Don't shutdown
	The RSTP standard does not address network security. RSTP must process every received BPDU and take an appropriate action. This opens a way for an attacker to influence RSTP topology by injecting RSTP BPDUs into the network.
	BPDU Guard is a feature that protects the network from BPDUs received by a port where RSTP capable devices are not expected to be attached. If a BPDU is received by a port for which 'Edge' parameter is set to 'TRUE' or RSTP is disabled, the port will be shutdown for the time period specified by this parameter.
	DON'T SHUTDOWN - BPDU Guard is disabled
	UNTIL RESET - port will remain shutdown until the port reset command is issued by the user
Fast Root Failover	Synopsis: { On, On with standard root, Off } Default: On
	In mesh network topologies, the standard RSTP algorithm does not guarantee deterministic network recovery time in the case of a root switch failure. Such a recovery time is hard to calculate and it can be different (and may be relatively long) for any given mesh topology.
	This configuration parameter enables Siemens's enhancement to RSTP which detects a failure of the root switch and performs some extra RSTP processing steps, significantly reducing the network recovery time and making it deterministic.
	NOTE
	This feature is only available in RSTP mode. In MSTP mode, the configuration parameter is ignored.
	 In a single ring topology, this feature is not needed and should be disabled to avoid longer network recovery times due to extra RSTP

processing.

The Fast Root Failover algorithm must be supported by all switches in the network, including the root, to guarantee optimal performance. However, it is not uncommon to assign the root role to a switch from a vendor different from the rest of the switches in the network. In other words, it is possible that the root might not suport the Fast Root Failover algorithm. In such a scenario, a "relaxed" algorithm should be used, which tolerates the lack of support in the root switch.


170 Configuring eRSTP

Parameter	Description
	These are the supported configuration options:
	Off - Fast Root Failover algorithm is disabled and hence a root switch failure may result in excessive connectivity recovery time.
	On - Fast Root Failover is enabled and the most robust algorithm is used, which requires the appropriate support in the root switch.
	On with standard root - Fast Root Failover is enabled but a "relaxed" algorithm is used, allowing the use of a standard switch in the root role.
IEEE802.1w Interoperability	Synopsis: { On, Off } Default: On
	The original RSTP protocol defined in the IEEE 802.1w standard has minor differences from more recent, enhanced, standard(s). Those differences cause interoperability issues which, although they do not completely break RSTP operation, can lead to a longer recovery time from failures in the network.
	eRSTP offers some enhancements to the protocol which make the switch fully interoperable with other vendors' switches, which may be running IEEE 802.2w RSTP. The enhancements do not affect interoperability with more recent RSTP editions.
	This configuration parameter enables the aforementioned interoperability mode.
Cost Style	Synopsis: { STP (16 bit), RSTP (32 bit) } Default: STP (16 bit)
	The RSTP standard defines two styles of a path cost value. STP uses 16-bit path costs based upon 1x10E9/link speed (4 for 1Gbps, 19 for 100 Mbps and 100 for 10 Mbps) whereas RSTP uses 32-bit costs based upon 2x10E13/link speed (20,000 for 1Gbps, 200,000 for 100 Mbps and 2,000,000 for 10 Mbps). However, switches from some vendors keep using the STP path cost style even in RSTP mode, which can cause confusion and interoperability problems.
	This configuration parameter selects the style of link costs to employ.
	Note that RSTP link costs are used only when the bridge version support is set to allow RSTP and the port does not migrate to STP.

Section 5.2.7

Viewing Global Statistics for STP

To view global statistics for STP, navigate to **Spanning Tree** » **View Bridge RSTP Statistics** . The **Bridge RSTP Statistics** form appears.

Figure 100: Bridge RSTP Statistics Form

Bridge Status Box
 Bridge ID Box
 Root ID Box
 Root Port Box
 Root Path Cost Box
 Configure Hello Time Box
 Configured Forward Delay Box
 Configured Max Age Box
 Configured Max Age Box
 Root Port Box
 Root Path Cost Box
 Configure Hello Time Box
 Learned Forward Delay Box
 Configured Max Age Box
 Root Path Cost Box
 Configure Hello Time Box
 Root Path Cost Box
 Root Path Cost Box
 Configure Hello Time Box
 Root Path Cost Box<

This table displays the following information:

Parameter	Description
Bridge Status	Synopsis: { , Designated Bridge, Not Designated For Any LAN, Root Bridge }
	Spanning Tree status of the bridge. The status may be root or designated. This field may show text saying not designated for any LAN if the bridge is not designated for any of its ports.
Bridge ID	Synopsis: \$\$ / ##-##-##-##-## where \$\$ is 0 to 65535, ## is 0 to FF
	Bridge Identifier of this bridge.
Root ID	Synopsis: \$\$ / ##-##-##-##-## where \$\$ is 0 to 65535, ## is 0 to FF
	Bridge Identifier of the root bridge.
Root Port	Synopsis: 1 to maximum port number or { <empty string=""> }</empty>
	If the bridge is designated, this is the port that provides connectivity towards the root bridge of the network.
Root Path Cost	Synopsis: 0 to 4294967295
	Total cost of the path to the root bridge composed of the sum of the costs of each link in the path. If custom costs have not been configured. 1Gbps ports will contribute 4, 100 Mbps ports will contribute 19 and 10 Mbps ports will contribute a cost of 100 to this figure.
	For the CIST instance of MSTP, this is an external root path cost, which is the cost of the path from the IST root (i.e. regional root) bridge to the CST root (i.e. network "global" root) bridge.
Configured Hello Time	Synopsis: 0 to 65535
	The configured Hello time from the Bridge RSTP Parameters menu.
Learned Hello Time	Synopsis: 0 to 65535

Parameter	Description
	The actual Hello time provided by the root bridge as learned in configuration messages. This time is used in designated bridges.
Configured Forward Delay	Synopsis: 0 to 65535
	The configured Forward Delay time from the Bridge RSTP Parameters menu.
Learned Forward Delay	Synopsis: 0 to 65535
	The actual Forward Delay time provided by the root bridge as learned in configuration messages. This time is used in designated bridges.
Configured Max Age	Synopsis: 0 to 65535
	The configured Maximum Age time from the Bridge RSTP Parameters menu.
Learned Max Age	Synopsis: 0 to 65535
	The actual Maximum Age time provided by the root bridge as learned in configuration messages. This time is used in designated bridges.
Total Topology Changes	Synopsis: 0 to 65535
	A count of topology changes in the network, as detected on this bridge through link failures or as signaled from other bridges. Excessively high or rapidly increasing counts signal network problems.
Time since Last TC	Synopsis: DDDD days, HH:MM:SS
	The time since the last time a topology change was detected by the bridge.

Section 5.2.8

Viewing STP Statistics for Ethernet Ports

To view STP statistics for Ethernet ports, navigate to **Spanning Tree** » **View Port RSTP Statistics** . The **Port RSTP Statistics** table appears.

			Port RST	P Statistic	<u>:s</u>			ess Imin
Port(s)	Status	Role	Cost	RX RSTs	TX RSTs	RX Configs	TX Configs	RX Tcn
1	Link Down		0	0	30657	0	0	0
2	Link Down		0	2	30660	0	0	0
3	Link Down		0	0	0	0	0	0
4	Link Down		0	0	0	0	0	0
5	Link Down		0	0	0	0	0	0
6	Link Down		0	0	0	0	0	0
7	Link Down		0	0	0	0	0	0
8	Forwarding	Root	19	51851	3	0	0	0
9	Link Down		0	0	0	0	0	0
10	Link Down		0	0	0	0	0	0

Figure 101: Port RSTP Statistics Table

This table displays the following information:

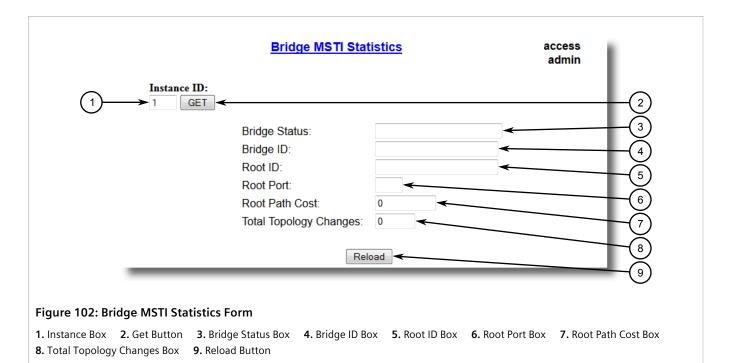
Parameter	Description
Port(s)	Synopsis: Any combination of numbers valid for this parameter
	The port number as seen on the front plate silkscreen of the switch (or a list of ports, if aggregated in a port trunk).
Status	Synopsis: { Disabled, Listening, Learning, Forwarding, Blocking, Link Down, Discarding }
	Status of this port in Spanning Tree. This may be one of the following:
	Disabled - STP is disabled on this port.
	• Link Down - STP is enabled on this port but the link is down.
	• Discarding - The link is not used in the STP topology but is standing by.
	• Learning - The port is learning MAC addresses in order to prevent flooding when it begins forwarding traffic.
	• Forwarding - The port is forwarding traffic.
Role	Synopsis: { , Root, Designated, Alternate, Backup, Master }
	Role of this port in Spanning Tree. This may be one of the following:
	• Designated - The port is designated for (i.e. carries traffic towards the root for) the LAN it is connected to.
	Root - The single port on the bridge, which provides connectivity towards the root bridge.
	Backup - The port is attached to a LAN that is serviced by another port on the bridge. It is not used but is standing by.
	• Alternate - The port is attached to a bridge that provides connectivity to the root bridge. It is not used but is standing by.
	 Master - Only exists in MSTP. The port is an MST region boundary port and the single port on the bridge, which provides connectivity for the Multiple Spanning Tree Instance towards the Common Spanning Tree root bridge (i.e. this port is the root port for the Common Spanning Tree Instance).
Cost	Synopsis: 0 to 4294967295
	Cost offered by this port. If the Bridge RSTP Parameters Cost Style is set to STP, 1Gbps ports will contribute 4, 100 Mbps ports will contribute 19 and 10 Mbps ports contribute a cost of 100. If the Cost Style is set to RSTP, 1Gbps will contribute 20,000, 100 Mbps ports will contribute a cost of 200,000 and 10 Mbps ports contribute a cost of 2,000,000. Note that even if the Cost style is set to RSTP, a port that migrates to STP will have its cost limited to a maximum of 65535.
RX RSTs	Synopsis: 0 to 4294967295
	The count of RSTP configuration messages received on this port.
TX RSTs	Synopsis: 0 to 4294967295
	The count of RSTP configuration messages transmitted on this port.
RX Configs	Synopsis: 0 to 4294967295
	The count of STP configuration messages received on this port.
TX Configs	Synopsis: 0 to 4294967295
J .	The count of STP configuration messages transmitted on this port.
RX Tcns	Synopsis: 0 to 4294967295

Parameter	Description
	The count of STP topology change notification messages received on this port. Excessively high or rapidly increasing counts signal network problems.
TX Tcns	Synopsis: 0 to 4294967295
	The count of STP topology change notification messages transmitted on this port.
Desig Bridge ID	Synopsis: \$\$ / ##-##-##-##-## where \$\$ is 0 to 65535, ## is 0 to FF
	Provided on the root ports of designated bridges, the Bridge Identifier of the bridge this port is connected to.
operEdge	Synopsis: True or False
	The port is operating as an edge port or not.

Section 5.2.9

Managing Multiple Spanning Tree Instances

The following section describes how to configure and manage Multiple Spanning Tree Instances.


CONTENTS

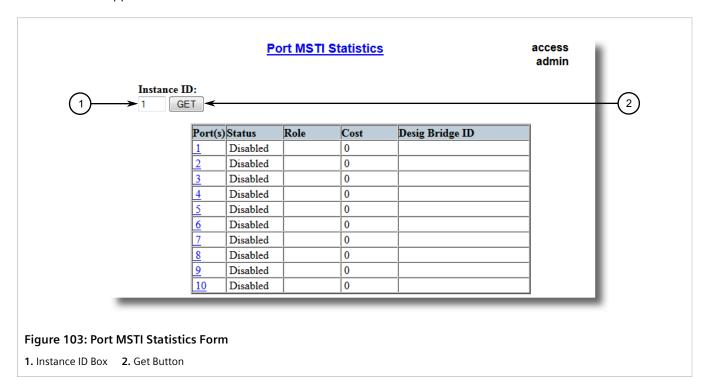
- Section 5.2.9.1, "Viewing Statistics for Global MSTIs"
- Section 5.2.9.2, "Viewing Statistics for Port MSTIs"
- Section 5.2.9.3, "Configuring the MST Region Identifier"
- Section 5.2.9.4, "Configuring a Global MSTI"
- Section 5.2.9.5, "Configuring an MSTI for an Ethernet Port"

Section 5.2.9.1

Viewing Statistics for Global MSTIs

To view statistics for global MSTIs, navigate to **Spanning Tree** » **View Bridge MSTI Statistics** . The **Bridge MSTI Statistics** form appears.

This table displays the following information:


Parameter	Description
Bridge Status	Synopsis: { , Designated Bridge, Not Designated For Any LAN, Root Bridge }
	Spanning Tree status of the bridge. The status may be root or designated. This field may show text saying not designated for any LAN if the bridge is not designated for any of its ports.
Bridge ID	Synopsis: \$\$ / ##-##-##-##-## where \$\$ is 0 to 65535, ## is 0 to FF
	Bridge Identifier of this bridge.
Root ID	Synopsis: \$\$ / ##-##-##-##-## where \$\$ is 0 to 65535, ## is 0 to FF
	Bridge Identifier of the root bridge.
Root Port	Synopsis: 1 to maximum port number or { <empty string=""> }</empty>
	If the bridge is designated, this is the port that provides connectivity towards the root bridge of the network.
Root Path Cost	Synopsis: 0 to 4294967295
	Total cost of the path to the root bridge composed of the sum of the costs of each link in the path. If custom costs have not been configured. 1Gbps ports will contribute 4, 100 Mbps ports will contribute 19 and 10 Mbps ports will contribute a cost of 100 to this figure.
	For the CIST instance of MSTP, this is an external root path cost, which is the cost of the path from the IST root (i.e. regional root) bridge to the CST root (i.e. network "global" root) bridge.
Total Topology Changes	Synopsis: 0 to 65535
	A count of topology changes in the network, as detected on this bridge through link failures or as signaled from other bridges.

Parameter	Description
	Excessively high or rapidly increasing counts signal network problems.

Section 5.2.9.2

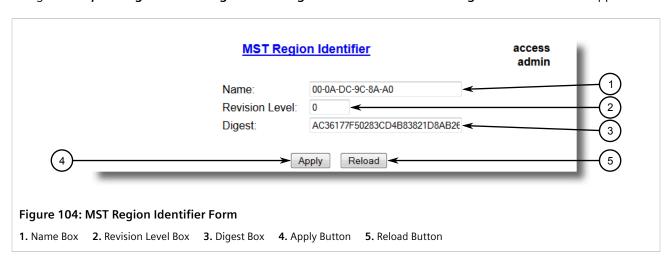
Viewing Statistics for Port MSTIs

To view statistics for port MSTIs, navigate to **Spanning Tree** » **View Port MSTI Statistics** . The **Port MSTI Statistics** form appears.

This table displays the following information:

Parameter	Description
Port(s)	Synopsis: Any combination of numbers valid for this parameter The port number as seen on the front plate silkscreen of the switch (or a list of ports, if aggregated in a port trunk).
Status	 Synopsis: { Disabled, Listening, Learning, Forwarding, Blocking, Link Down, Discarding } tatus of this port in Spanning Tree. This may be one of the following: Disabled - STP is disabled on this port. Link Down - STP is enabled on this port but the link is down. Discarding - The link is not used in the STP topology but is standing by. Learning - The port is learning MAC addresses in order to prevent flooding when it begins forwarding traffic. Forwarding - The port is forwarding traffic.
Role	Synopsis: { , Root, Designated, Alternate, Backup, Master }

Parameter	Description
	Role of this port in Spanning Tree. This may be one of the following:
	• Designated - The port is designated for (i.e. carries traffic towards the root for) the LAN it is connected to.
	Root - The single port on the bridge, which provides connectivity towards the root bridge.
	Backup - The port is attached to a LAN that is serviced by another port on the bridge. It is not used but is standing by.
	Alternate - The port is attached to a bridge that provides connectivity to the root bridge. It is not used but is standing by.
	Master - Only exists in MSTP. The port is an MST region boundary port and the single port on the bridge, which provides connectivity for the Multiple Spanning Tree Instance towards the Common Spanning Tree root bridge (i.e. this port is the root port for the Common Spanning Tree Instance).
Cost	Synopsis: 0 to 4294967295
	Cost offered by this port. If the Bridge RSTP Parameters Cost Style is set to STP, 1Gbps ports will contribute 4, 100 Mbps ports will contribute 19 and 10 Mbps ports contribute a cost of 100. If the Cost Style is set to RSTP, 1Gbps will contribute 20,000, 100 Mbps ports will contribute a cost of 200,000 and 10 Mbps ports contribute a cost of 2,000,000. Note that even if the Cost style is set to RSTP, a port that migrates to STP will have its cost limited to a maximum of 65535.
Desig Bridge ID	Synopsis: \$\$ / ##-##-##-## where \$\$ is 0 to 65535, ## is 0 to FF
	Provided on the root ports of designated bridges, the Bridge Identifier of the bridge this port is connected to.


Section 5.2.9.3

Configuring the MST Region Identifier

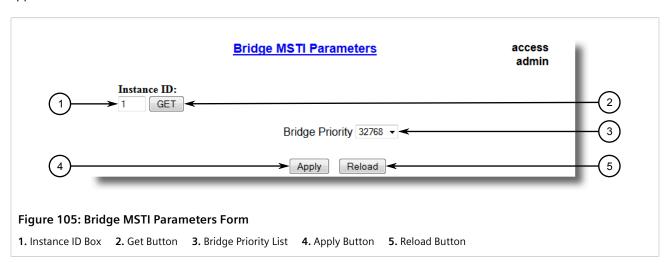
Configuring the region identifier and revision level puts the MSTP bridge in a defined group. Other bridges that have the same identifier and revision level are interconnected within this region. For more information, refer to Section 5.2.3.1, "MSTP Regions and Interoperability".

To configure the Multiple Spanning Tree (MST) region identifier, do the following:

Navigate to Spanning Tree » Configure MST Region Identifier. The MST Region Identifier form appears.

2. Configure the following parameter(s) as required:

Parameter	Description
Name	Synopsis: Any 32 characters Default: 00-0A-DC-92-00-00 The name of the MST region. All devices in the same MST region must have the same region name configured.
Revision Level	Synopsis: 0 to 65535 Default: 0 The revision level for MST configuration. Typically, all devices in the same MST region are configured with the same revision level. However, different revision levels can be used to create subregions under the same region name.
Digest	Synopsis: Any 32 characters Default: 0 This is a read-only parameter and should be only used for network troubleshooting. In order to ensure consistent VLAN-to-instance mapping, it is necessary for the protocol to be able to exactly identify the boundaries of the MST regions. For that pupose, the characteristics of the region are included in BPDUs. There is no need to propagate the exact VLAN-to-instance mapping in the BPDUs because switches only need to know whether they are in the same region as a neighbor. Therefore, only this 16-octet digest created from the VLAN-to-instance mapping is sent in BPDUs.


3. Click Apply.

Section 5.2.9.4

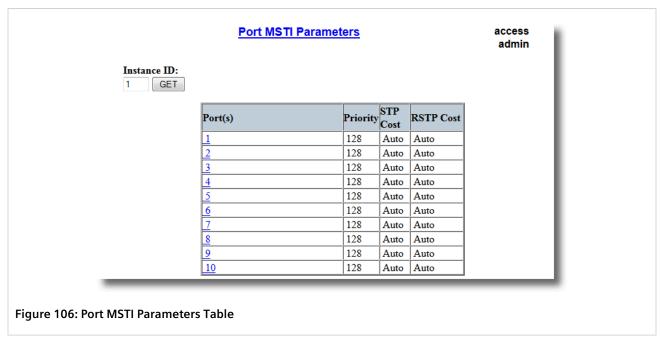
Configuring a Global MSTI

To configure a global Multiple Spanning Tree Instance (MSTI) for the Spanning Tree Protocol (STP), do the following:

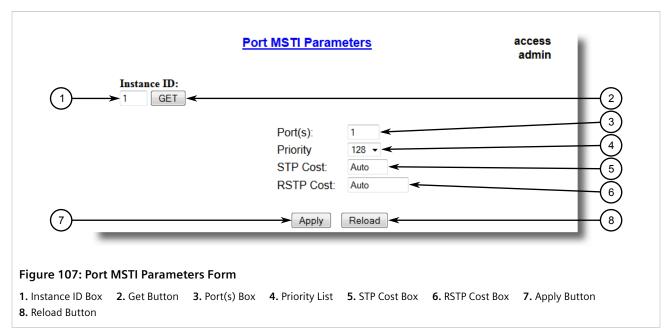
1. Navigate to **Spanning Tree » Configure Bridge MSTI Parameters**. The **Bridge MSTI Parameters** form appears.

Configuring a Global MSTI 179

- 2. Under Instance ID, type an ID number for a Multiple Spanning Tree Instance (MSTI) and click **GET**. The settings for the MSTI are displayed. Any changes made to the configuration will be applied specifically to this instance ID.
- 3. Configure the following parameter(s) as required:


Parameter	Description
Bridge Priority	Synopsis: { 0, 4096, 8192, 12288, 16384, 20480, 24576, 28672, 32768, 36864, 40960, 45056, 49152, 53248, 57344, 61440 } Default: 32768
	Bridge Priority provides a way to control the topology of the STP connected network. The desired Root and Designated bridges can be configured for a particular topology. The bridge with the lowest priority will become root. In the event of a failure of the root bridge, the bridge with the next lowest priority will then become root. Designated bridges that (for redundancy purposes) service a common LAN also use priority to determine which bridge is active. In this way careful selection of Bridge Priorities can establish the path of traffic flows in normal and abnormal conditions.

Section 5.2.9.5


Configuring an MSTI for an Ethernet Port

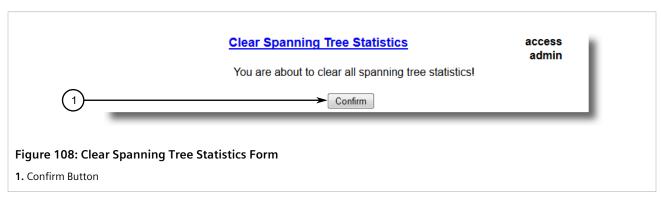
To configure a Multiple Spanning Tree Instance (MSTI) for an Ethernet port, do the following

1. Navigate to **Spanning Tree** » **Configure Port MSTI Parameters** . The **Port MSTI Parameters** table appears.

2. Select an Ethernet port. The **Port MSTI Parameters** form appears.

- 3. Under Instance ID, type an ID number for a Multiple Spanning Tree Instance (MSTI) and click **GET**. The settings for the MSTI are displayed. Any changes made to the configuration will be applied specifically to this instance ID.
- 4. Configure the following parameter(s) as required:

Parameter	Description
Port(s)	Synopsis: Any combination of numbers valid for this parameter The port number as seen on the front plate silkscreen of the switch (or a list of ports, if aggregated in a port trunk).
Priority	Synopsis: { 0, 16, 32, 48, 64, 80, 96, 112, 128, 144, 160, 176, 192, 208, 224, 240 } Default: 128 Selects the STP port priority. Ports of the same cost that attach to a common LAN will select the port to be used based upon the port priority.
STP Cost	Synopsis: 0 to 65535 or { Auto } Default: Auto Selects the cost to use in cost calculations, when the Cost Style parameter is set to STP in the Bridge RSTP Parameters configuration. Setting the cost manually provides the ability to preferentially select specific ports to carry traffic over others. Leave this field set to "auto" to use the standard STP port costs as negotiated (4 for 1Gbps, 19 for 100 Mbps links and 100 for 10 Mbps links). For MSTP, this parameter applies to both external and internal path cost.
RSTP Cost	Synopsis: 0 to 2147483647 or { Auto } Default: Auto Selects the cost to use in cost calculations, when the Cost Style parameter is set to RSTP in the Bridge RSTP Parameters configuration. Setting the cost manually provides the ability to preferentially select specific ports to carry traffic over others. Leave this field set to "auto" to use the standard RSTP port costs


Parameter	Description
	as negotiated (20,000 for 1Gbps, 200,000 for 100 Mbps links and 2,000,000 for 10 Mbps links).
	For MSTP, this parameter applies to both external and internal path cost.

Section 5.2.10

Clearing Spanning Tree Protocol Statistics

To clear all spanning tree protocol statistics, do the following:

Navigate to Spanning Tree » Clear Spanning Tree Statistics. The Clear Spanning Tree Statistics form appears.

2. Click Confirm.

Section 5.3

Managing Classes of Service

Classes of Service (CoS) provides the ability to expedite the transmission of certain frames and port traffic over others. The CoS of a frame can be set to Normal, Medium, High, or Critical. By default, other than the control frames, RUGGEDCOM ROS enforces Normal CoS for all incoming traffic received without a priority tag.

IMPORTANT!

Use the highest supported CoS with caution, as it is always used by the switch for handling network management traffic, such as RSTP BPDUs.

If this CoS is used for regular network traffic, upon traffic bursts, it may result in the loss of some network management frames, which in turn may result in the loss of connectivity over the network.

The process of controlling traffic based on CoS occurs over two phases:

1. Inspection Phase

In the inspection phase, the CoS priority of a received frame is determined from either:

- A specific CoS based upon the source and destination MAC address (as set in the Static MAC Address Table)
- The priority field in the IEEE 802.1Q tags

- The Differentiated Services Code Point (DSCP) component of the Type Of Service (TOS) field in the IP header, if the frame is IP
- The default CoS for the port

Each frame's CoS will be determined once the first examined parameter is found in the frame.

NOTE

For information on how to configure the **Inspect TOS** parameter, refer to Section 5.3.2, "Configuring Classes of Service for Specific Ethernet Ports".

Received frames are first examined to determine if their destination or source MAC address is found in the Static MAC Address Table. If they are, the CoS configured for the static MAC address is used. If neither destination or source MAC address is in the Static MAC Address Table, the frame is then examined for IEEE 802.1Q tags and the priority field is mapped to a CoS. If a tag is not present, the frame is examined to determine if it is an IP frame. If the frame is an IP frame and Inspect TOS is enabled in RUGGEDCOM ROS, the CoS is determined from the DSCP field. If the frame is not an IP frame or Inspect TOS is disabled, the default CoS for the port is used.

After inspection, the frame is forwarded to the egress port for transmission.

2. Forwarding Phase

Once the CoS of the frame is determined, the frame is forwarded to the egress port, where it is collected into one of the priority queues according to the assigned CoS.

CoS weighting selects the degree of preferential treatment that is attached to different priority queues. The ratio of the number of higher CoS to lower CoS frames transmitted can be configured. If desired, lower CoS frames can be transmitted only after all higher CoS frames have been serviced.

CONTENTS

- Section 5.3.1, "Configuring Classes of Service Globally"
- Section 5.3.2, "Configuring Classes of Service for Specific Ethernet Ports"
- Section 5.3.3, "Configuring Priority to CoS Mapping"
- Section 5.3.4, "Configuring DSCP to CoS Mapping"

Section 5.3.1

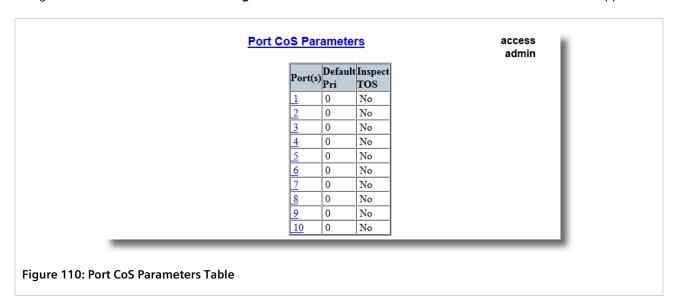
Configuring Classes of Service Globally

To configure global settings for Classes of Service (CoS), do the following:

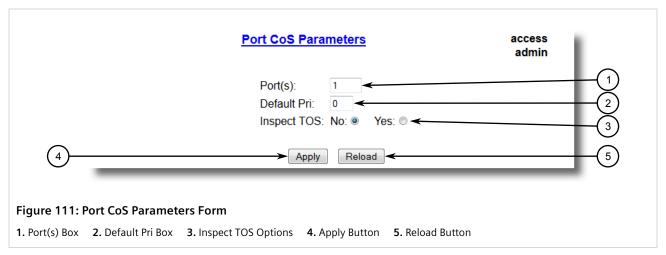
1. Navigate to *Classes of Service » Configure Global CoS Parameters* . The **Global CoS Parameters** form appears.

2. Configure the following parameter(s) as required:

Parameter	Description
CoS Weighting	During traffic bursts, frames queued in the switch pending transmission on a port may have different CoS priorities. This parameter specifies weighting algorithm for transmitting different priority CoS frames. Examples:


- 3. Click Apply.
- 4. If necessary, configure CoS mapping based on either the IEEE 802.1p priority or Differentiated Services (DS) field set in the IP header for each packet. For more information, refer to Section 5.3.3, "Configuring Priority to CoS Mapping" or Section 5.3.4, "Configuring DSCP to CoS Mapping".

Section 5.3.2


Configuring Classes of Service for Specific Ethernet Ports

To configure Classes of Service (CoS) for one or more Ethernet ports, do the following:

1. Navigate to Classes of Service » Configure Port CoS Parameters . The Port CoS Parameters table appears.

2. Select an Ethernet port. The **Port CoS Parameters** form appears.

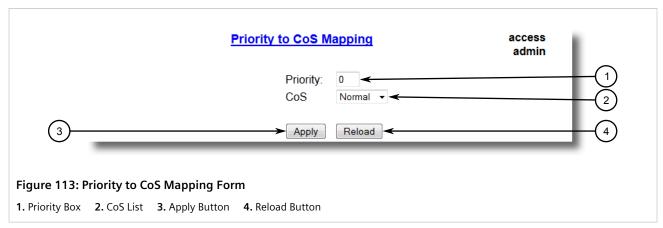
3. Configure the following parameter(s) as required:

Parameter	Description
Port(s)	Synopsis: Any combination of numbers valid for this parameter The port number as seen on the front plate silkscreen of the switch (or a list of ports, if aggregated in a port trunk).
Inspect TOS	Synopsis: { No, Yes } Default: No This parameters enables or disables parsing of the Type-Of-Service (TOS) field in the IP header of the received frames to determine what Class of Service they should be assigned. When TOS parsing is enabled the switch will use the Differentiated Services bits in the TOS field.

4. Click Apply.

Section 5.3.3

Configuring Priority to CoS Mapping


Frames received untagged can be automatically assigned a CoS based on their priority level.

To map a priority level to a CoS, do the following:

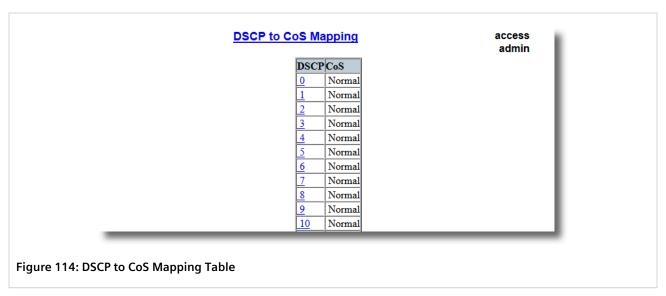
Navigate to Classes of Service » Configure Priority to CoS Mapping. The Priority to CoS Mapping table
appears.

2. Select a priority level. The **Priority to CoS Mapping** form appears.

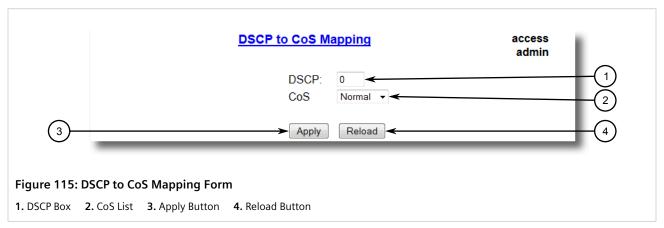
3. Configure the following parameter(s) as required:

Parameter	Description
Priority	Synopsis: 0 to 7 Default: 0 Value of the IEEE 802.1p priority.
CoS	Default: Normal CoS assigned to received tagged frames with the specified IEEE 802.1p priority value.

4. Click Apply.


Section 5.3.4

Configuring DSCP to CoS Mapping


Mapping CoS to the Differentiated Services (DS) field set in the IP header for each packet is done by defining Differentiated Services Code Points (DSCPs) in the CoS configuration.

To map a DSCP to a Class of Service, do the following:

Navigate to Classes of Service » Configure DSCP to CoS Mapping. The DSCP to CoS Mapping table appears.

2. Select a DSCP level. The **DSCP to CoS Mapping** form appears.

3. Configure the following parameter(s) as required:

Parameter	Description
DSCP	Synopsis: 0 to 63 Default: 0
	Differentiated Services Code Point (DSCP) - a value of the 6 bit DiffServ field in the Type-Of-Service (TOS) field of the IP header.

- 4. Click Apply.
- 5. Configure the CoS parameters on select switched Ethernet ports as needed. For more information, refer to Section 5.3.2, "Configuring Classes of Service for Specific Ethernet Ports".

Section 5.4

Managing Time Services

The System Time Manager offers the following time-keeping and time synchronization features:

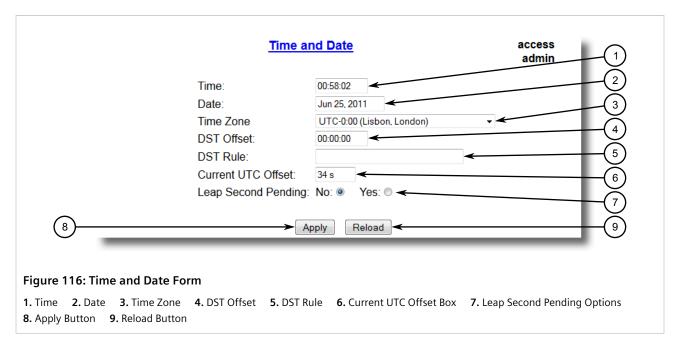
- Local hardware time keeping and time zone management
- SNTP (Simple Network Time Protocol) client and server
- IEEE 1588 master and slave (ordinary) clock modes of operation
- IRIG-B input and output

NOTE

IRIG-B time service requires a Precision Time Protocol (PTP) card or DB9/RJ45 serial card with IRIG-B option.

CONTENTS

- Section 5.4.1, "Configuring the Time and Date"
- Section 5.4.2, "Configuring IRIG-B"
- Section 5.4.3, "Managing the Precision Time Protocol (PTP)"
- Section 5.4.4, "Configuring the Time Source"
- Section 5.4.5, "Managing NTP"
- Section 5.4.6, "Viewing the Status of Time Synchronization Subsystems"


Section 5.4.1

Configuring the Time and Date

To set the time, date and other time-keeping related parameters, do the following:

Navigate to Administration » System Time Manager » Configure Time and Date . The Time and Date form appears.

188 Managing Time Services

2. Configure the following parameter(s) as required:

Parameter	Description
Time	Synopsis: HH:MM:SS
	This parameter allows for both the viewing and setting of the local time.
Date	Synopsis: MMM DD, YYYY
	This parameter allows for both the viewing and setting of the local date.
Time Zone	Synopsis: { UTC-12:00 (Eniwetok, Kwajalein), UTC-11:00 (Midway Island, Samoa), UTC-10:00 (Hawaii), UTC-9:00 (Alaska), UTC-8:00 (Los Angeles, Vancouver), UTC-7:00 (Calgary, Denver), UTC-6:00 (Chicago, Mexico City), UTC-5:00 (New York, Toronto), UTC-4:30 (Caracas), UTC-4:00 (Santiago), UTC-3:30 (Newfoundland), UTC-3:00 (Brasilia, Buenos Aires), UTC-2:00 (Mid Atlantic), UTC-1:00 (Azores), UTC-0:00 (Lisbon, London), UTC+1:00 (Berlin, Paris, Rome), UTC+2:00 (Athens, Cairo, Helsinki), } Default: UTC-5:00 (New York, Toronto) This setting allows for the conversion of UTC (Universal Coordinated Time) to local time.
DST Offset	Synopsis: HH:MM:SS Default: 00:00:00
	This parameter specifies the amount of time to be shifted forward/backward when DST begins and ends. For example for most part of USA and Canada, DST time shift is 1 hour (01:00:00) forward when DST begins and 1 hour backward when DST ends.
DST Rule	Synopsis: mm.n.d/HH:MM:SS mm.n.d/HH:MM:SS
	This parameter specifies a rule for time and date when the transition between Standard and Daylight Saving Time occurs.
	• mm - Month of the year (01 - January, 12 - December)
	• n - nth d-day in the month (1 - 1st d-day, 5 - 5th/last d-day)
	• d - day of the week (0 - Sunday, 6 - Saturday)

Parameter	Description
	 HH - hour of the day (0 - 24) MM - minute of the hour (0 - 59) SS - second of the minute (0 - 59) Example: The following rule applies in most part of USA and Canada: 03.2.0/02:00:00 11.1.0/02:00:00
	DST begins on March's 2nd Sunday at 2:00am. DST ends on November's 1st Sunday at 2:00am.
Current UTC Offset	Synopsis: 0 to 1000 s Default: 36 s Coordinated Universal Time (UTC) is a time standard based on International Atomic Time (TAI) with leap seconds added at irregular intervals to compensate for the Earth's slowing rotation. Current UTC offset parameter allows user to adjust the difference between UTC and TAI. The International Earth Rotation and Reference System Service (IERS) observes the Earth's rotation and nearly six months in advance (January and July) a Bulletin-C message is sent out, which reports whether or not to add a leap second in the end of June and December. Please note that change in current UTC offset parameter will result in temporally disruption in the timing network.
Leap Second Pending	Synopsis: { No, Yes } Default: No This parameter allows user to manage the leap second event. A leap second is a second added to Coordinated Universal Time (UTC) in order to keep it synchronized with astronomical time. The International Earth Rotation and Reference System Service (IERS) observes the Earth's rotation and nearly six months in advance (January and July) a Bulletin-C message is sent out, which reports whether or not to add a leap second in the end of June and December. This parameter must set at least 5 minutes in advance before the occurrence of leap second event.

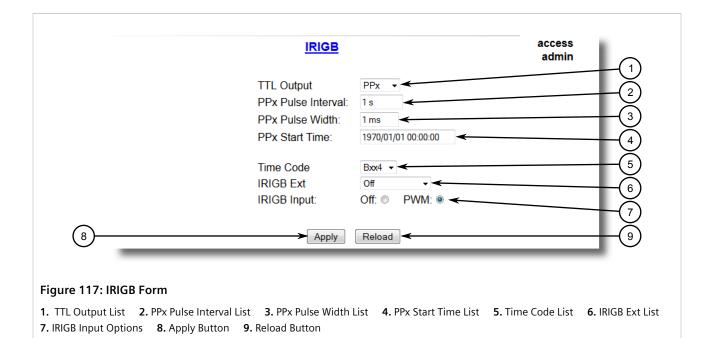
Section 5.4.2

Configuring IRIG-B

To configure IRIG-B, do the following:

NOTE

PPx output is supported on the BNC interface only. PPx is not supported on the serial DB9/RJ45 interfaces.



NOTE

IRIG-B output is also supported on the serial DB9/RJ45 card with IRIG-B option. For more information, refer to Section 5.10.5, "Configuring a Serial Port".

1. Navigate to Administration » System Time Manager » Configure IRIGB . The IRIGB form appears.

190 Configuring IRIG-B

2. Configure the following parameter(s) as required:

Parameter	Description
TTL Output	Synopsis: { Off, PWM, PPS, PPx } Default: PWM
	Selects Operational mode of TTL output port. PWM mode complies with IRIG Standard 200-04. PPx provides generic pulse per x second interface to synchronize external devices.
PPx Pulse Interval	Synopsis: 1 to 86400 s Default: 1 s
	Selects Pulse Interval for TTL output port. This parameter is used in conjunction with PPx in order to provides generic pulse per x second interface to synchronize external devices.
PPx Pulse Width	Synopsis: 1 to 200 ms Default: 1 ms
	Selects Pulse Width for TTL output port. This parameter is used in conjunction with PPx to control the width of the pulse.
PPx Start Time	Synopsis: YYYY/MM/DD HH:MM:SS Default: 1970/01/01 00:00:00
	This parameter is used in conjunction with PPx to set the starting time of first PPx event. Note that this parameter must be set at least 15 seconds before the start of desired PPx otherwise first PPx event might be lost.
Time Code	Synopsis: { Bxx0, Bxx1, Bxx2, Bxx3, Bxx4, Bxx5, Bxx6, Bxx7 } Default: Bxx4
	This device uses the following convention to decode the IRIGB time code: letter [B] represents IRIG-B format, and [xx] represents [00] for PWM/TTL mode of operation. For example, Bxx7 represents B007 for PWM/TTL operation. Please note that only Bxx0, Bxx1, Bxx4 and Bxx5 time codes support IRIGB extensions.
IRIGB Ext	Synopsis: { Off, IEEE1344, C37.118-2005, C37.118-2011 } Default: Off

Configuring IRIG-B 191

Parameter	Description
	IRIGB extensions use extra bits of the Control Functions (CF) portion of the IRIGB time code. Within this portion of the time code, bits are designated for additional features, including: Calendar Year, Leap seconds, leap seconds pending, Daylight Saving Time (DST), DST pending, local time offset and time quality. Please note that only Bxx0, Bxx1, Bxx4 and Bxx5 time codes support IRIGB extensions.
IRIGB Input	Synopsis: { Off, PWM } Default: PWM
	Selects operational mode of IRIGB input port. IRIGB module is capable of interpreting IRIGB extensions such as C37.118-2011, C37.118-2005 and IEEE1344.

- 3. Click **Apply**.
- 4. If **IRIGB Ext** was modified, reset the device. For more information, refer to Section 3.12, "Resetting the Device".

Section 5.4.3

Managing the Precision Time Protocol (PTP)

The Precision Time Protocol (PTP) is a standard method of synchronizing network clocks over Ethernet. RUGGEDCOM ROS supports PTP v2, which is defined by the IEEE 1588 working group in the IEEE 1588-2008 standard.

PTP is a distributed protocol that allows multiple clocks in a network to synchronize with one another. These clocks are organized into a master-slave synchronization hierarchy with a *grandmaster* clock at the top of the hierarchy, which determines the reference time for the entire system. Synchronization is achieved via the exchange of PTP timing messages. *Slave* clocks use the timing information in PTP messages to adjust their time to that of the *master* in their part of the hierarchy.

The PTP protocol executes within a logical scope called a *domain*. The time established via the protocol within one domain is independent of the time in other domains.

A PTP v2 system may consist of a combination of both PTP-aware and PTP-unaware devices. There are five basic PTP device types defined in the IEEE 1588-2008 standard:

- Ordinary Clocks
- Boundary Clocks
- End-to-End Transparent Clocks
- Peer-to-Peer Transparent Clocks
- Management Nodes

RUGGEDCOM ROS supports *Ordinary Clock* mode. An Ordinary Clock can be either the grandmaster clock in a system or a slave clock in the master-slave hierarchy. The selection of grandmaster and slave clocks is based on the Best Master Clock (BMC) algorithm defined in the IEEE 1588-2008 standard.

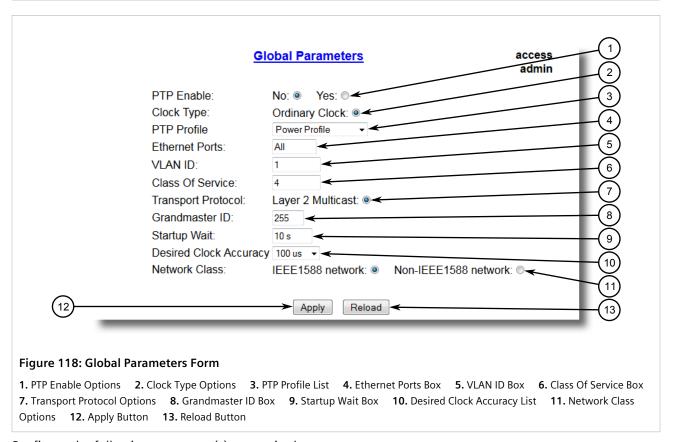
CONTENTS

- Section 5.4.3.1, "Configuring PTP Globally"
- Section 5.4.3.2, "Configuring an Ordinary Clock"
- Section 5.4.3.3, "Configuring the PTP Delay Request Interval"

- Section 5.4.3.4, "Configuring a VLAN for PTP Traffic"
- Section 5.4.3.5, "Viewing PTP Clock Statistics"
- Section 5.4.3.6, "Viewing Peer Delay Statistics"

Section 5.4.3.1

Configuring PTP Globally


To configure the global settings for PTP, do the following:

1. Navigate to **Administration** » **System Time Manager** » **Precision Time Protocol** » **Configure Global Parameters** . The **Global Parameters** form appears.

IMPORTANT!

Before performing SNMP get or SNMP set operations for MIBs IEEE C37.238-2011 and RUGGEDCOM-PTP1588-MIB.mib, make sure the PTP Enable parameter is set to **Yes**. For more information about supported MIBs, refer to Section 1.6, "SNMP Management Interface Base (MIB) Support".

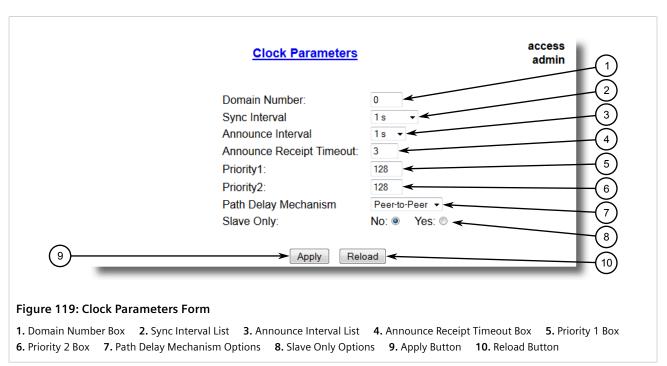
2. Configure the following parameter(s) as required:

Parameter	Description
PTP Enable	Synopsis: { No, Yes } Default: No Enables PTP (Precision Time Protocol) protocol.

Configuring PTP Globally 193

Parameter	Description
Clock Type	Synopsis: { Ordinary Clock } Default: Ordinary Clock Displays the PTP (Precision Time Protocol) clock type, i.e.: Ordinary Clock (OC). the device will become a Master Clock (MC) or Slave Clock (SC) subject to network negotiation. If, however, IRIGB is selected as the Time Source, the device will either negotiate Mastership and acts as Grandmaster Clock (GMC) or remain in passive PTP state.
PTP Profile	Synopsis: { Power Profile, Default P2P Profile, Utility Profile Level, Default E2E Profile, Custom Profile } Default: Power Profile Selects the PTP (Precision Time Protocol) clock profile. PTP profile represents a set of allowed PTP features applicable to specific industry.
Ethernet Ports	Synopsis: Comma-separated list of ports Default: All Selects Ethernet port(s) which take part in PTP (Precision Time Protocol) message exchanges.
VLAN ID	Synopsis: 1 to 4094 or { Disable } Default: 1 The VLAN ID associated with untagged (and 802.1p priority tagged) frames received on this port. Frames tagged with a non-zero VLAN ID will always be associated with the VLAN ID retrieved from the frame tag. Frames tagged with a zero VLAN ID will always be associated with the VLAN ID 1 unless this parameter is configured.
Class Of Service	Synopsis: 1 to 7 or { Disable } Default: 4 Selects the PTP (Precision Time Protocol) message priority based on the IEEE 802.1p specification. IEEE 802.1p defines eight different classes of service, usually expressed using the 3-bit priority field in an IEEE 802.1Q header added to the Ethernet frame. If the VLAN option is enabled and the Class Of Service option is set to 'Disable' then it represents priority '0' in terms of the IEEE 802.1p specification.
Transport Protocol	Synopsis: { Layer 2 Multicast } Layer 2 (Ethernet) multicast transport for PTP (Precision Time Protocol) messages.
Grandmaster ID	Synopsis: 3 to 255 Default: 255 This parameter is specific to the Power Profile (IEEE C37.238 version). All PTP master capable devices must configure a network-wide, unique instance of this parameter in the range of 3 to 254 for proper operation.
Startup Wait	Synopsis: 0 to 3600 s Default: 10 s Normally the start-up time of a non-GPS master clock is less than that of a GPS-enabled master (i.e. by the time it takes to acquire GPS lock). This parameter provides the ability to bootstrap the PTP network in an orderly fashion.
Desired Clock Accuracy	Synopsis: { 50 ns, 100 ns, 250 ns, 1 us, 2.5 us, 10 us, 25 us, 100 us, 250 us, 1 ms, 2.5 ms, 10 ms, 25 ms, 100 ms, 250 ms } Default: 100 us

194 Configuring PTP Globally


Parameter	Description
	This parameter allows the user to configure the desired clock accuracy. This represents the instantaneous value of the time offset between master and slave clocks. The system will generate an alarm if the time offset from the master exceeds the desired accuracy.
Network Class	Synopsis: { IEEE1588 network, Non-IEEE1588 network } Default: IEEE1588 network
	Clock servo stability is highly dependent on network personality. This parameter allows the user to configure a network personality to reflect a particular network environment. This might mean, for example, whether all devices in the timing plane are IEEE1588 aware (IEEE1588 network) or whether the timing plane includes non-IEEE1588 devices as well (non-IEEE1588 network). Note that a IEEE1588 network is independent of traffic load. Only the E2E mechanism is applicable to non-IEEE1588 networks.

Section 5.4.3.2

Configuring an Ordinary Clock

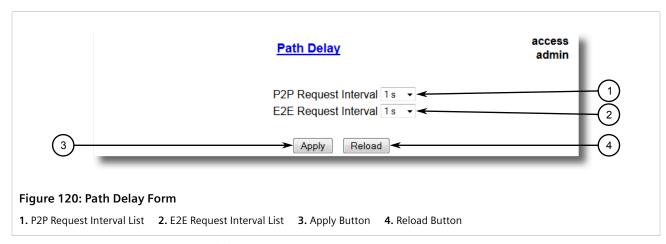
To configure settings for a PTP ordinary clock, do the following:

1. Navigate to **Administration** » **System Time Manager** » **Precision Time Protocol** » **Configure Clock Parameters** . The **Clock Parameters** form appears.

2. Configure the following parameter(s) as required:

Parameter	Description
Domain Number	Synopsis: 0 to 127

Parameter	Description
	Default: 0
	Selects the PTP (Precision Time Protocol) domain number. A PTP domain is a logical grouping of PTP clocks that synchronize to each other using the PTP protocol.
Sync Interval	Synopsis: { 125 ms, 250 ms, 500 ms, 1 s, 2 s } Default: 1 s
	Selects the PTP (Precision Time Protocol) Sync interval (mean time interval between successive Sync messages) in seconds. Sync messages are sent periodically by the Master Clock which provide time of day information to PTP Slave Clocks.
Announce Interval	Synopsis: { 1 s, 2 s, 4 s, 8 s, 16 s, 32 s } Default: 1 s
	Selects the PTP (Precision Time Protocol) Announce interval (mean time interval between successive Announce messages) in seconds. Announce messages are sent periodically by the Master Clock to provide its status and characteristic information. Announce messages are used to establish the synchronization hierarchy, i.e., using the BMC (Best Master Clock) algorithm.
Announce Receipt Timeout	Synopsis: 2 to 10 Default: 3
	Selects the PTP (Precision Time Protocol) Announce receipt timeout. This parameter specifies the number of intervals that may pass without receipt of an Announce message. This parameter is part of BMC (Best Master Clock) algorithm.
	Please note that a change in this parameter may be disruptive.
Priority1	Synopsis: 0 to 255 Default: 128 Selects the PTP (Precision Time Protocol) clock priority1 during the execution of the BMC (Best Master Clock) algorithm. A lower value corresponds to a higher precedence. The BMC algorithm selects clocks from a set with a lower value of priority1 over clocks
	from a set with a greater value
Priority2	Synopsis: 0 to 255 Default: 128
	Selects the PTP (Precision Time Protocol) clock priority2 during the execution of the BMC (Best Master Clock) algorithm. A lower value corresponds to a higher precedence. In the event that the operation of the BMC algorithm fails to order the clocks based on the values of priority1, clockClass, clockAccuracy and scaledOffsetLogVariance, the priority2 attribute allows the creation of up to 256 priorities to be evaluated before the tiebreaker. The tie-breaker is based on the clock identity.
Path Delay Mechanism	Synopsis: { Disabled, Peer-to-Peer, End-to-End } Default: Peer-to-Peer
	Selects the PTP (Precision Time Protocol) delay mechanism. There are two mechanisms used in PTP to measure the propagation delay between PTP ports: The P2P (Peer-to-Peer) delay mechanism measures the port to port propagation time such as link delay and frame residence time. The P2P mechanism is independent of whether the PTP port is acting as Master or Slave.
	The E2E (End-to-End) delay mechanism measures the message propagation time between Master and Slave clocks across the whole intervening network.


Parameter	Description
	Note that the P2P mechanism does not inter-operate with path delay measurements based on the E2E (also called request-response) delay mechanism.
Slave Only	Synopsis: { No, Yes } Default: No
	This option may be used to force an Ordinary Clock be a Slave only clock. A slave only clock never enters the master state. Slave only and Transparent Clock functionality may be used in combination. Please note that a Boundary Clock must not be configured as a slave only clock.

Section 5.4.3.3

Configuring the PTP Delay Request Interval

To configure the PTP delay request interval, do the following:

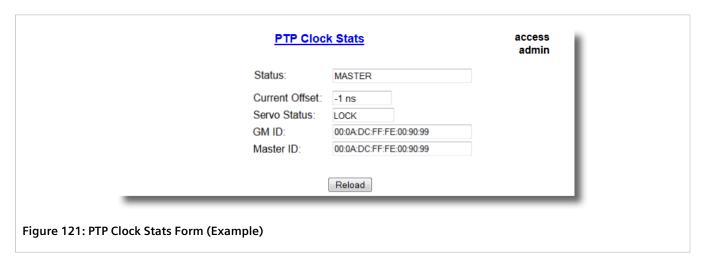
1. Navigate to *Administration* » *System Time Manager* » *Precision Time Protocol* » *Configure Path Delay* . The **Path Delay** form appears.

2. Configure the following parameter(s) as required:

Parameter	Description
P2P Request Interval	Synopsis: { 1 s, 2 s, 4 s, 8 s, 16 s, 32 s } Default: 1 s
	Selects PTP delay request interval (mean time interval between successive delay request messages) in seconds. The peer delay mechanism measures the port-to-port propagation time, such as the link delay, between two communicating ports supporting the peer delay mechanism.
E2E Request Interval	Synopsis: { 1 s, 2 s, 4 s, 8 s, 16 s, 32 s } Default: 1 s
	Selects PTP delay request interval (mean time interval between successive delay request messages) in seconds. The E2E (also called request-response) delay mechanism measures the message propagation time between master and slave clocks.

Section 5.4.3.4

Configuring a VLAN for PTP Traffic


To configure a VLAN specifically for PTP traffic, do the following:

- 1. Assign a VLAN ID to all PTP traffic. For more information, refer to Section 5.4.3.1, "Configuring PTP Globally".
- 2. Add a static VLAN with the same ID. For more information about configuring a static VLAN, refer to Section 5.1.5.2, "Adding a Static VLAN".
- 3. For each Ethernet port that will transport PTP traffic, configure the PVID to match the VLAN ID configured in Step 1 . For more information, refer to Section 5.1.4, "Configuring VLANs for Specific Ethernet Ports" .
- 4. Configure the PVID format for each affected Ethernet port to control whether PTP traffic is transported as tagged or untagged frames. Or, if necessary, configure the port to be a VLAN trunk. For more information, refer to Section 5.1.4, "Configuring VLANs for Specific Ethernet Ports".

Section 5.4.3.5

Viewing PTP Clock Statistics

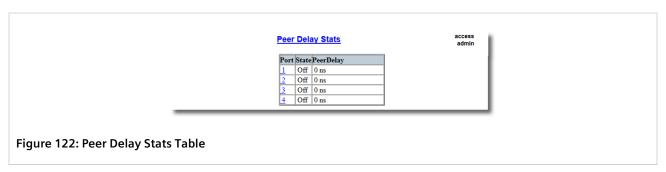
To view statistics for the Precision Time Protocol (PTP) clock, navigate to **Administration** » **System Time Manager** » **Precision Time Protocol** » **View PTP Statistics** » **View PTP Clock Stats** . The **PTP Clock Stats** form appears.

This form displays the following information:

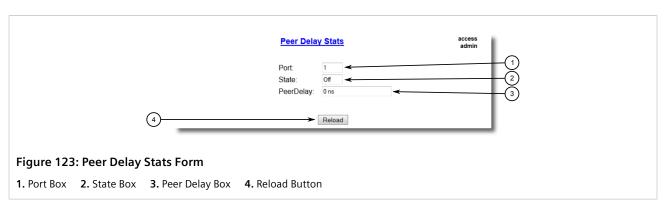
NOTE

Parameters are available dependent on the status of the device.

Parameter	Description
Status	Synopsis: Any 31 Characters Shows the status of PTP (Precision Time Protocol) node, if device is configured as an ordinary clock then this field will show the status of the PTP state such as MASTER, SLAVE, LISTENING. If the device


Parameter	Description
	is configured as a Transparent Clock then this field simply reflects configuration setting.
Current Offset	Synopsis: -2147483647 ns to 2147483647 ns Shows the current time offset between the master and slave clocks, calculated according to the IEEE1588-2008 specification. Note that this parameter reflects the approximate value and may ignore link asymmetry.
Servo Status	Synopsis: Any 15 Characters Shows the status of the clock servo. The clock servo mechanism disciplines the system clock. If the clock accuracy is within the desired limits, the status is set to <i>lock</i> . Note that an alarm might occur convergence of the clock servo.
GM ID	Synopsis: Any 31 Characters Shows the identity of PTP (Precision Time Protocol) grandmaster ID. Please note that master clock may be the same as grandmaster clock.
Master ID	Synopsis: Any 31 Characters Shows the identity of PTP (Precision Time Protocol) master clock. Please note that master clock may be the same as grandmaster clock.

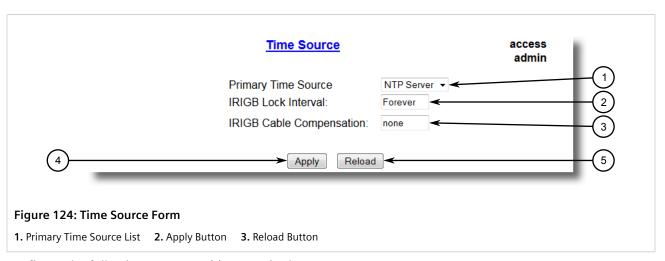
Section 5.4.3.6


Viewing Peer Delay Statistics

To view statistics for the Precision Time Protocol (PTP) peer delay, do the following:

1. Navigate to *Administration* » *System Time Manager* » *Precision Time Protocol* » *View PTP Statistics* » *View Peer Delay Stats* . The PTP Delay Stats table appears.

2. Select an Ethernet port. The PTP Delay Stats form appears.


Parameter	Description
Port	Synopsis: 1 to maximum port number The port number as seen on the front plate silkscreen of the switch.
State	Synopsis: { On, Off } Shows the status of PTP port with respect to P2P (Peer To Peer) delay mechanism.
PeerDelay	Synopsis: 0 to 2147483647 ns Shows peer delay in nanoseconds. The peer delay mechanism measures the port-to-port propagation time, such as the link delay, between two communicating ports supporting the peer delay mechanism.

Section 5.4.4

Configuring the Time Source

To configure a reference time source to be used by the device for the local clock and for all served time synchronization outputs, do the following:

1. Navigate to *Administration* » *System Time Manager* » *Configure Time Source* . The *Time Source* form appears.

2. Configure the following parameter(s) as required:

Parameter	Description
Primary Time Source	Synopsis: { LOCAL CLK, IRIGB, IEEE1588, NTP Server } Default: LOCAL CLK
	To select time source that will discipline the local clock. Note that changing the time source may produce a step change in the time seen via any of the clock outputs.
IRIGB Lock Interval	Synopsis: 1 min to 120 min or { Forever } Default: Forever

Parameter	Description
	To set the time interval within which the GPS/IRIGB receiver should acquire lock to the time source. Normally the GPS (or IRIGB) receiver needs a couple of minutes to lock the signal. User should set a reasonable time interval. If the time interval expires without acquiring the lock then the system will start distributing the time using the local clock.
IRIGB Cable Compensation	Synopsis: 1 to 50000 ns or { none } Default: none
	Cable compensation may be desired to compensate for a long cable run in order to minimize the timing inaccuracy.

3. Click Apply.

Section 5.4.5

Managing NTP

RUGGEDCOM ROS may be configured to refer periodically to a specified NTP server to correct any accumulated drift in the on-board clock. RUGGEDCOM ROS will also serve time via the Simple Network Time Protocol (SNTP) to hosts that request it.

Two NTP servers (primary and backup) may be configured for the device. The primary server is contacted first for each attempt to update the system time. If the primary server fails to respond, the backup server is contacted. If either the primary or backup server fails to respond, an alarm is raised.

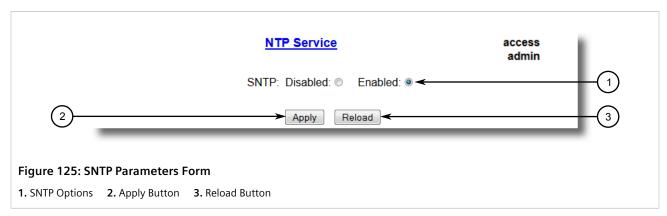
CONTENTS

- Section 5.4.5.1, "Enabling/Disabling NTP Service"
- Section 5.4.5.2, "Configuring NTP Servers"

Section 5.4.5.1

Enabling/Disabling NTP Service

To enable or disable NTP Service, do the following:

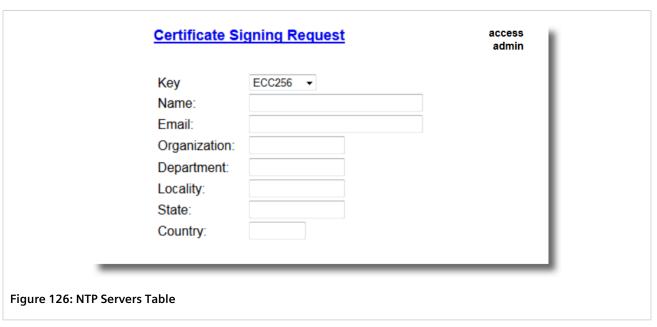

1. **i**

NOTE

If the device is running as an NTP server, NTP service must be enabled.

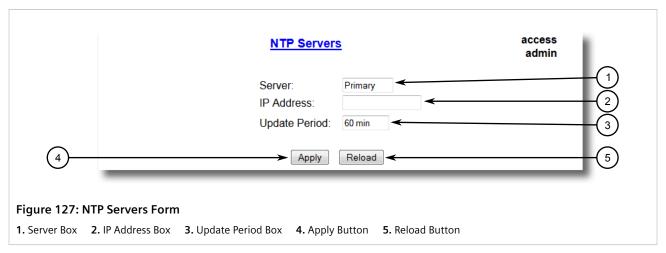
Navigate to *Administration* » *System Time Manager* » *Configure NTP* » *Configure NTP Service* . The SNTP Parameters form appears.

Managing NTP 201


- 2. Select **Enabled** to enable SNTP, or select **Disabled** to disable SNTP.
- 3. Click Apply.

Section 5.4.5.2

Configuring NTP Servers


To configure either the primary or backup NTP server, do the following:

1. Navigate to **Administration** » **System Time Manager** » **Configure NTP** » **Configure NTP Servers** . The **NTP Servers** table appears.

2. Select either **Primary** or **Backup**. The **NTP Servers** form appears.

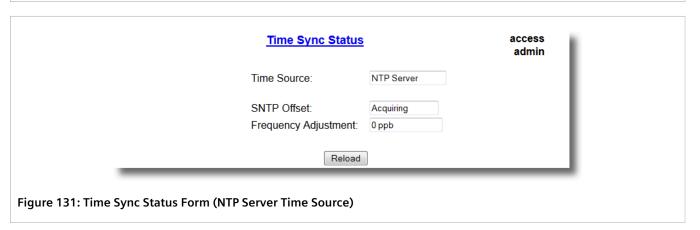
202 Configuring NTP Servers

3. Configure the following parameter(s) as required:

Parameter	Description
Server	Synopsis: Any 8 characters Default: Primary This field tells whether this configuration is for a Primary or a Backup Server.
IP Address	Synopsis: ###.###.### where ### ranges from 0 to 255 The Server IP Address.
Update Period	Synopsis: 1 to 1440 min Default: 60 min
	Determines how frequently the (S)NTP server is polled for a time update. If the server cannot be reached in three attempts that are made at one minute intervals an alarm is generated.

4. Click Apply.

Section 5.4.6


Viewing the Status of Time Synchronization Subsystems

To view the current status of each time synchronization subsystem, navigate to **Administration** » **System Time Manager** » **View Time Sync Status** . The **Time Sync Status** form appears. This form varies based on the time source configured.

This table displays the following information:

Parameter	Description
Time Source	Synopsis: { LOCAL CLK, IRIGB, IEEE1588, NTP Server, GPS } A time source that is driving the local clock.
IRIGB Status	Synopsis: { NULL, NotPresent, Disabled, Locked, Searching, Acquiring, Holdover, ParityError, SignalDecodingError, ReceiverShortCircuit, DeviceConfigFailure } The system synchronization status with respect to selected primary time source.
SNTP Offset	Synopsis: -2147483647 to 2147483646 us or { Acquiring, Holdover } Shows the current time offset between (S)NTP server and client clocks and is calculated as

Parameter	Description
Frequency Adjustment	Synopsis: -2147483647 to 2147483646 ppb Shows the current amount of discipline applied to the local frequency reference (TCXO); i.e. the amount of correction on this system required to synchronize to the current reference.

Section 5.5

Managing SNMP

RUGGEDCOM ROS supports versions 1, 2 and 3 of the Simple Network Management Protocol (SNMP), otherwise referred to as SNMPv1, SNMPv2c and SNMPv3 respectively. SNMPv3 provides secure access to the devices through a combination of authentication and packet encryption over the network. Security features for this protocol include:

Feature	Description	
Message Integrity	Makes sure that a packet has not been tampered with in-transit.	
Authentication	Determines if the message is from a valid source.	
Encryption	Encrypts the contents of a packet to prevent it from being seen by an unauthorized source.	

SNMPv3 provides security models and security levels. A security model is an authentication strategy setup for a user and the group in which the user resides. A security level is a permitted level of security within a security model. A combination of a security model and level will determine which security mechanism is employed when handling an SNMP packet.

Before configuring SNMPv3, note the following:

- Each user belongs to a group
- A group defines the access policy for a set of users
- An access policy defines what SNMP objects can be accessed for (i.e. reading, writing and creating notifications)
- A group determines the list of notifications its users can receive
- A group also defines the security model and security level for its users

For SNMPv1 and SNMPv2c, a community string can be configured. The string is mapped to the group and access level with a security name, which is configured as **User Name**.

CONTENTS

- Section 5.5.1, "Managing SNMP Users"
- Section 5.5.2, "Managing Security-to-Group Mapping"

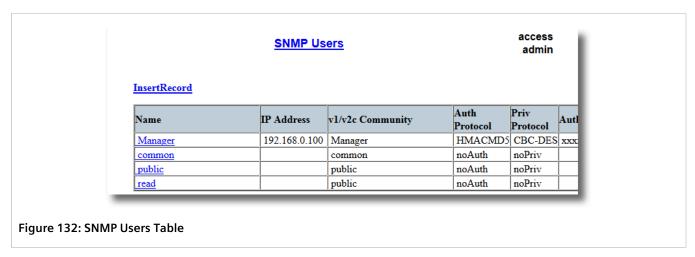
Managing SNMP 205

Section 5.5.3, "Managing SNMP Groups"

Section 5.5.1

Managing SNMP Users

The following section describes how to configure and manage SNMP users.


CONTENTS

- Section 5.5.1.1, "Viewing a List of SNMP Users"
- Section 5.5.1.2, "Adding an SNMP User"
- Section 5.5.1.3, "Deleting an SNMP User"

Section 5.5.1.1

Viewing a List of SNMP Users

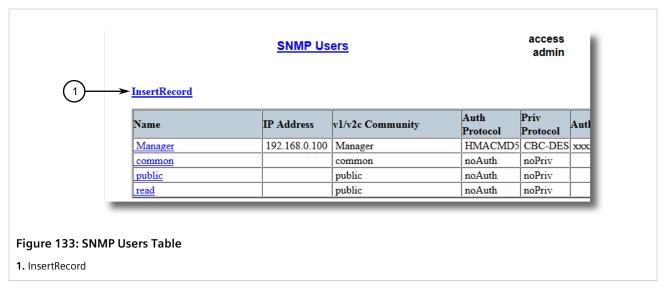
To view a list of SNMP users configured on the device, navigate to **Administration** » **Configure SNMP** w **Configure SNMP Users**. The **SNMP Users** table appears.

If users have not been configured, add users as needed. For more information, refer to Section 5.5.1.2, "Adding an SNMP User".

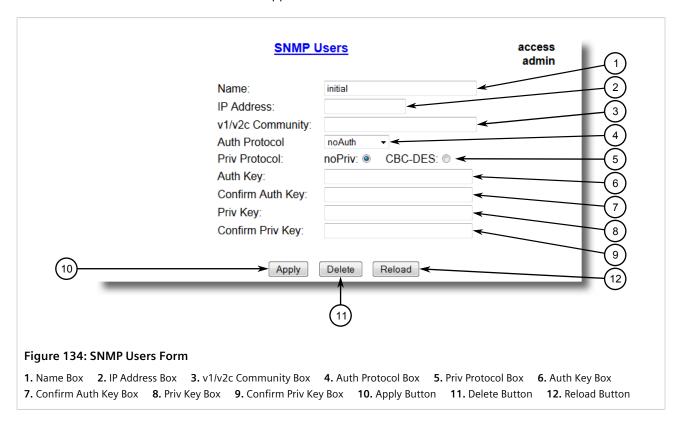
Section 5.5.1.2

Adding an SNMP User

Multiple users (up to a maximum of 32) can be configured for the local SNMPv3 engine, as well as SNMPv1 and SNMPv2c communities.


NOTE

When employing the SNMPv1 or SNMPv2c security level, the **User Name** parameter maps the community name with the security group and access level.


To add a new SNMP user, do the following:

206 Managing SNMP Users

1. Navigate to Administration » Configure SNMP » Configure SNMP Users . The SNMP Users table appears.

2. Click InsertRecord. The SNMP Users form appears.

NOTE

RUGGEDCOM ROS requires that all user passwords meet strict guidelines to prevent the use of weak passwords. When creating a new password, make sure it adheres to the following rules:

• Must not be less than 6 characters in length.

Adding an SNMP User 207

- Must not include the username or any 4 continuous alphanumeric characters found in the username. For example, if the username is **Subnet25**, the password may not be **subnet25admin** or **subnetadmin**. However, **net25admin** or **Sub25admin** is permitted.
- Must have at least one alphabetic character and one number. Special characters are permitted.
- Must not have more than 3 continuously incrementing or decrementing numbers. For example, Sub123 and Sub19826 are permitted, but Sub12345 is not.

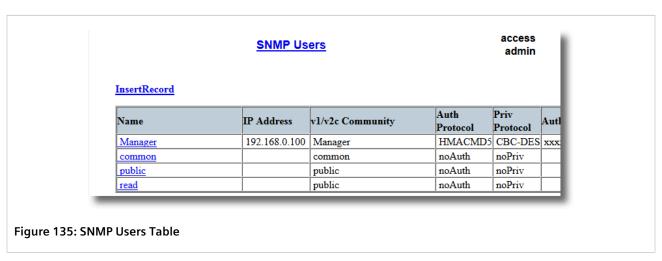
An alarm will generate if a weak password is configured. The weak password alarm can be disabled by the user. For more information about disabling alarms, refer to Section 4.6, "Managing Alarms".

3. Configure the following parameter(s) as required:

Parameter	Description
Name	Synopsis: Any 32 characters Default: initial The name of the user. This user name also represents the security name that maps this user to the security group.
IP Address	Synopsis: ###.###.### where ### ranges from 0 to 255 The IP address of the user's SNMP management station. If IP address is configured, SNMP requests from that user will be verified by IP address as well. SNMP Authentication trap will be generated to trap receivers if request was received from this user, but from any other IP address.If IP address is empty, traps can not be generated to this user, but SNMP requests will be served for this user from any IP address.
v1/v2c Community	Synopsis: Any 32 characters The community string which is mapped by this user/security name to the security group if security model is SNMPv1 or SNMPv2c. If this string is left empty, it will be assumed to be equal to the same as user name.
Auth Protocol	Synopsis: { noAuth, HMACMD5, HMACSHA } Default: noAuth An indication of whether messages sent on behalf of this user to/ from SNMP engine, can be authenticated, and if so, the type of authentication protocol which is used.
Priv Protocol	Synopsis: { noPriv, CBC-DES } Default: noPriv An Indication of whether messages sent on behalf of this user to/ from SNMP engine can be protected from disclosure, and if so, the type of privacy protocol which is used.
Auth Key	Synopsis: 31 character ASCII string The secret authentication key (password) that must be shared with SNMP client. If the key is not an emtpy string, it must be at least 6 characters long.
Confirm Auth Key	Synopsis: 31 character ASCII string The secret authentication key (password) that must be shared with SNMP client. If the key is not an emtpy string, it must be at least 6 characters long.
Priv Key	Synopsis: 31 character ASCII string

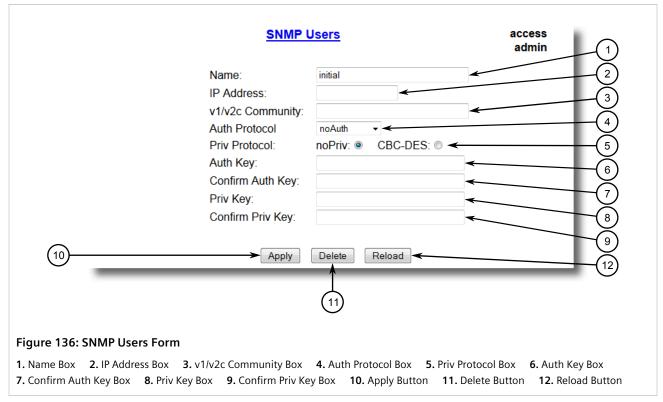
208 Adding an SNMP User

Parameter	Description
	The secret encription key (password) that must be shared with SNMP client. If the key is not an emtpy string, it must be at least 6 characters long.
Confirm Priv Key	Synopsis: 31 character ASCII string The secret encription key (password) that must be shared with SNMP client. If the key is not an emtpy string, it must be at least 6 characters long.


4. Click Apply.

Section 5.5.1.3

Deleting an SNMP User


To delete an SNMP user, do the following:

1. Navigate to *Administration* » *Configure SNMP* » *Configure SNMP Users* . The **SNMP Users** table appears.

2. Select the user from the table. The **SNMP Users** form appears.

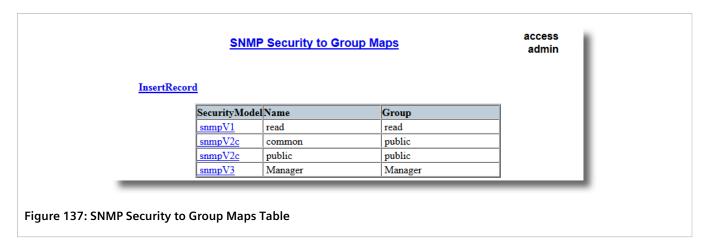
Deleting an SNMP User 209

3. Click Delete.

Section 5.5.2

Managing Security-to-Group Mapping

The following section describes how to configure and manage security-to-group maps.


CONTENTS

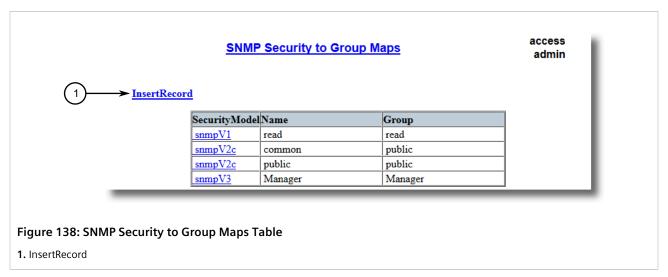
- Section 5.5.2.1, "Viewing a List of Security-to-Group Maps"
- Section 5.5.2.2, "Adding a Security-to-Group Map"
- Section 5.5.2.3, "Deleting a Security-to-Group Map"

Section 5.5.2.1

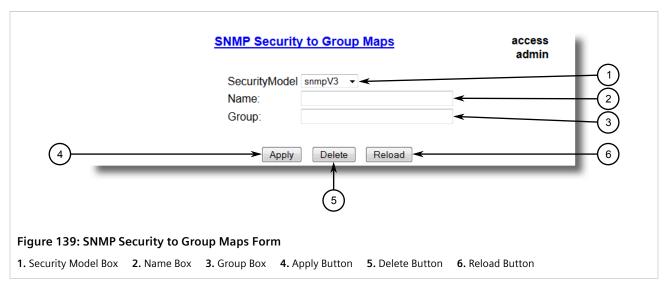
Viewing a List of Security-to-Group Maps

To view a list of security-to-group maps configured on the device, navigate to **Administration** » **Configure SNMP** » **Configure SNMP Security to Group Maps** . The **SNMP Security to Group Maps** table appears.

If security-to-group maps have not been configured, add maps as needed. For more information, refer to Section 5.5.2.2, "Adding a Security-to-Group Map".


Section 5.5.2.2

Adding a Security-to-Group Map


Multiple combinations of security models and groups can be mapped (up to a maximum of 32) for SNMP.

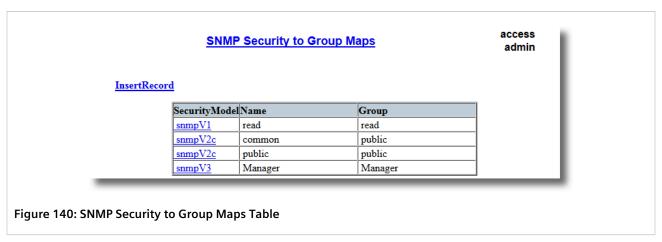
To add a security-to-group map, do the following:

 Navigate to Administration » Configure SNMP » Configure SNMP Security to Group Maps . The SNMP Security to Group Maps table appears.

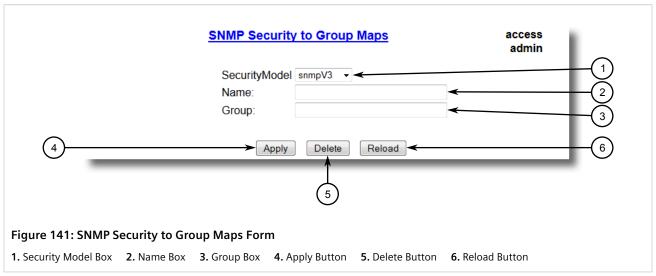
2. Click InsertRecord. The SNMP Security to Group Maps form appears.

3. Configure the following parameter(s) as required:

Parameter	Description
SecurityModel	Synopsis: { snmpV1, snmpV2c, snmpV3 } Default: snmpV3
	The Security Model that provides the name referenced in this table.
Name	Synopsis: Any 32 characters The user name which is mapped by this entry to the specified group name.
Group	Synopsis: Any 32 characters The group name to which the security model and name belong. This name is used as an index to the SNMPv3 VACM Access Table.


4. Click **Apply**.

Section 5.5.2.3


Deleting a Security-to-Group Map

To delete a security-to-group map, do the following:

1. Navigate to *Administration* » *Configure SNMP* » *Configure SNMP Security to Group Maps* . The SNMP Security to Group Maps table appears.

2. Select the map from the table. The **SNMP Security to Group Maps** form appears.

3. Click **Delete**.

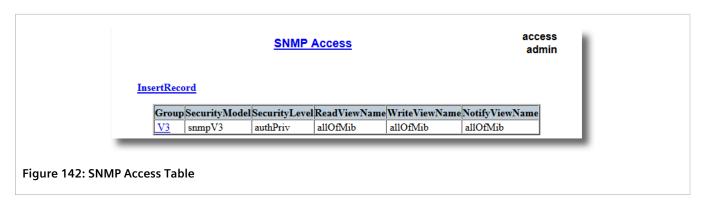
Section 5.5.3

Managing SNMP Groups

Multiple SNMP groups (up to a maximum of 32) can be configured to have access to SNMP.

CONTENTS

- Section 5.5.3.1, "Viewing a List of SNMP Groups"
- Section 5.5.3.2, "Adding an SNMP Group"

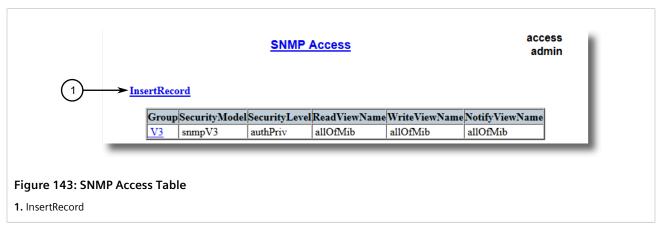

Managing SNMP Groups 213

• Section 5.5.3.3, "Deleting an SNMP Group"

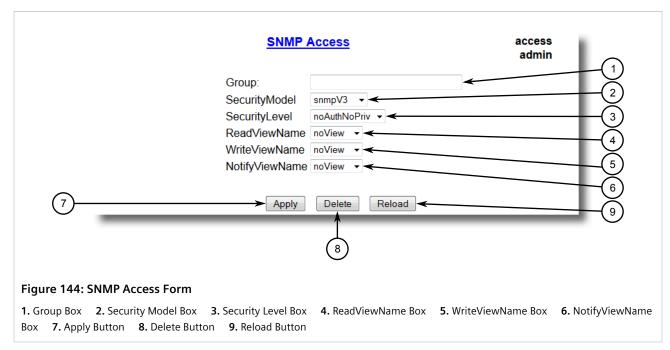
Section 5.5.3.1

Viewing a List of SNMP Groups

To view a list of SNMP groups configured on the device, navigate to **Administration** » **Configure SNMP** » **Configure SNMP Access** . The **SNMP Access** table appears.


If SNMP groups have not been configured, add groups as needed. For more information, refer to Section 5.5.3.2, "Adding an SNMP Group".

Section 5.5.3.2


Adding an SNMP Group

To add an SNMP group, do the following:

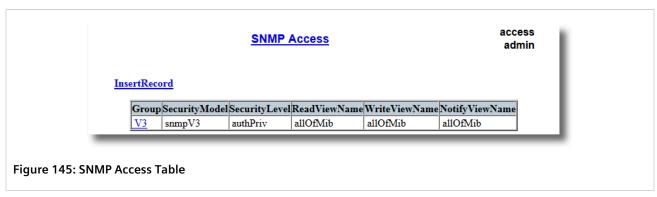
1. Navigate to **Administration** » **Configure SNMP** » **Configure SNMP Access** . The **SNMP Access** table appears.

2. Click InsertRecord. The SNMP Access form appears.

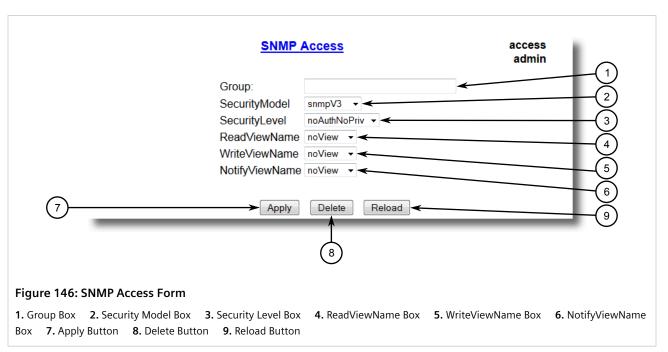
3. Configure the following parameter(s) as required:

Parameter	Description
Group	Synopsis: Any 32 characters
	The group name to which the security model and name belong. This name is used as an index to the SNMPv3 VACM Access Table.
SecurityModel	Synopsis: { snmpV1, snmpV2c, snmpV3 } Default: snmpV3
	In order to gain the access rights allowed by this entry, configured security model must be in use.
SecurityLevel	Synopsis: { noAuthNoPriv, authNoPriv, authPriv } Default: noAuthNoPriv
	The minimum level of security requuired in order to gain the access rights allowed by this entry. A security level of noAuthNoPriv is less than authNoPriv, which is less than authPriv.
ReadViewName	Synopsis: { noView, V1Mib, allOfMib } Default: noView
	This parameter identifies the MIB tree(s) to which this entry authorizes read access. If the value is noView, then no read access is granted.
WriteViewName	Synopsis: { noView, V1Mib, allOfMib } Default: noView
	This parameter identifies the MIB tree(s) to which this entry authorizes write access. If the value is noView, then no write access is granted.
NotifyViewName	Synopsis: { noView, V1Mib, allOfMib } Default: noView
	This parameter identifies the MIB tree(s) to which this entry authorizes access for notifications. If the value is noView, then no access for notifications is granted.

Adding an SNMP Group 215


4. Click Apply.

Section 5.5.3.3


Deleting an SNMP Group

To delete an SNMP group, do the following:

1. Navigate to Administration » Configure SNMP » Configure SNMP Access . The SNMP Access table appears.

2. Select the group from the table. The **SNMP Access** form appears.

3. Click Delete.

216 Deleting an SNMP Group

Section 5.6

Managing Network Discovery

RUGGEDCOM ROS supports the Link Layer Discovery Protocol (LLDP) and RUGGEDCOM Discovery Protocol (RCDP), both Layer 2 protocols for automated network discovery.

CONTENTS

- Section 5.6.1, "Network Discovery Concepts"
- Section 5.6.2, "Configuring LLDP Globally"
- Section 5.6.3, "Configuring LLDP for an Ethernet Port"
- Section 5.6.4, "Enabling/Disabling RCDP"
- Section 5.6.5, "Viewing Global Statistics and Advertised System Information"
- Section 5.6.6, "Viewing Statistics for LLDP Neighbors"
- Section 5.6.7, "Viewing Statistics for LLDP Ports"

Section 5.6.1

Network Discovery Concepts

The following section describes some of the concepts important to the implementation of network discovery in RUGGEDCOM ROS.

CONTENTS

- Section 5.6.1.1, "Link Layer Discovery Protocol (LLDP)"
- Section 5.6.1.2, "RUGGEDCOM Discovery Protocol (RCDP)"

Section 5.6.1.1

Link Layer Discovery Protocol (LLDP)

LLDP is an IEEE standard protocol, IEEE 802.11AB, that allows a networked device to advertise its own basic networking capabilities and configuration.

LLDP allows a networked device to discover its neighbors across connected network links using a standard mechanism. Devices that support LLDP are able to advertise information about themselves, including their capabilities, configuration, interconnections, and identifying information.

LLDP agent operation is typically implemented as two modules: the LLDP transmit module and LLDP receive module. The LLDP transmit module, when enabled, sends the local device's information at regular intervals, in IEEE 802.1AB standard format. Whenever the transmit module is disabled, it transmits an LLDPDU (LLDP data unit) with a time-to-live (TTL) type-length-value (TLV) containing 0 in the information field. This enables remote devices to remove the information associated with the local device in their databases. The LLDP receive module, when enabled, receives remote devices' information and updates its LLDP database of remote systems. When new or updated information is received, the receive module initiates a timer for the valid duration indicated by the TTL TLV in the received LLDPDU. A remote system's information is removed from the database when an LLDPDU is received from it with TTL TLV containing 0 in its information field.

NOTE

LLDP is implemented to keep a record of only one device per Ethernet port. Therefore, if there are multiple devices sending LLDP information to a switch port on which LLDP is enabled, information about the neighbor on that port will change constantly.

Section 5.6.1.2

RUGGEDCOM Discovery Protocol (RCDP)

RUGGEDCOM Discovery Protocol (RCDP) supports the deployment of RUGGEDCOM ROS-based devices that have not been configured since leaving the factory. RUGGEDCOM ROS devices that have not been configured all have the default IP (Layer 3) address. Connecting more than one of them on a Layer 2 network means that one cannot use standard IP-based configuration tools to configure them. The behavior of IP-based mechanisms such as the web interface, SSH, telnet, or SNMP will all be undefined.

Since RCDP operates at Layer 2, it can be used to reliably and unambiguously address multiple devices even though they may share the same IP configuration.

Siemens's RUGGEDCOM Explorer is a lightweight, standalone Windows application that supports RCDP. It is capable of discovering, identifying and performing basic configuration of RUGGEDCOM ROS-based devices via RCDP. The features supported by RCDP include:

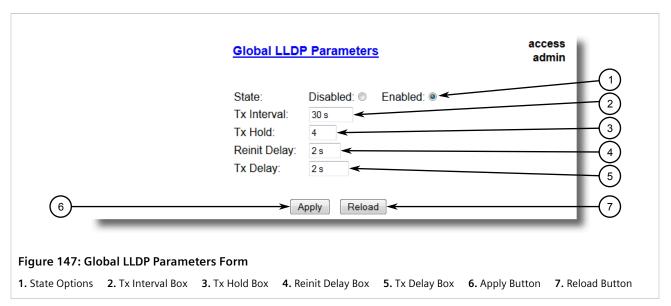
- Discovery of RUGGEDCOM ROS-based devices over a Layer 2 network.
- Retrieval of basic network configuration, RUGGEDCOM ROS version, order code, and serial number.
- Control of device LEDs for easy physical identification.
- Configuration of basic identification, networking, and authentication parameters.

For security reasons, RUGGEDCOM Explorer will attempt to disable RCDP on all devices when Explorer is shut down. If RUGGEDCOM Explorer is unable to disable RCDP on a device, RUGGEDCOM ROS will automatically disable RCDP after approximately one hour of inactivity.

NOTE

RCDP is not compatible with VLAN-based network configurations. For correct operation of RUGGEDCOM Explorer, no VLANs (tagged or untagged) must be configured. All VLAN configuration items must be at their default settings.

NOTE


RUGGEDCOM ROS responds to RCDP requests only. It does not under any circumstances initiate any RCDP-based communication.

Section 5.6.2

Configuring LLDP Globally

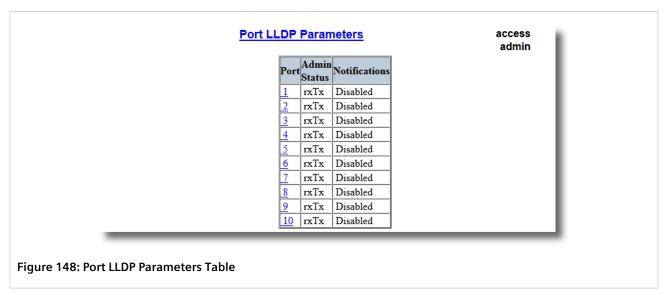
To configure the global settings for LLDP, do the following:

1. Navigate to **Network Discovery » Link Layer Discovery Protocol » Configure Global LLDP Parameters** . The **Global LLDP Parameters** form appears.

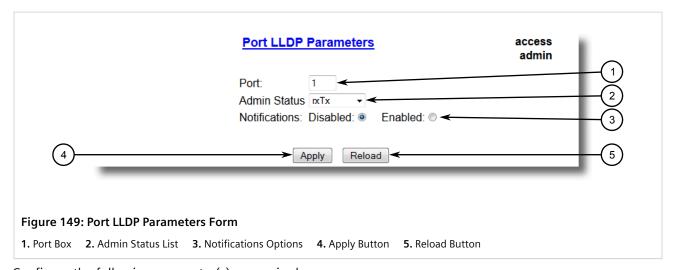
2. Configure the following parameter(s) as required:

Parameter	Description	
State	Synopsis: { Disabled, Enabled } Default: Enabled	
	Enables LLDP protocol. Note that LLDP is enabled on a port when LLDP is enabled globally and along with enabling per port setting in Port LLDP Parameters menu.	
Tx Interval	Synopsis: 5 to 32768 s Default: 30 s	
	The interval at which LLDP frames are transmitted on behalf of this LLDP agent.	
Tx Hold	Synopsis: 2 to 10 Default: 4	
	The multiplier of the Tx Interval parameter that determines the actual time-to-live (TTL) value used in a LLDPDU. The actual TTL value can be expressed by the following formula:	
	TTL = MIN(65535, (Tx Interval * Tx Hold))	
Reinit Delay	Synopsis: 1 to 10 s Default: 2 s	
	The delay in seconds from when the value of Admin Status parameter of a particular port becomes 'Disbled' until reinitialization will be lattempted.	
Tx Delay	Synopsis: 1 to 8192 s Default: 2 s	
	The delay in seconds between successive LLDP frame transmissions initiated by value or status changed. The recommended value is set by the following formula:	
	1 <= txDelay <= (0.25 * Tx Interval)	

3. Click Apply.


Configuring LLDP Globally 219

Section 5.6.3


Configuring LLDP for an Ethernet Port

To configure LLDP for a specific Ethernet Port, do the following:

1. Navigate to **Network Discovery » Link Layer Discovery Protocol » Configure Port LLDP Parameters** . The **Port LLDP Parameters** table appears.

2. Select a port. The **Port LLDP Parameters** form appears.

3. Configure the following parameter(s) as required:

Parameter	Description
Port	Synopsis: 1 to maximum port number Default: 1
	The port number as seen on the front plate silkscreen of the switch.
Admin Status	Synopsis: { rxTx, txOnly, rxOnly, Disabled } Default: rxTx

Parameter	Description
	rxTx: the local LLDP agent can both transmit and receive LLDP frames through the port.
	txOnly: the local LLDP agent can only transmit LLDP frames.
	rxOnly: the local LLDP agent can only receive LLDP frames.
	disabled: the local LLDP agent can neither transmit or receive LLDP frames.
Notifications	Synopsis: { Disabled, Enabled } Default: Disabled
	Disabling notifications will prevent sending notifications and generating alarms for particular port from the LLDP agent.

Click Apply.

Section 5.6.4

Enabling/Disabling RCDP

RUGGEDCOM ROS supports the RUGGEDCOM Discovery Protocol (RCDP). RCDP supports the deployment of RUGGEDCOM ROS-based devices that have not been configured since leaving the factory. RUGGEDCOM ROS devices that have not been configured all have the default IP (Layer 3) address. Connecting more than one of them on a Layer 2 network means that one cannot use standard IP-based configuration tools to configure them. The behavior of IP-based mechanisms such as the web interface, SSH, telnet, or SNMP will all be undefined.

Since RCDP operates at Layer 2, it can be used to reliably and unambiguously address multiple devices even though they may share the same IP configuration.

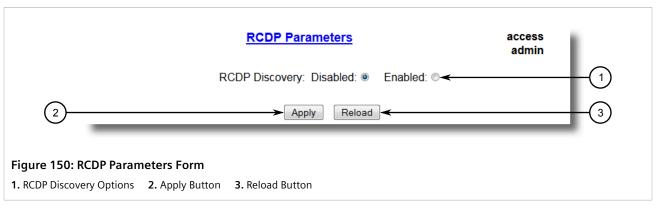
Siemens's RUGGEDCOM Explorer is a lightweight, standalone Windows application that supports RCDP. It is capable of discovering, identifying and performing basic configuration of RUGGEDCOM ROS-based devices via RCDP. The features supported by RCDP include:

- Discovery of RUGGEDCOM ROS-based devices over a Layer 2 network.
- Retrieval of basic network configuration, RUGGEDCOM ROS version, order code, and serial number.
- Control of device LEDs for easy physical identification.
- Configuration of basic identification, networking, and authentication parameters.

For security reasons, RUGGEDCOM Explorer will attempt to disable RCDP on all devices when Explorer is shut down. If RUGGEDCOM Explorer is unable to disable RCDP on a device, RUGGEDCOM ROS will automatically disable RCDP after approximately one hour of inactivity.

NOTE

RCDP is not compatible with VLAN-based network configurations. For correct operation of RUGGEDCOM Explorer, no VLANs (tagged or untagged) must be configured. All VLAN configuration items must be at their default settings.

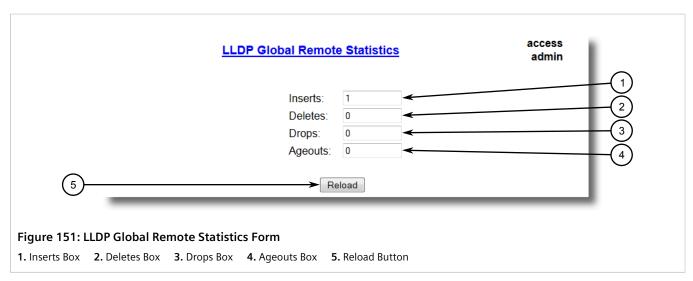

NOTE

RUGGEDCOM ROS responds to RCDP requests only. It does not under any circumstances initiate any RCDP-based communication.

To enable or disable RCDP, do the following:

 Navigate to Network Discovery » RuggedCom Discovery Protocol » Configure RCDP Parameters. The RCDP Parameters form appears.

Enabling/Disabling RCDP 221



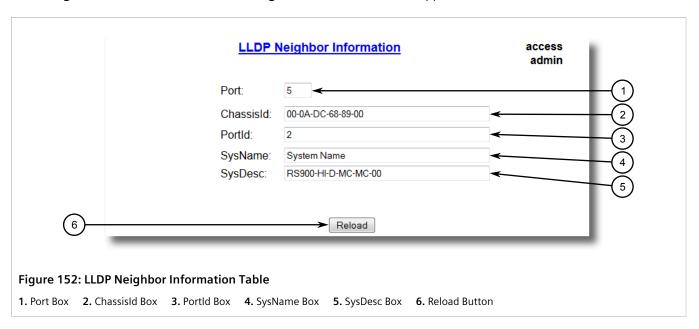
- 2. Select **Enabled** to enable RCDP, or select **Disabled** to disable RCDP.
- 3. Click Apply.

Section 5.6.5

Viewing Global Statistics and Advertised System Information

To view global statistics for LLDP and the system information that is advertised to neighbors, navigate to **Network Discovery » Link Layer Discovery Protocol » View LLDP Global Remote Statistics**. The **LLDP Global Remote Statistics** form appears.

This form displays the following information:


Parameter	Description
Inserts	Synopsis: 0 to 4294967295 A number of times the entry in LLDP Neighbor Information Table was inserted.
Deletes	Synopsis: 0 to 4294967295 A number of times the entry in LLDP Neighbor Information Table was deleted.
Drops	Synopsis: 0 to 4294967295

Parameter	Description
	A number of times an entry was deleted from LLDP Neighbor Information Table because the information timeliness interval has expired.
Ageouts	Synopsis: 0 to 4294967295 A counter of all TLVs discarded.

Section 5.6.6

Viewing Statistics for LLDP Neighbors

To view statistics for LLDP neighbors, navigate to **Network Discovery » Link Layer Discovery Protocol » View LLDP Neighbor Information**. The **LLDP Neighbor Information** table appears.

This form displays the following information:

Parameter	Description
Port	Synopsis: 1 to maximum port number The local port associated with this entry.
ChassisId	Synopsis: Any 45 characters Chassis Id information received from remote LLDP agent.
PortId	Synopsis: Any 45 characters Port Id information received from remote LLDP agent.
SysName	Synopsis: Any 45 characters System Name information received from remote LLDP agent.
SysDesc	Synopsis: Any 45 characters System Descriptor information received from remote LLDP agent.

Section 5.6.7

Viewing Statistics for LLDP Ports

To view statistics for LLDP ports, navigate to **Network Discovery » Link Layer Discovery Protocol » View LLDP Statistics** . The **LLDP Statistics** table appears.

			LLDP S	tatistics			access admin
Port	FrmDrop	ErrFrm	FrmIn	FrmOut	Ageouts	TLVsDrop	TLVsUnknow
1	0	0	12274	2041	1	0	36822
2	0	0	2046	2041	1	0	0
3	0	0	0	0	0	0	0
4	0	0	0	0	0	0	0
5	0	0	0	0	0	0	0
6	0	0	0	0	0	0	0
7	0	0	0	0	0	0	0
8	0	0	1435	1433	0	0	0
9	0	0	0	0	0	0	0
10	0	0	0	0	0	0	0

Figure 153: LLDP Statistics Table

This table displays the following information:

Parameter	Description
Port	Synopsis: 1 to maximum port number The port number as seen on the front plate silkscreen of the switch.
FrmDrop	Synopsis: 0 to 4294967295 A counter of all LLDP frames discarded.
ErrFrm	Synopsis: 0 to 4294967295 A counter of all LLDPDUs received with detectable errors.
FrmIn	Synopsis: 0 to 4294967295 A counter of all LLDPDUs received.
FrmOut	Synopsis: 0 to 4294967295 A counter of all LLDPDUs transmitted.
Ageouts	Synopsis: 0 to 4294967295 A counter of the times that a neighbor's information has been deleted from the LLDP remote system MIB because the txinfoTTL timer has expired.
TLVsDrop	Synopsis: 0 to 4294967295 A counter of all TLVs discarded.
TLVsUnknown	Synopsis: 0 to 4294967295 A counter of all TLVs received on the port that are not recognized by the LLDP local agent.

Section 5.7

Managing Multicast Filtering

Multicast traffic can be filtered using IGMP (Internet Group Management Protocol) snooping or GMRP (GARP Multicast Registration Protocol).

CONTENTS

- Section 5.7.1, "Managing IGMP"
- Section 5.7.2, "Managing GMRP"

Section 5.7.1

Managing IGMP

IGMP is used by IP hosts to report their host group memberships with multicast routers. As hosts join and leave specific multicast groups, streams of traffic are directed to or withheld from that host.

The IGMP protocol operates between multicast routers and IP hosts. When an unmanaged switch is placed between multicast routers and their hosts, the multicast streams will be distributed to all ports. This may introduce significant traffic onto ports that do not require it and receive no benefit from it.

IGMP Snooping, when enabled, will act on IGMP messages sent from the router and the host, restricting traffic streams to the appropriate LAN segments.

IMPORTANT!

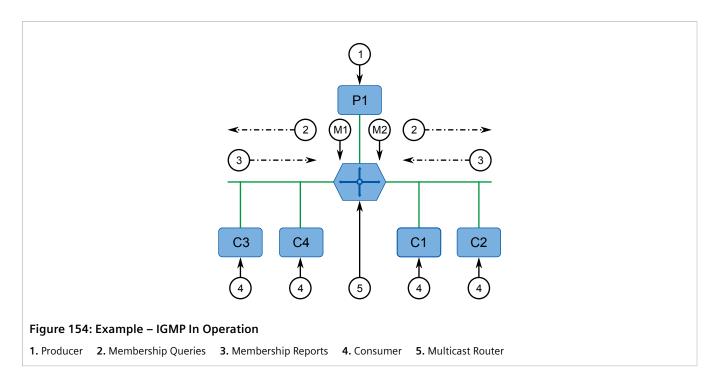
RUGGEDCOM ROS restricts IGMP hosts from subscribing to the following special multicast addresses:

- 224.0.0.0 to 224.0.0.255
- 224.0.1.129

These addresses are reserved for routing protocols and IEEE 1588. If an IGMP membership report contains one of these addresses, the report is forwarded by the switch without learning about the host.

CONTENTS

- Section 5.7.1.1, "IGMP Concepts"
- Section 5.7.1.2, "Viewing a List of Multicast Group Memberships"
- Section 5.7.1.3, "Viewing Forwarding Information for Multicast Groups"
- Section 5.7.1.4, "Configuring IGMP"


Section 5.7.1.1

IGMP Concepts

The following describes some of the concepts important to the implementation of multicast filtering using IGMP:

>> IGMP In Operation

The following network diagram provides a simple example of the use of IGMP.

One *producer* IP host (P1) is generating two IP multicast streams, M1 and M2. There are four potential *consumers* of these streams, C1 through C4. The multicast router discovers which host wishes to subscribe to which stream by sending general membership gueries to each segment.

In this example, the general membership query sent to the C1-C2 segment is answered by a membership report (or *join*) indicating the desire to subscribe to stream M2. The router will forward the M2 stream to the C1-C2 segment. In a similar fashion, the router discovers that it must forward stream M1 to segment C3-C4.

A consumer may join any number of multicast groups, issuing a membership report for each group. When a host issues a membership report, other hosts on the same network segment that also require membership to the same group suppress their own requests, since they would be redundant. In this way, the IGMP protocol guarantees the segment will issue only one membership report for each group.

The router periodically queries each of its segments in order to determine whether at least one consumer still subscribes to a given stream. If it receives no responses within a given time period (usually two query intervals), the router will prune the multicast stream from the given segment.

A more common method of pruning occurs when consumers wishing to unsubscribe issue an IGMP *leave group* message. The router will immediately issue a group-specific membership query to determine whether there are any remaining subscribers of that group on the segment. After the last consumer of a group has unsubscribed, the router will prune the multicast stream from the given segment.

>> Switch IGMP Operation

The IGMP Snooping feature provides a means for switches to snoop (i.e. watch) the operation of routers, respond with joins/leaves on the behalf of consumer ports, and prune multicast streams accordingly. There are two modes of IGMP the switch can be configured to assume: active and passive.

Active Mode

IGMP supports a routerless mode of operation.

When such a switch is used without a multicast router, it is able to function as if it is a multicast router sending IGMP general queries.

226 IGMP Concepts

Passive Mode

When such a switch is used in a network with a multicast router, it can be configured to run Passive IGMP. This mode prevents the switch from sending the queries that can confuse the router causing it to stop issuing IGMP queries.

NOTE

A switch running in passive mode requires the presence of a multicast router or it will be unable to forward multicast streams at all if no multicast routers are present.

NOTE

At least one IGMP Snooping switch must be in active mode to make IGMP functional.

>> IGMP Snooping Rules

IGMP Snooping adheres to the following rules:

- When a multicast source starts multicasting, the traffic stream will be immediately blocked on segments from which joins have not been received.
- Unless configured otherwise, the switch will forward all multicast traffic to the ports where multicast routers are attached.
- Packets with a destination IP multicast address in the 224.0.0.X range that are not IGMP are always forwarded
 to all ports. This behavior is based on the fact that many systems do not send membership reports for IP
 multicast addresses in this range while still listening to such packets.
- The switch implements IGMPv2 *proxy-reporting* (i.e. membership reports received from downstream are summarized and used by the switch to issue its own reports).
- The switch will only send IGMP membership reports out of those ports where multicast routers are attached, as sending membership reports to hosts could result in unintentionally preventing a host from joining a specific group.
- Multicast routers use IGMP to elect a master router known as the *querier*. The *querier* is the router with the lowest IP address. All other routers become non-queriers, participating only in forwarding multicast traffic. Switches running in active mode participate in the querier election the same as multicast routers.
- When the querier election process is complete, the switch simply relays IGMP queries received from the querier.
- When sending IGMP packets, the switch uses its own IP address, if it has one, for the VLAN on which packets are sent, or an address of 0.0.0.0, if it does not have an assigned IP address.

NOTE

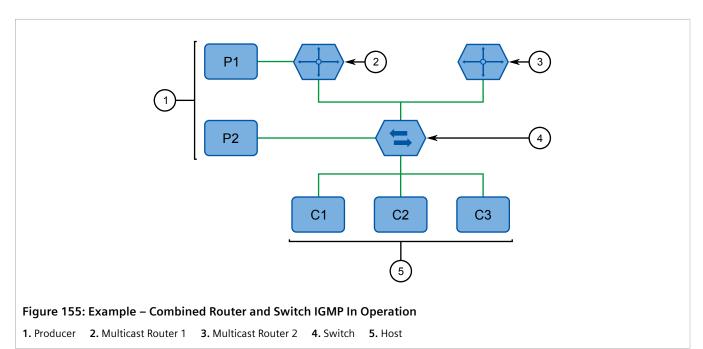
IGMP Snooping switches perform multicast pruning using a multicast frames' destination MAC multicast address, which depends on the group IP multicast address. IP address W.X.Y.Z corresponds to MAC address 01-00-5E-XX-YY-ZZ where XX is the lower 7 bits of X, and YY and ZZ are simply Y and Z coded in hexadecimal.

One can note that IP multicast addresses, such as 224.1.1.1 and 225.1.1.1, will both map onto the same MAC address 01-00-5E-01-01-01. This is a problem for which the IETF Network Working Group currently has offered no solution. Users are advised to be aware of and avoid this problem.

>> IGMP and RSTP

An RSTP change of topology can render the routes selected to carry multicast traffic as incorrect. This results in lost multicast traffic.

IGMP Concepts 227


If RSTP detects a change in the network topology, IGMP will take some actions to avoid the loss of multicast connectivity and reduce network convergence time:

- The switch will immediately issue IGMP queries (if in IGMP Active mode) to obtain potential new group membership information.
- The switch can be configured to flood multicast streams temporarily out of all ports that are not configured as RSTP Edge Ports.

>> Combined Router and Switch IGMP Operation

The following example illustrates the challenges faced with multiple routers, VLAN support and switching.

Producer P1 resides on VLAN 2 while P2 resides on VLAN 3. Consumer C1 resides on both VLANs whereas C2 and C3 reside on VLANs 3 and 2, respectively. Router 2 resides on VLAN 2, presumably to forward multicast traffic to a remote network or act as a source of multicast traffic itself.

In this example:

- P1, Router 1, Router 2 and C3 are on VLAN 2
- P2 and C2 are on VLAN 3
- C1 is on both VLAN 2 and 3

Assuming that router 1 is the querier for VLAN 2 and router 2 is simply a non-querier, the switch will periodically receive queries from router 1 and maintain the information concerning which port links to the multicast router. However, the switch port that links to router 2 must be manually configured as a *router port*. Otherwise, the switch will send neither multicast streams nor joins/leaves to router 2.

Note that VLAN 3 does not have an external multicast router. The switch should be configured to operate in its routerless mode and issue general membership queries as if it is the router.

• Processing Joins

If host C1 wants to subscribe to the multicast streams for both P1 and P2, it will generate two membership reports. The membership report from C1 on VLAN 2 will cause the switch to immediately initiate its own membership report to multicast router 1 (and to issue its own membership report as a response to queries).

228 IGMP Concepts

The membership report from host C1 for VLAN 3 will cause the switch to immediately begin forwarding multicast traffic from producer P2 to host C2.

• Processing Leaves

When host C1 decides to leave a multicast group, it will issue a leave request to the switch. The switch will poll the port to determine if host C1 is the last member of the group on that port. If host C1 is the last (or only) member, the group will immediately be pruned from the port.

Should host C1 leave the multicast group without issuing a leave group message and then fail to respond to a general membership guery, the switch will stop forwarding traffic after two gueries.

When the last port in a multicast group leaves the group (or is aged-out), the switch will issue an IGMP leave report to the router.

Section 5.7.1.2

Viewing a List of Multicast Group Memberships

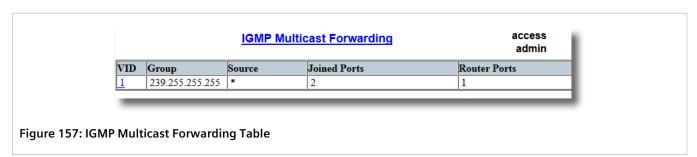
Using IGMP snooping, RUGGEDCOM ROS records group membership information on a per-port basis based on membership reports it observes between the router and host.

To view a list of multicast group memberships, navigate to *Multicast Filtering* » *View IGMP Group Membership* . The IGMP Group Membership table appears.

This table provides the following information:

Parameter	Description
Port	Synopsis: 1 to maximum port number The port number as seen on the front plate silkscreen of the switch.
VID	Synopsis: 0 to 65535 VLAN Identifier of the VLAN upon which the multicast group operates.
Group	Synopsis: ###.###.### where ### ranges from 0 to 255 Multicast Group Address.
Ver	Synopsis: { v3, v2, v1 } Specifies the IGMP version of the learnt multicast group.
Reporter	Synopsis: ###.###.### where ### ranges from 0 to 255 Specifies the source IP address that is reporting subscription to the multicast group.
Age	Synopsis: 0 to 7210 s Specifies the current age of the IP multicast group learned on the port in seconds.

If the table is empty, do the following:


- Make sure traffic is being sent to the device.
- Make sure IGMP is properly configured on the device. For more information, refer to Section 5.7.1.4, "Configuring IGMP".

Section 5.7.1.3

Viewing Forwarding Information for Multicast Groups

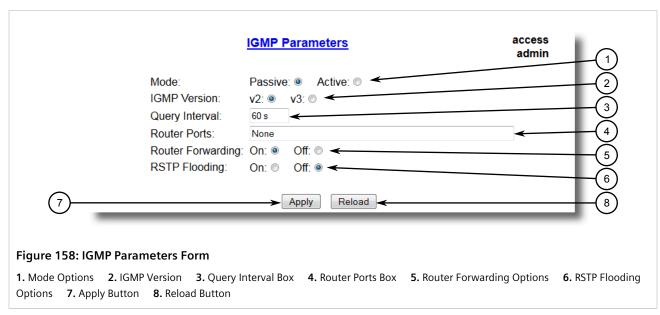
Multicast forwarding information for every source, group and VLAN combination learned by RUGGEDCOM ROS is recorded in the IGMP Multicast Forwarding table.

To view the IGMP Multicast Forwarding table, navigate to *Multicast Filtering* » *View IGMP Multicast Forwarding* . The IGMP Multicast Forwarding table appears.

This table provides the following information:

Parameter	Description
VID	Synopsis: 0 to 65535 VLAN Identifier of the VLAN upon which the multicast group operates.
Group	Synopsis: ###.###.### where ### ranges from 0 to 255 Multicast Group Address.
Source	Synopsis: ###.###.### where ### ranges from 0 to 255 or { * } Source Address. * means all possible source addresses.
Joined Ports	Synopsis: Comma-separated list of ports All ports that currently receive multicast traffic for the specified multicast group.
Router Ports	Synopsis: Comma-separated list of ports All ports that have been manually configured or dynamically discovered (by observing router specific traffic) as ports that link to multicast routers.

If the table is empty, do the following:


- Make sure traffic is being sent to the device.
- Make sure IGMP is properly configured on the device. For more information, refer to Section 5.7.1.4, "Configuring IGMP".

Section 5.7.1.4

Configuring IGMP

To configure the IGMP, do the following:

- 1. Make sure one or more static VLANs exist with IGMP enabled. For more information, refer to Section 5.1.5, "Managing Static VLANs".
- 2. Navigate to Multicast Filtering » Configure IGMP Parameters . The IGMP Parameters form appears.

3. Configure the following parameter(s) as required:

Parameter	Description
Mode	Synopsis: { Passive, Active } Default: Passive
	Specifies the IGMP mode. Options include:
	PASSIVE – the switch passively snoops IGMP traffic and never sends IGMP queries
	ACTIVE – the switch generates IGMP queries, if no queries from a better candidate for being the querier are detected for a while.
IGMP Version	Synopsis: { v2, v3 } Default: v2
	Specifies the configured IGMP version on the switch. Options include:
	• $v2$ – Sets the IGMP version to version 2. When selected for a snooping switch, all IGMP reports and queries greater than $v2$ are forwarded, but not added to the IGMP Multicast Forwarding table.
	v3 – Sets the IGMP version to version 3. General queries are generated in IGMPv3 format, all versions of IGMP messages are processed by the switch, and traffic is pruned based on multicast group address only.
Query Interval	Synopsis: 10 to 3600 Default: 60 s
	The time interval between IGMP queries generated by the switch.

Configuring IGMP 231

Parameter	Description	
	NOTE This parameter also affects the Group Membership Interval (i.e. the group subscriber aging time), therefore, it takes effect even in PASSIVE mode.	
Router Ports	Synopsis: Comma-separated list of ports Default: None	
	This parameter specifies ports that connect to multicast routers. If you do not configure known router ports, the switch may be able to detect them, however it is advisable to pre-configure them.	
Router Forwarding	Synopsis: { Off, On } Default: On	
	This parameter specifies whether multicast streams will be always forwarded to multicast routers.	
RSTP Flooding	Synopsis: { Off, On } Default: Off	
	This parameter specifies whether multicast streams will be flooded out of all RSTP non-edge ports upon topology change detection. Such flooding is desirable, if guaranteed multicast stream delivery after topology change is most important.	

4. Click Apply.

Section 5.7.2

Managing GMRP

The GMRP is an application of the Generic Attribute Registration Protocol (GARP) that provides a Layer 2 mechanism for managing multicast group memberships in a bridged Layer 2 network. It allows Ethernet switches and end stations to register and unregister membership in multicast groups with other switches on a LAN, and for that information to be disseminated to all switches in the LAN that support Extended Filtering Services.

GMRP is an industry-standard protocol first defined in IEEE 802.1D-1998 and extended in IEEE 802.1Q-2005. GARP was defined in IEEE 802.1D-1998 and updated in 802.1D-2004.

CONTENTS

- Section 5.7.2.1, "GMRP Concepts"
- Section 5.7.2.2, "Viewing a Summary of Multicast Groups"
- Section 5.7.2.3, "Configuring GMRP Globally"
- Section 5.7.2.4, "Configuring GMRP for Specific Ethernet Ports"
- Section 5.7.2.5, "Viewing a List of Static Multicast Groups"
- Section 5.7.2.6, "Adding a Static Multicast Group"

232 Managing GMRP

• Section 5.7.2.7, "Deleting a Static Multicast Group"

Section 5.7.2.1

GMRP Concepts

The following describes some of the concepts important to the implementation of multicast filtering using GMRP:

» Joining a Multicast Group

In order to join a multicast group, an end station transmits a GMRP *join* message. The switch that receives the *join* message adds the port through which the message was received to the multicast group specified in the message. It then propagates the *join* message to all other hosts in the VLAN, one of which is expected to be the multicast source.

When a switch transmits GMRP updates (from GMRP-enabled ports), all of the multicast groups known to the switch, whether configured manually or learned dynamically through GMRP, are advertised to the rest of network.

As long as one host on the Layer 2 network has registered for a given multicast group, traffic from the corresponding multicast source will be carried on the network. Traffic multicast by the source is only forwarded by each switch in the network to those ports from which it has received join messages for the multicast group.

>> Leaving a Multicast Group

Periodically, the switch sends GMRP queries in the form of a *leave all* message. If a host (either a switch or an end station) wishes to remain in a multicast group, it reasserts its group membership by responding with an appropriate *join* request. Otherwise, it can either respond with a *leave* message or simply not respond at all. If the switch receives a *leave* message or receives no response from the host for a timeout period, the switch removes the host from the multicast group.

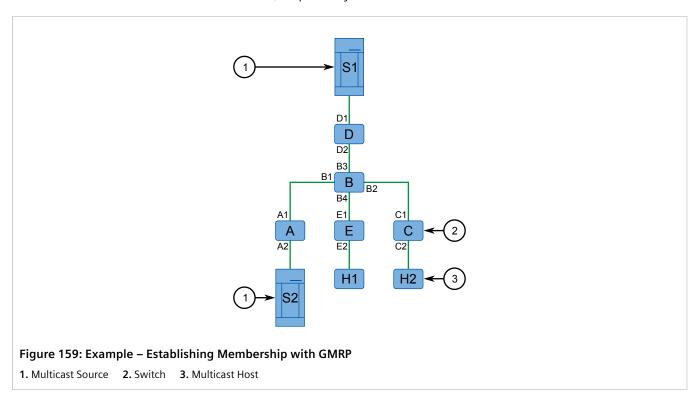
>> Notes About GMRP

Since GMRP is an application of GARP, transactions take place using the GARP protocol. GMRP defines the following two Attribute Types:

- The Group Attribute Type, used to identify the values of group MAC addresses
- The Service Requirement Attribute Type, used to identify service requirements for the group

Service Requirement Attributes are used to change the receiving port's multicast filtering behavior to one of the following:

- · Forward All Multicast group traffic in the VLAN, or
- Forward All Unknown Traffic (Multicast Groups) for which there are no members registered in the device in a VI AN


If GMRP is disabled on the RS416, GMRP packets received will be forwarded like any other traffic. Otherwise, GMRP packets will be processed by the RS416, and not forwarded.

>> Establishing Membership with GMRP

The following example illustrates how a network of hosts and switches can dynamically join two multicast groups using GMRP.

GMRP Concepts 233

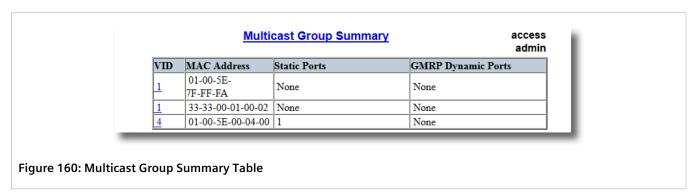
In this scenario, there are two multicast sources, S1 and S2, multicasting to Multicast Groups 1 and 2, respectively. A network of five switches, including one core switch (B), connects the sources to two hosts, H1 and H2, which receive the multicast streams from S1 and S2, respectively.

The hosts and switches establish membership with the Multicast Group 1 and 2 as follows:

- 1. Host H1 is GMRP unaware, but needs to see traffic for Multicast Group 1. Therefore, Port E2 on Switch E is statically configured to forward traffic for Multicast Group 1.
- 2. Switch E advertises membership in Multicast Group 1 to the network through Port E1, making Port B4 on Switch B a member of Multicast Group 1.
- 3. Switch B propagates the join message, causing Ports A1, C1 and D1 to become members of Multicast Group 1.
- 4. Host H2 is GMRP-aware and sends a *join* request for Multicast Group 2 to Port C2, which thereby becomes a member of Multicast Group 2.
- 5. Switch C propagates the *join* message, causing Ports A1, B2, D1 and E1 to become members of Multicast Group 2.

Once GMRP-based registration has propagated through the network, multicast traffic from S1 and S2 can reach its destination as follows:

- Source S1 transmits multicast traffic to Port D2 which is forwarded via Port D1, which has previously become a member of Multicast Group 1.
- Switch B forwards the Group 1 multicast via Port B4 towards Switch E.
- Switch E forwards the Group 1 multicast via Port E2, which has been statically configured for membership in Multicast Group 1.
- Host H1, connected to Port E2, thus receives the Group 1 multicast.
- Source S2 transmits multicast traffic to Port A2, which is then forwarded via port A1, which has previously become a member of Multicast Group 2.
- Switch B forwards the Group 2 multicast via Port B2 towards Switch C.


234 GMRP Concepts

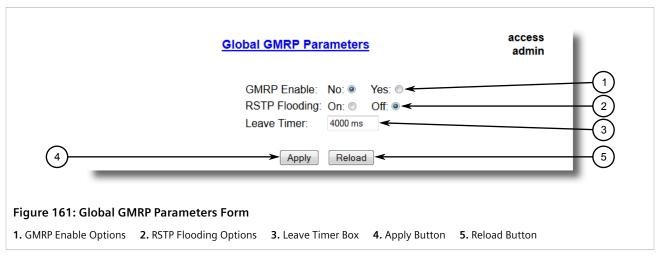
- Switch C forwards the Group 2 multicast via Port C2, which has previously become a member of Group 2.
- Ultimately, Host H2, connected to Port C2, receives the Group 2 multicast.

Section 5.7.2.2

Viewing a Summary of Multicast Groups

To view a summary of all multicast groups, navigate to *Multicast Filtering* » *View Multicast Group Summary* . The *Multicast Group Summary* table appears.

This table provides the following information:


Parameter	Description
VID	Synopsis: 0 to 65535 VLAN Identifier of the VLAN upon which the multicast group operates.
MAC Address	Synopsis: ##-##-##-##-## where ## ranges 0 to FF Multicast group MAC address.
Static Ports	Synopsis: Any combination of numbers valid for this parameter Ports that joined this group statically through static configuration in Static MAC Table and to which the multicast group traffic is forwarded.
GMRP Dynamic Ports	Synopsis: Any combination of numbers valid for this parameter Ports that joined this group dynamically through GMRP Application and to which the multicast group traffic is forwarded.

Section 5.7.2.3

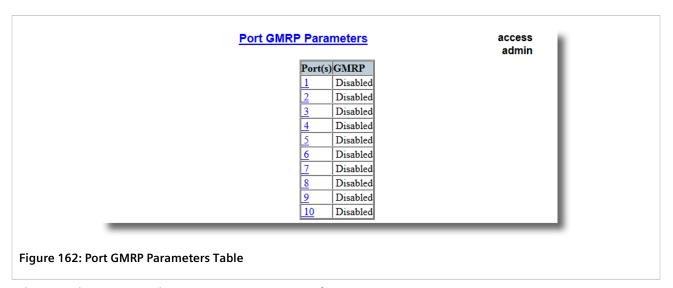
Configuring GMRP Globally

To configure global settings for GMRP, do the following:

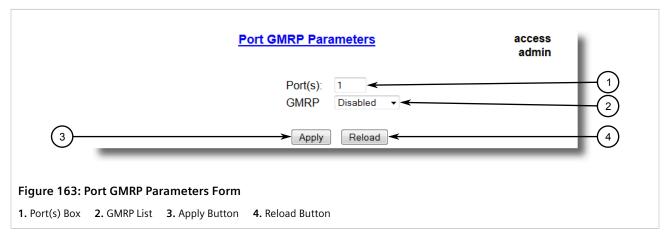
1. Navigate to *Multicast Filtering* » *Configure Global GMRP Parameters* . The Global GMRP Parameters form appears.

2. Configure the following parameter(s) as required:

Parameter	Description
GMRP Enable	Synopsis: { No, Yes } Default: No
	Globally enable or disable GMRP.
	When GMRP is globally disabled, GMRP configurations on individual ports are ignored. When GMRP is globally enabled, each port can be individually configured.
RSTP Flooding	Synopsis: { On, Off } Default: Off
	This parameter specifies whether multicast streams will be flooded out of all RSTP non-edge ports upon topology change detection. Such flooding is desirable, if guaranteed multicast stream delivery after topology change is most important.
Leave Timer	Synopsis: 600 to 300000 ms Default: 4000 ms
	Time (milliseconds) to wait after issuing Leave or LeaveAll before removing registered multicast groups. If Join messages for specific addresses are received before this timer expires, the addresses will be kept registered.


3. Click Apply.

Section 5.7.2.4

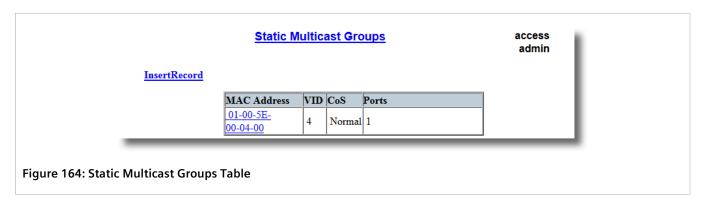

Configuring GMRP for Specific Ethernet Ports

To configure GMRP for a specific Ethernet port, do the following:

- 1. Make sure the global settings for GMRP have been configured. For more information, refer to Section 5.7.2.3, "Configuring GMRP Globally".
- 2. Navigate to *Multicast Filtering* » *Configure Port GMRP Parameters* . The **Port GMRP Parameters** table appears.

3. Select an Ethernet port. The **Port GMRP Parameters** form appears.

4. Configure the following parameter(s) as required:

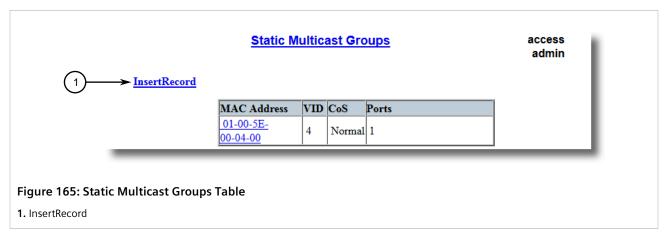

Parameter	Description
Port(s)	Synopsis: Any combination of numbers valid for this parameter
	The port number as seen on the front plate silkscreen of the switch (or a list of ports, if aggregated in a port trunk).
GMRP	Synopsis: { Disabled, Adv Only, Adv&Learn } Default: Default: Disabled
	Configures GMRP (GARP Multicast Registration Protocol) operation on the port. There are several GMRP operation modes:
	DISABLED - the port is not capable of any GMRP processing.
	ADVERTISE ONLY - the port will declare all MCAST addresses existing in the switch (configured or learned) but will not learn any MCAST addresses.
	ADVERTISE & LEARN - the port will declare all MCAST Addresses existing in the switch (configured or learned) and can dynamically learn MCAST addresses.

5. Click Apply.

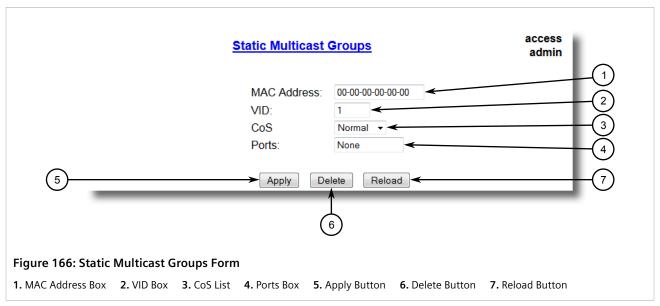
Section 5.7.2.5

Viewing a List of Static Multicast Groups

To view a list of static multicast groups, navigate to **Multicast Filtering** » **Configure Static Multicast Groups** . The **Static Multicast Groups** table appears.


If a static multicast group is not listed, add the group. For more information, refer to Section 5.7.2.6, "Adding a Static Multicast Group".

Section 5.7.2.6


Adding a Static Multicast Group

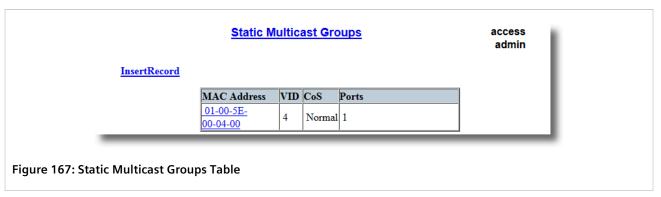
To add a static multicast group from another device, do the following:

1. Navigate to *Multicast Filtering* » *Configure Static Multicast Groups* . The **Static Multicast Groups** table appears.

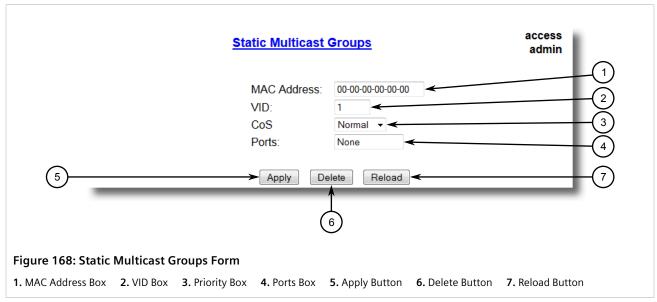
2. Click InsertRecord. The Static Multicast Groups form appears.

3. Configure the following parameter(s) as required:

Parameter	Description
MAC Address	Synopsis: ##-##-##-##-## where ## ranges 0 to FF Default: 00-00-00-00-00 Multicast group MAC address.
VID	Default: 1 VLAN Identifier of the VLAN upon which the multicast group operates.
CoS	Synopsis: { N/A, Normal, Medium, High, Crit } Default: N/A Prioritizes traffic for the specified MAC address. To not prioritize traffic based on the address, select N/A.
Ports	Synopsis: Any combination of numbers valid for this parameter Default: None Ports to which the multicast group traffic is forwarded.


4. Click Apply.

Section 5.7.2.7


Deleting a Static Multicast Group

To delete a static multicast group, do the following:

1. Navigate to *Multicast Filtering* » *Configure Static Multicast Groups* . The **Static Multicast Groups** table appears.

2. Select the group from the table. The **Static Multicast Groups** form appears.

3. Click **Delete**.

Section 5.8

Managing Port Security

Port security, or port access control, provides the ability to filter or accept traffic from specific MAC addresses.

Port security works by inspecting the source MAC addresses of received frames and validating them against the list of MAC addresses authorized by the port. Unauthorized frames are filtered and, optionally, the part that received the frame can be shut down permanently or for a specified period of time. An alarm will be raised indicating the detected unauthorized MAC address.

Frames to unknown destination addresses are flooded through secure ports.

CONTENTS

- Section 5.8.1, "Port Security Concepts"
- Section 5.8.2, "Viewing a List of Authorized MAC Addresses"
- Section 5.8.3, "Configuring Port Security"

240 Managing Port Security

• Section 5.8.4, "Configuring IEEE 802.1X"

Section 5.8.1

Port Security Concepts

The following section describes some of the concepts important to the implementation of port security in RUGGEDCOM ROS.

CONTENTS

- Section 5.8.1.1, "Static MAC Address-Based Authentication"
- Section 5.8.1.2, "IEEE 802.1x Authentication"
- Section 5.8.1.3, "IEEE 802.1X Authentication with MAC Address-Based Authentication"
- Section 5.8.1.4, "Assigning VLANS with Tunnel Attributes"

Section 5.8.1.1

Static MAC Address-Based Authentication

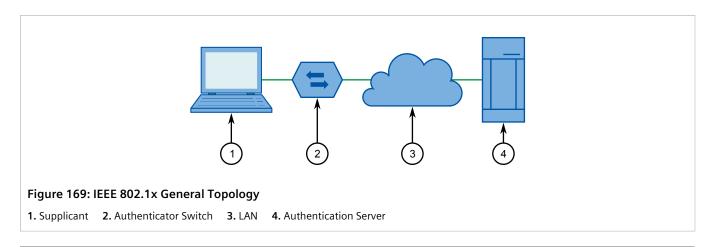
With this method, the switch validates the source MAC addresses of received frames against the contents in the Static MAC Address Table.

RUGGEDCOM ROS also supports a highly flexible Port Security configuration which provides a convenient means for network administrators to use the feature in various network scenarios.

A Static MAC address can be configured without a port number being explicitly specified. In this case, the configured MAC address will be automatically authorized on the port where it is detected. This allows devices to be connected to any secure port on the switch without requiring any reconfiguration.

The switch can also be programmed to learn (and, thus, authorize) a pre-configured number of the first source MAC addresses encountered on a secure port. This enables the capture of the appropriate secure addresses when first configuring MAC address-based authorization on a port. Those MAC addresses are automatically inserted into the Static MAC Address Table and remain there until explicitly removed by the user.

Section 5.8.1.2


IEEE 802.1x Authentication

The IEEE 802.1x standard defines a mechanism for port-based network access control and provides a means of authenticating and authorizing devices attached to LAN ports.

Although IEEE 802.1x is mostly used in wireless networks, this method is also implemented in wired switches.

The IEEE 802.1x standard defines three major components of the authentication method: Supplicant, Authenticator and Authentication server. RUGGEDCOM ROS supports the Authenticator component.

Port Security Concepts 241

IMPORTANT!

RUGGEDCOM ROS supports both Protected Extensible Authentication Protocol (PEAP) and EAP-MD5. PEAP is more secure and is recommended if available in the supplicant.

IEEE 802.1x makes use of the Extensible Authentication Protocol (EAP), which is a generic PPP authentication protocol that supports various authentication methods. IEEE 802.1x defines a protocol for communication between the Supplicant and the Authenticator, referred to as EAP over LAN (EAPOL).

RUGGEDCOM ROS communicates with the Authentication Server using EAP over RADIUS.

NOTE

The switch supports authentication of one host per port.

NOTE

If the host's MAC address is configured in the Static MAC Address Table, it will be authorized, even if the host authentication is rejected by the authentication server.

Section 5.8.1.3

IEEE 802.1X Authentication with MAC Address-Based Authentication

This method, also referred to as MAB (MAC-Authentication Bypass), is commonly used for devices, such as VoIP phones and Ethernet printers, that do not support the 802.1x protocol. This method allows such devices to be authenticated using the same database infrastructure as that used in 802.1x.

IEEE 802.1x with MAC-Authentication Bypass works as follows:

- 1. The device connects to a switch port.
- 2. The switch learns the device MAC address upon receiving the first frame from the device (the device usually sends out a DHCP request message when first connected).
- 3. The switch sends an EAP Request message to the device, attempting to start 802.1X authentication.
- 4. The switch times out while waiting for the EAP reply, because the device does not support 802.1x.
- 5. The switch sends an authentication message to the authentication server, using the device MAC address as the username and password.
- 6. The switch authenticates or rejects the device according to the reply from the authentication server.

Section 5.8.1.4

Assigning VLANS with Tunnel Attributes

RUGGEDCOM ROS supports assigning a VLAN to the authorized port using tunnel attributes, as defined in RFC 3580 [http://tools.ietf.org/html/rfc3580], when the Port Security mode is set to 802.1x or 802.1x/MAC-Auth.

In some cases, it may be desirable to allow a port to be placed into a particular VLAN, based on the authentication result. For example:

- To allow a particular device, based on its MAC address, to remain on the same VLAN as it moves within a network, configure the switches for 802.1X/MAC-Auth mode
- To allow a particular user, based on the user's login credentials, to remain on the same VLAN when the user logs in from different locations, configure the switches for 802.1X mode

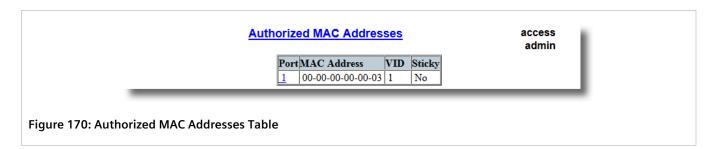
If the RADIUS server wants to use this feature, it indicates the desired VLAN by including tunnel attributes in the Access-Accept message. The RADIUS server uses the following tunnel attributes for VLAN assignment:

- Tunnel-Type=VLAN (13)
- Tunnel-Medium-Type=802
- Tunnel-Private-Group-ID=VLANID

Note that VLANID is 12-bits and takes a value between 1 and 4094, inclusive. The Tunnel-Private-Group-ID is a string as defined in RFC 2868 [http://tools.ietf.org/html/rfc2868], so the VLANID integer value is encoded as a string.

If the tunnel attributes are not returned by the authentication server, the VLAN assigned to the switch port remains unchanged.

Section 5.8.2


Viewing a List of Authorized MAC Addresses

To view a list of static MAC addresses learned from secure ports, navigate to **Network Access Control** » **Port Security** » **View Authorized MAC Addresses** . The **Authorized MAC Addresses** table appears.

NOTE

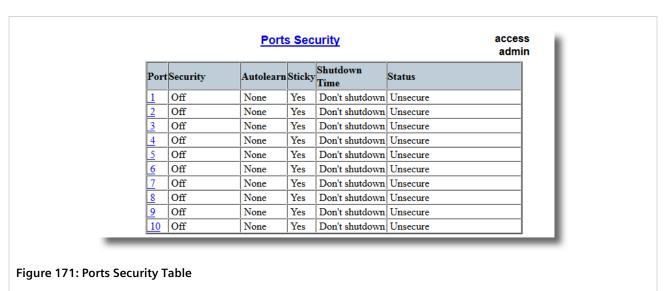
Only MAC addresses authorized on a static MAC port(s) are shown. MAC addresses authorized with IEEE 802.1X are not shown.

This table displays the following information:

Parameter	Description
Port	Port on which MAC address has been learned.
MAC Address	Synopsis: ##-##-##-## where ## ranges 0 to FF

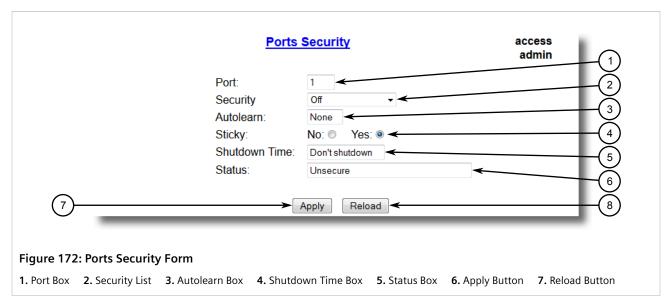
Parameter	Description
	Authorized MAC address learned by the switch.
VID	Synopsis: 0 to 65535 VLAN Identifier of the VLAN upon which the MAC address operates.

If a MAC address is not listed, do the following:


- Configure port security. For more information, refer to Section 5.8.3, "Configuring Port Security".
- Configure IEEE 802.1X. For more information, refer to Section 5.8.4, "Configuring IEEE 802.1X".

Section 5.8.3

Configuring Port Security


To configure port security, do the following:

1. Navigate to **Network Access Control** » **Port Security** » **Configure Ports Security** . The **Ports Security** table appears.

2. Select an Ethernet port. The **Ports Security** form appears.

244 Configuring Port Security

3. Configure the following parameter(s) as required:

Parameter	Description
Port	Synopsis: 1 to maximum port number Default: 1
	The port number as seen on the front plate silkscreen of the switch.
Security	Synopsis: { Off, Static MAC, 802.1X, 802.1x/MAC-Auth } Default: Off
	Enables or disables the port's security feature. Two types of port access control are available:
	 Static MAC address-based. With this method, authorized MAC address(es) should be configured in the Static MAC Address table. If some MAC addresses are not known in advance (or it is not known to which port they will be connected), there is still an option to configure the switch to auto-learn certain number of MAC addresses. Once learned, they do not age out until the unit is reset or the link goes down. IEEE 802.1X standard authentication. IEEE 802.1X with MAC-Authentication, also known as MAC-Authentication Bypass. With this option, the device can authenticate clients based on the client's MAC address if IEEE 802.1X authentication times out.
Autolearn	Synopsis: 1 to 16 or { None } Default: None
	Only applicable when the 'Security' field has been set to 'Static MAC'. It specifies maximum number of MAC addresses that can be dynamically learned on the port. If there are static addresses configured on the port, the actual number of addresses allowed to be learned is this number minus the number of the static MAC addresses.
Shutdown Time	Synopsis: 1 to 86400 s or { Until reset, Don't shutdown } Default: Don't shutdown
	Specifies for how long to shut down the port, if a security violation occurs.
Status	Synopsis: Any 31 characters

Configuring Port Security 245

Parameter	Description
	Describes the security status of the port.

NOTE

There are a few scenarios in which static MAC addresses can move:

- When the link is up/down on a non-sticky secured port
- When traffic switches from or to a non-sticky secured port

NOTE

Traffic is lost until the source MAC Address of the incoming traffic is authorized against the static MAC address table.

4. Click Apply.

Section 5.8.4

Configuring IEEE 802.1X

To configure IEEE 802.1X port-based authentication, do the following:

1. Navigate to **Network Access Control** » **Port Security** » **Configure 802.1X** . The **802.1X Parameters** table appears.

	802.1X Parameters						access admir	_
Port	txPeriod	quietPeriod	reAuthEnabled	reAuthPeriod	reAuthMax	suppTimeout	serverTimeout	maxReq
1	30 s	60 s	No	3600 s	2	30 s	30 s	2
2	30 s	60 s	No	3600 s	2	30 s	30 s	2
3	30 s	60 s	No	3600 s	2	30 s	30 s	2
4	30 s	60 s	No	3600 s	2	30 s	30 s	2
5	30 s	60 s	No	3600 s	2	30 s	30 s	2
6	30 s	60 s	No	3600 s	2	30 s	30 s	2
7	30 s	60 s	No	3600 s	2	30 s	30 s	2
8	30 s	60 s	No	3600 s	2	30 s	30 s	2
9	30 s	60 s	No	3600 s	2	30 s	30 s	2
10	30 s	60 s	No	3600 s	2	30 s	30 s	2

Figure 173: 802.1X Parameters Table

2. Select an Ethernet port. The **802.1X Parameters** form appears.

246 Configuring IEEE 802.1X

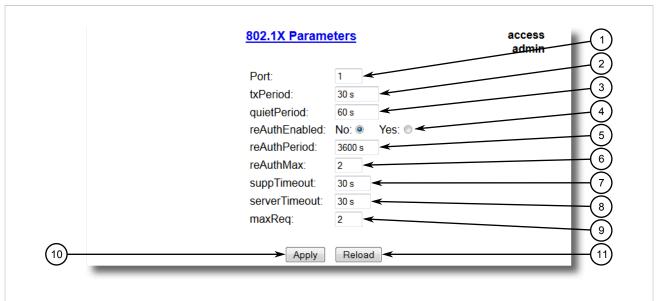


Figure 174: 802.1X Parameters Form

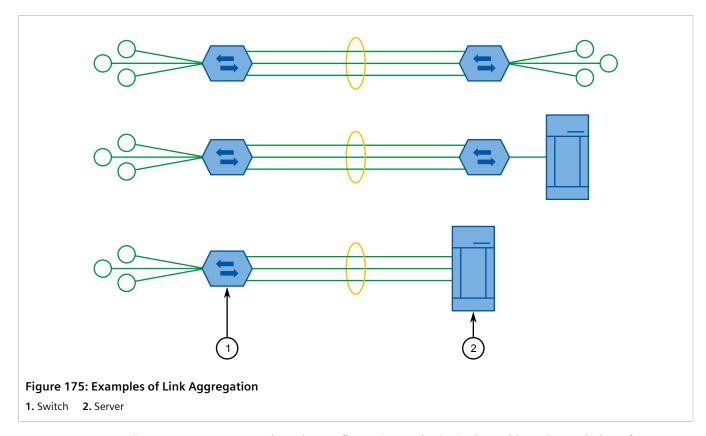
- Port Box
 tX Period Box
 quietPeriod Box
 reAuthEnabled Options
 reAuthPeriod Box
 reAuthMax Box
 suppTimeout Box
 serverTimeout Box
 maxReq Box
 Apply Button
 Reload Button
- 3. Configure the following parameter(s) as required:

Parameter	Description
Port	Synopsis: 1 to maximum port number Default: 1
	The port number as seen on the front plate silkscreen of the switch.
txPeriod	Synopsis: 1 to 65535 Default: 30 s
	The time to wait for the Supplicant's EAP Response/Identity packet before retransmitting an EAP Request/Identity packet.
quietPeriod	Synopsis: 0 to 65535 Default: 60 s
	The period of time not to attempt to acquire a Supplicant after the authorization session failed.
reAuthEnabled	Synopsis: { No, Yes } Default: No
	Enables or disables periodic re-authentication.
reAuthPeriod	Synopsis: 60 to 86400 Default: 3600 s
	The time between periodic re-authentication of the Supplicant.
reAuthMax	Synopsis: 1 to 10 Default: 2
	The number of re-authentication attempts that are permitted before the port becomes unauthorized.
suppTimeout	Synopsis: 1 to 300 Default: 30 s

Configuring IEEE 802.1X 247

Parameter	Description
	The time to wait for the Supplicant's response to the authentication server's EAP packet.
serverTimeout	Synopsis: 1 to 300 Default: 30 s
	The time to wait for the authentication server's response to the Supplicant's EAP packet.
maxReq	Synopsis: 1 to 10 Default: 2
	The maximum number of times to retransmit the authentication server's EAP Request packet to the Supplicant before the authentication session times out.

Click Apply.


Section 5.9

Managing Link Aggregation

Link aggregation, also referred to as port trunking or port bundling, provides the ability to aggregate or gather several Ethernet ports into one logical link (port trunk) with higher bandwidth. This allows for highly randomized load balancing between the aggregated links based on both the source and destination MAC addresses of the forwarded frames.

Link Aggregation can be used for two purposes:

- To obtain increased, linearly incremental link bandwidth.
- To improve network reliability by creating link redundancy. If one of the aggregated links fails, the switch will balance the traffic between the remaining links.

RUGGEDCOM ROS allows up to 15 port trunks to be configured on a single device, with each consisting of up to 8 ports.

NOTE

The maximum number of port trunks for each device depends on the number of ports available. At least two ports are required to configure a port trunk.

NOTE

The aggregated port with the lowest port number is called the Port Trunk Primary Port. Other ports in the trunk are called Secondary Ports.

CONTENTS

- Section 5.9.1, "Link Aggregation Concepts"
- Section 5.9.2, "Managing Port Trunks"

Section 5.9.1

Link Aggregation Concepts

The following section describes some of the concepts important to the implementation of link aggregation in RUGGEDCOM ROS.

CONTENTS

• Section 5.9.1.1, "Rules and Limitations"

- Section 5.9.1.2, "Link Aggregation and Layer 2 Features"
- Section 5.9.1.3, "Link Aggregation and Physical Layer Features"

Section 5.9.1.1

Rules and Limitations

The implementation of link aggregation must adhere to the following rules and limitations:

- Each port can belong to only one port trunk at a time.
- A port mirroring target port can not be member of a port trunk. However, a port mirroring source port can be member of a port trunk.
- If only one QinQ port is supported by the switch, the port working in QinQ mode cannot be a secondary member of a port trunk.
- DHCP Relay Agent Client port cannot be a member of a port trunk.
- Load balancing between the links of a bundle is randomized and may not be ideal. For instance, if three 100 Mbs links are aggregated, the resulting bandwidth of the port trunk may not be precisely 300 Mbs.
- A Static MAC Address should not be configured to reside on an aggregated port it may cause some frames destined for that address to be dropped.
- A secure port cannot be a member of a port trunk.
- The IEEE 802.3ad Link Aggregation standard requires all physical links in the port trunk to run at the same speed and in full-duplex mode. If this requirement is violated, the performance of the port trunk will drop.
 - The switch will raise an appropriate alarm, if such a speed/duplex mismatch is detected.
- STP dynamically calculates the path cost of the port trunk based on its aggregated bandwidth. However, if the aggregated ports are running at different speeds, the path cost may not be calculated correctly.
- Enabling STP is the best way for handling link redundancy in switch-to-switch connections composed of more than one physical link. If STP is enabled and increased bandwidth is not required, Link Aggregation should not be used because it may lead to a longer fail-over time.

Section 5.9.1.2

Link Aggregation and Layer 2 Features

Layer 2 features (e.g. STP, VLAN, CoS, Multicast Filtering) treat a port trunk as a single link.

- If the Spanning Tree Protocol (STP) puts an aggregated port in blocking/forwarding, it does it for the whole port trunk.
- If one of the aggregated ports joins/leaves a multicast group (e.g. via GMRP), all other ports in the trunk will join/leave too.
- Any port configuration parameter (e.g. VLAN, CoS) change will be automatically applied to all ports in the trunk.
- Configuration/status parameters of the secondary ports will not be shown and their port numbers will be simply listed next to the primary port number in the appropriate configuration/status UI sessions.
- When a secondary port is added to a port trunk, it inherits all the configuration settings of the primary port. When this secondary port is removed from the port trunk, the settings it had previous to the aggregation are restored.

250 Rules and Limitations

Section 5.9.1.3

Link Aggregation and Physical Layer Features

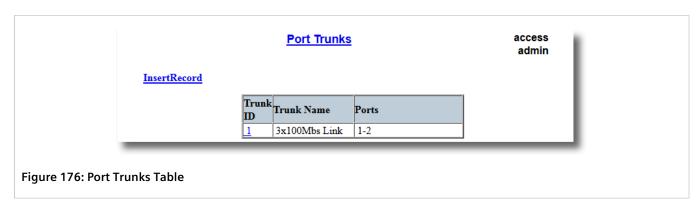
Physical layer features (e.g. physical link configuration, link status, rate limiting, Ethernet statistics) will still treat each aggregated port separately.

- Physical configuration/status parameters will NOT be automatically applied to other ports in the trunk and will be displayed for each port as usual.
- Make sure that only ports with the same speed and duplex settings are aggregated. If auto-negotiation is used, make sure it is resolved to the same speed for all ports in the port trunk.
- To get a value of an Ethernet statistics counter for the port trunk, add the values of the counters for all ports in the port trunk.

Section 5.9.2

Managing Port Trunks

The following section describes how to configure and manage port trunks.


CONTENTS

- Section 5.9.2.1, "Viewing a List of Port Trunks"
- Section 5.9.2.2, "Adding a Port Trunk"
- Section 5.9.2.3, "Deleting a Port Trunk"

Section 5.9.2.1

Viewing a List of Port Trunks

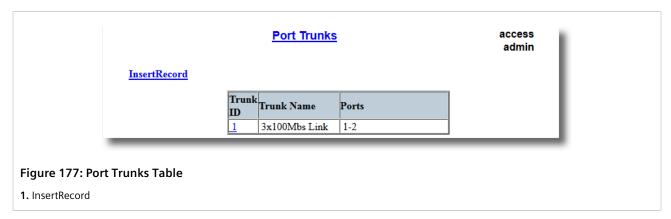
To view a list of port trunks configured on the device, navigate to *Link Aggregation* » *Configure Port Trunks* . The **Port Trunks** table appears.

If port trunks have not been configured, add trunks as needed. For more information, refer to Section 5.9.2.2, "Adding a Port Trunk".

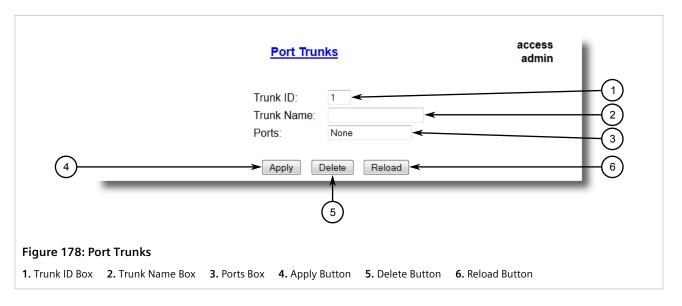
Section 5.9.2.2

Adding a Port Trunk

To add a port trunk, do the following:


IMPORTANT!

The port trunk must be properly configured on both sides of the aggregated link. In switch-to-switch connections, if the configuration of both sides does not match (i.e. some ports are mistakenly not included in the port trunk), it will result in a loop. Therefore, the following procedure is strongly recommended to configure a port trunk:


- a. Disconnect or disable all the ports involved in the configuration, i.e. either being added to or removed from the port trunk.
- b. Configure the port trunk on both switches.
- c. Double-check the port trunk configuration on both switches.
- Reconnect or re-enable the ports.

If the port trunk is being configured while the ports are not disconnected or disabled, the port will be automatically disabled for a few seconds.

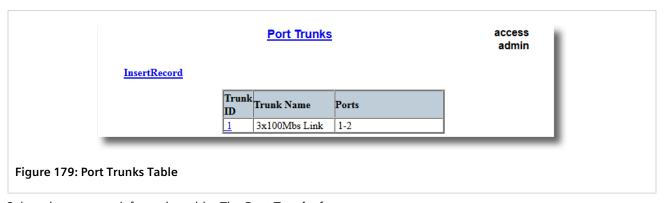
Navigate to Link Aggregation » Configure Port Trunks . The Port Trunks table appears.

2. Click InsertRecord. The Port Trunks form appears.

252 Adding a Port Trunk

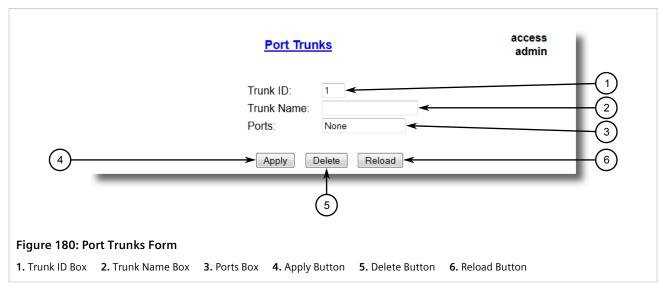
3. Configure the following parameter(s) as required:

Parameter	Description
Trunk ID	Synopsis: 1 to 2 Default: 1
	Trunk number. It doesn't affect port trunk operation in any way and is only used for identification.
Trunk Name	Synopsis: Any 19 characters
	Provides a description of the aggregated link purpose.
Ports	Synopsis: Any combination of numbers valid for this parameter Default: None
	List of ports aggregated in the trunk.


4. Click Apply.

Section 5.9.2.3

Deleting a Port Trunk


To delete a port trunk, do the following:

1. Navigate to *Link Aggregation* » *Configure Port Trunks* . The **Port Trunks** table appears.

2. Select the port trunk from the table. The **Port Trunks** form appears.

Deleting a Port Trunk 253

Click Delete.

Section 5.10

Managing Serial Protocols

RUGGEDCOM ROS supports the use of numerous serial protocols to control serial port communication.

Serial interface bit rates can be configured in the range of 100 to 230400 bps. A *turnaround* time is supported to enforce minimum times between successive messages transmitted via a serial port.

CAUTION!

Configuration hazard – risk of communication disruption. Changing the ID for the management VLAN will break any active Raw Socket TCP connections. If this occurs, reset all serial ports.

NOTE

Ports 1025 through 5000 are used by the internal IP stack and should not be configured as listening ports for any serial protocol.

NOTE

To transport protocol messages through the network, either TCP/IP or UDP/IP transport can be used. The exception is the TCPModbus protocol, which cannot be employed over UDP.

NOTE

The setting of Differentiated Services Code Point (DSCP) in the IP header is provided for TCP/IP and UDP/IP transport in the egress direction only.

NOTE

Debugging facilities include statistics and tracing information on a serial port and/or network transport.

ROS supports the following serial protocols:

254 Managing Serial Protocols

Protocol	Features
Raw Socket	 Transport streams of characters from one serial port to another over an IP network XON/XOFF flow control Configurable local and remote IP port numbers per serial port Many-to-many UDP transactions TCP accept or request connection mode Point-to-point TCP connection mode and a broadcast connection mode, in which up to 64 remote servers may connect to a central server Packetization and sending data on a specific packet size, a specific character, or up on a timeout Configurable turnaround time to enforce minimum time between messages sent out the serial port
DNP Over Raw Socket	Packetization and sending data per the DNP v3.0 protocol specification
Preemptive Raw Socket	 Transport streams of characters from one serial port to another over an IP network XON/XOFF flow control for a permanent connection Configurable local and remote IP port numbers per serial port TCP accept or request one permanent connection on a configured IP address TCP accept one dynamic connection from a different IP address Dynamic connection activity timer controlled Packetization triggered by a specific packet size, a specific character, or a timeout for each connection
Modbus	 Operation in TCPModbus Server Gateway or Client Gateway mode Multi-master mode on the server Configurable behavior for sending exceptions Full control over packetization timers A configurable Auxiliary IP port number for applications that do not support port 502
DNP	 Packetization per the protocol specification CRC checking in message headers received from the serial port Local and remote source address learning
Microlok	Packetization per the protocol specification
WIN	 Packetization per the protocol specification CRC checking in message headers received from the serial port
TIN	 Support for two TIN protocol modes Packetization per the protocol specification CRC checking in message headers received from the serial port Remote source address learning, specific for the two different modes
Telnet Com Port	 Raw Socket protocol with additional support for the serial break signal Compliant with RFC2217 [http://tools.ietf.org/html/rfc2217]

CONTENTS

- Section 5.10.1, "Encapsulation Concepts"
- Section 5.10.2, "Modbus Concepts"
- Section 5.10.3, "DNP, Microlok, TIN and WIN Concepts"
- Section 5.10.4, "Force Half-Duplex (HD) Operation Mode"
- Section 5.10.5, "Configuring a Serial Port"
- Section 5.10.6, "Configuring the Raw Socket Protocol"

Managing Serial Protocols 255

- Section 5.10.7, "Configuring the Preemptive Raw Socket Protocol"
- Section 5.10.8, "Configuring a TCP Modbus Server"
- Section 5.10.9, "Configuring a TCP Modbus Client"
- Section 5.10.10, "Configuring the WIN and TIN Protocols"
- Section 5.10.11, "Configuring the MicroLok Protocol"
- Section 5.10.12, "Configuring the DNP Protocol"
- Section 5.10.13, "Configuring the DNP Over Raw Socket Protocol"
- Section 5.10.14, "Configuring the Mirrored Bits Protocol"
- Section 5.10.15, "Configuring the Telnet Com Port Protocol"
- Section 5.10.16, "Managing Raw Socket Remote Hosts"
- Section 5.10.17, "Managing Device Addresses"
- Section 5.10.18, "Viewing the TIN Dynamic Address Table"
- Section 5.10.19, "Viewing Statistics for Serial Protocol Links"
- Section 5.10.20, "Viewing Statistics for Serial Protocol Connections"
- Section 5.10.21, "Viewing Serial Port Statistics"
- Section 5.10.22, "Clearing Statistics for Specific Serial Ports"
- Section 5.10.23, "Resetting Serial Ports"

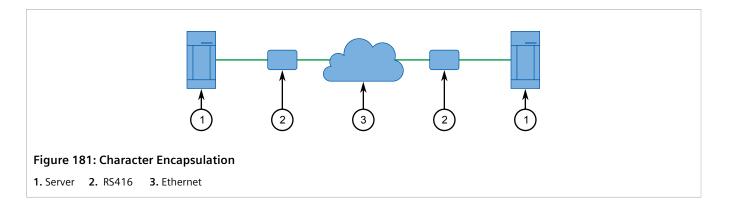
Section 5.10.1

Encapsulation Concepts

The following section describes some of the concepts related to encapsulation and the implementation of serial protocols in ROS.

CONTENTS

- Section 5.10.1.1, "Raw Socket Character Encapsulation"
- Section 5.10.1.2, "RTU Polling"
- Section 5.10.1.3, "Broadcast RTU Polling"
- Section 5.10.1.4, "Preemptive Raw Socket"
- Section 5.10.1.5, "Port Redirectors"
- Section 5.10.1.6, "Message Packetization"


Section 5.10.1.1

Raw Socket Character Encapsulation

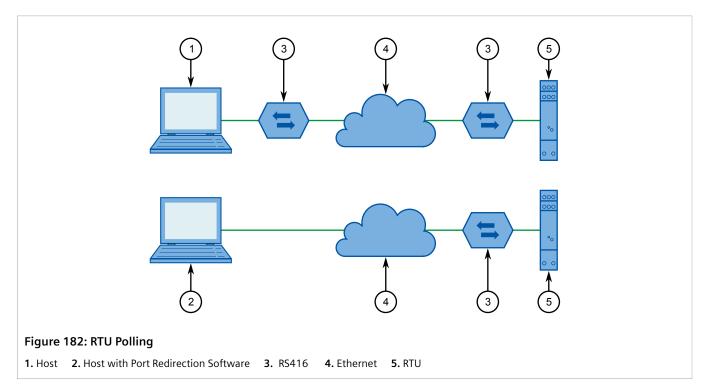
Character encapsulation is used any time a stream of characters must be reliably transported across a network.

Character streams can be created by any type of device. The baud rates supported at either server need not be the same. If configured, the server will obey XON/XOFF flow control from the end devices.

256 Encapsulation Concepts

Section 5.10.1.2

RTU Polling


Remote Terminal Unit (RTU) polling applies to a variety of RTU protocols, including Modbus ASCII and DNP.

NOTE

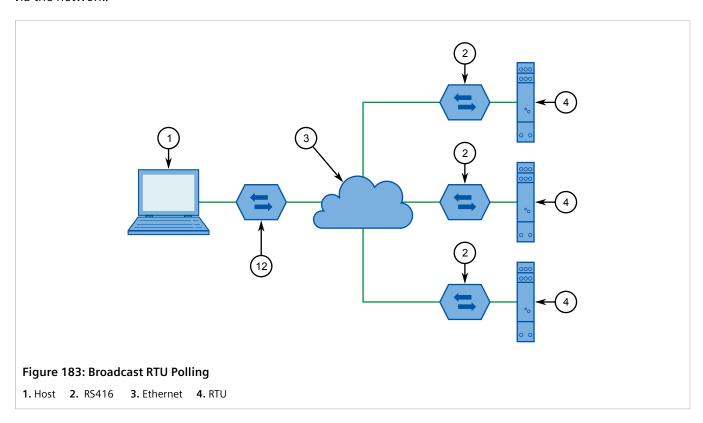
If a given device or service employs a serial protocol that is supported by RUGGEDCOM ROS, it is advised to configure RUGGEDCOM ROS to use that particular protocol, rather than another one (e.g. RawSocket) that can be made to be (partly) compatible.

Host equipment may connect directly to a server via a serial port, may use a port redirection package, or may connect natively to the (Ethernet/IP) network.

If a server is used at the host end, it will wait for a request from the host, encapsulate it in an IP Datagram and send it to the remote side. There, the remote server will forward the original request to the RTU. When the RTU replies, the server will forward the encapsulated reply back to the host end.

RTU Polling 257

The server maintains configurable timers to help decide if replies and requests are complete.


The server also handles the process of line-turnaround when used with RS485. It is important to note that unsolicited messages from RTUs in half-duplex mode cannot be supported reliably. Message processing time includes sending a message over RS485, a packtimer and a turnaround time. To handle half-duplex mode reliably, the turnaround time must be configured long enough to allow an expected response to be received. Any other messages will not be sent to the RS485 line within the processing time. If such a message is received from the network, it will be delayed. It is up to the application to handle polling times on ports properly.

Section 5.10.1.3

Broadcast RTU Polling

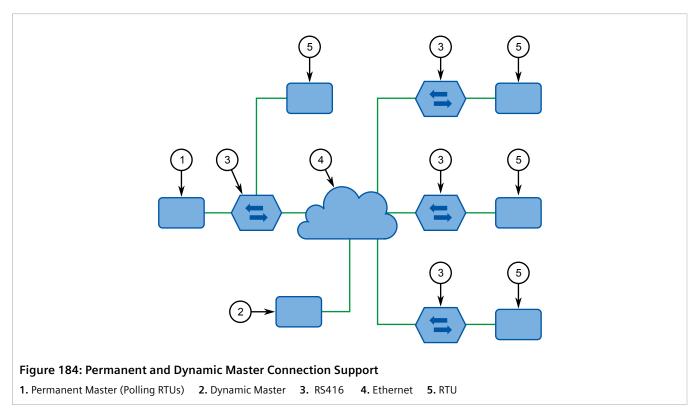
Broadcast polling allows a single host-connected server to distribute a polling stream to a number of remote Remote Terminal Units (RTUs).

The host equipment connects via a serial port to a server. Up to 64 remote servers may connect to the host server via the network.

Initially, the remote servers establish connections with the host server. The host server is configured to accept a maximum of three incoming connections.

The host sequentially polls each RTU. Each poll received by the host server is forwarded (i.e. broadcast) to all of the remote servers. All RTUs receive the request and the appropriate RTU issues a reply. The reply is returned to the host server, where it is forwarded to the host.

258 Broadcast RTU Polling


Section 5.10.1.4

Preemptive Raw Socket

Most SCADA protocols are master/slave and support only a single master device. Preemptive Raw Socket offers the ability to have multiple masters communicate to Remote Terminal Units (RTUs) or Intelligent Electronic Devices (IEDs) in a protocol-independent manner. For example, the SCADA master polling device is the normal background process collecting data from the RTUs/IEDs on a permanent TCP connection. Occasionally, RTU/IED maintenance configuration or control may be required from a different master (on a dynamic TCP connection).

This feature allows a dynamic master to automatically preempt a permanent master. A connection request from the dynamic master would cause the permanent master to be suspended. Either closing the dynamic connection or timing out on data packets causes the permanent master session to be resumed.

The illustrates the scenario where all RTUs are connected to Preemptive Raw Socket ports of RS416 devices.

The permanent master is connected to the Raw Socket port of the RS416. Raw Socket is configured to be connected to all Preemptive Raw Socket ports where polled RTUs are connected (multiple incoming connection). Preemptive Raw Socket configuration on all ports connected to RTUs will point to that Raw Socket as a permanent master (IP address and Remote IP port).

A dynamic master can establish a connection to any Preemptive Raw Socket port at any time and temporarily suspend the polling process (until the dynamic connection is cleared or times out).

Section 5.10.1.5

Port Redirectors

Port redirectors refer to software packages that emulate the existence of serial communications ports. The redirector software creates and makes these *virtual* serial ports available, providing access to the network via a TCP connection.

Preemptive Raw Socket 259

When a software package uses one of the virtual serial ports, a TCP connection request is sent to a remote IP address and IP port that have been programmed in to the redirector. Some redirectors also offer the ability to accept connection requests.

The Raw Socket protocol is the one most frequently used on the RS416 for connection to serial port redirection software. The Telnet Com Port protocol may be used in place of Raw Socket if the redirection software on the other end of the connection also supports the serial break command, as defined in RFC 2217. In Telnet Com Port mode, a serial break received from the remote RFC 2217 compatible client will be transmitted as a serial break on the configured serial port, and a break signal received on the serial port will be transmitted as an RFC 2217 compatible break signal to the remote client. Note that a break signal on a serial port is defined as a condition where the serial data signal is in *space* or logic zero state for longer than the time needed to transmit one whole character, including start and stop bits.

Section 5.10.1.6

Message Packetization

The serial server buffers received characters into packets to improve network efficiency and demarcate messages.

The server uses three methods to decide when to packetize and forward the buffered characters to the network:

- Packetize on a specific character
- · Packetize on timeout
- Packetize on a specific packet size

If configured to packetize on a specific character, the server will examine each received character and will packetize and forward upon receiving the configured character. The character is usually a <CR> or an <LF> character, but may be any 8 bit (0 to 255) value.

If configured to packetize on a timeout, the server will wait for a configurable time after receiving a character before packetizing and forwarding. If another character arrives during the waiting interval, the timer is restarted. This method allows characters transmitted as part of an entire message to be forwarded to the network in a single packet, when the timer expires after receiving the very last character of the message.

NOTE

Some polling software packages that perform well under DOS have been known to experience problems when used with Windows-based software or port redirection software. If the operating system does not expedite the transmission of characters in a timely fashion, pauses in transmission can be interpreted as the end of a message. Messages can be split into separate TCP packets. A locally attached server or a port redirector could packetize and forward the message incorrectly. Solutions include tuning the operating system to prevent the problem or increasing the packetizing timer.

Finally, the server will always packetize and forward on a specific packet size, specifically when the number of characters received from the serial port reaches a configured value.

260 Message Packetization

Section 5.10.2

Modbus Concepts

The following section describes some of the concepts related to Modbus and the implementation of serial protocols in ROS.

CONTENTS

- Section 5.10.2.1, "Modbus Server Client Applications"
- Section 5.10.2.2, "Modbus TCP Performance Determinants"
- Section 5.10.2.3, "Turnaround Delay"

Section 5.10.2.1

Modbus Server Client Applications

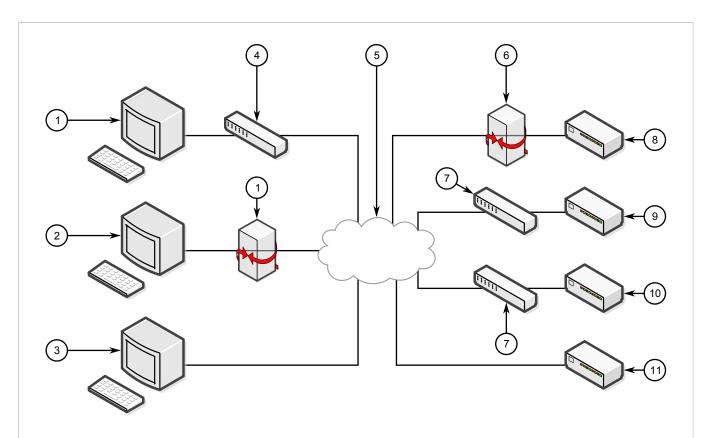
Modbus Server and Client applications are used to transport Modbus requests and responses across IP networks.

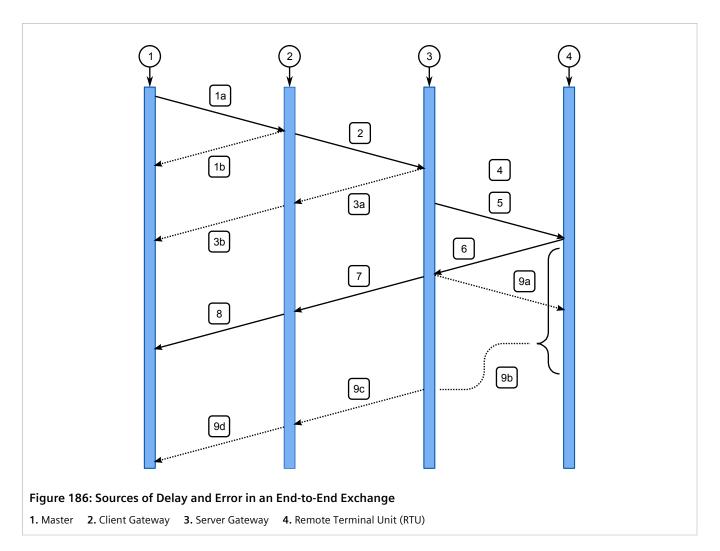
The Modbus Client application accepts Modbus polls from a master and determines the IP address of the corresponding Remote Terminal Unit (RTU). The client then encapsulates the message in Transmission Control Protocol (TCP), respecting the Modbus TCP protocol, and forwards the frame to a Server Gateway or native Modbus TCP RTU. Returning responses are stripped of their TCP headers and issued to the master.

The Modbus Server application accepts TCP encapsulated Modbus TCP messages from Client Gateways and native masters. After removing the TCP headers, the messages are issued to the RTU. Responses are TCP encapsulated and returned to the originator.

The following illustrates a complex network of Client Gateways, Server Gateways and native TCPModbus devices.

Modbus Concepts 261




Figure 185: Modbus Client and Server

Master (Polling RTUs 1 and 2)
 Master (Polling RTUs 1, 2 and 4)
 Native Modbus TCP Master (Polling All RTUs)
 RS416 Client
 RUGGEDCOM Media Converter Client Gateway
 RUGGEDCOM Media Converter Server Gateway
 RS416 Client
 RUGGEDCOM Media Converter Server Gateway
 RS416 Client
 RS416 Client
 RS416 Client
 RUGGEDCOM Media Converter Server Gateway
 RS416 Client
 RS416 Client
 RS416 Client
 RS416 Client
 RUGGEDCOM Media Converter Server Gateway
 RS416 Client
 RS416

Section 5.10.2.2

Modbus TCP Performance Determinants

The following illustrates the possible sources of delay and error in an end-to-end Modbus TCP exchange.

In step 1a, the master issues a request to the Client Gateway. If the Client Gateway validates the message, it will forward it to the network as step 2.

The Client Gateway can respond immediately in certain circumstances, as shown in step 1b. When the Client Gateway does not have a configuration for the specified RTU, it will respond to the master with an exception using Modbus TCP exception code 11 ("No Path"). When the Client Gateway has a configured RTU but the connection is not yet active, it will respond to the master with an exception using Modbus TCP exception code 10 ("No Response"). If the forwarding of Modbus TCP exceptions is disabled, the client will not issue any responses.

Steps 3a and 3b represent the possibility that the Server Gateway does not have a configuration for the specified RTU. The Server Gateway will always respond with a type 10 ("No Path") in step 3a, which the client will forward in step 3b.

Step 4 represents the possibility of a queuing delay. The Server Gateway may have to queue the request while it awaits the response to a previous request. The worst case occurs when a number of requests are queued for an RTU that has gone off-line, especially when the server is programmed to retry the request upon failure.

Steps 5-8 represent the case where the request is responded to by the RTU and is forwarded successfully to the master. It includes the "think time" for the RTU to process the request and build the response.

Step 9a represents the possibility the RTU is off-line, the RTU receives the request in error or that the Server Gateway receives the RTU response in error. The Server Gateway will issue an exception to the originator. If sending exceptions has not been enabled, the Server Gateway will not send any responses.

Section 5.10.2.3

Turnaround Delay

The Modbus protocol uses the concept of a *turnaround delay* in conjunction with broadcast messages. When the host sends a broadcast message (that does not invoke an RTU response), it waits for a turnaround delay time. This delay makes sure the RTU has enough time to process the broadcast message before it receives the next poll.

When polling is performed over TCP, network delays may cause the broadcast and next poll to arrive at the remote server at the same time. Configuring a turnaround delay at the server will enforce a minimum separation time between each message transmitted via the serial port.

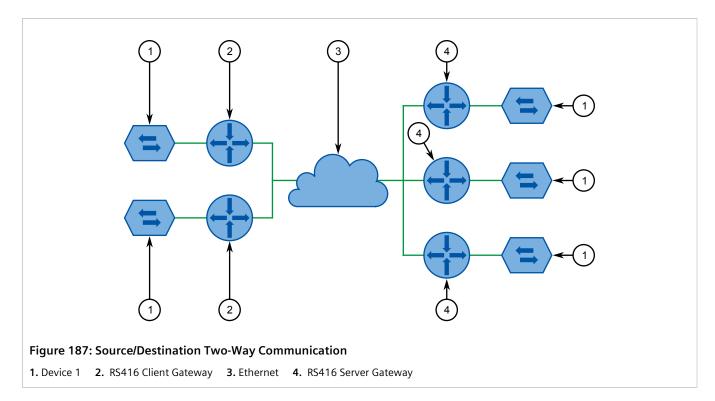
Note that turnaround delays do not need to be configured at the host computer side and may be disabled there.

Section 5.10.3

DNP, Microlok, TIN and WIN Concepts

The following section describes some of the concepts related to Distributed Network Protocol (DNP), Microlok, TIN and Wireless Intelligent Network (WIN) as they relate to the implementation of serial protocols in ROS.

CONTENTS


- Section 5.10.3.1, "DNP, Microlok, TIN and WIN Applications"
- Section 5.10.3.2, "The Concept of Links"
- Section 5.10.3.3, "Address Learning for TIN"
- Section 5.10.3.4, "Address Learning for DNP"
- Section 5.10.3.5, "Broadcast Messages"
- Section 5.10.3.6, "Transport Protocols"

Section 5.10.3.1

DNP, Microlok, TIN and WIN Applications

RS416 supports a variety of protocols that specify source and destination addresses. A destination address specifies which device should process the data, and the source address specifies which device sent the message. Having both destination and source addresses satisfies at least one requirement for peer-to-peer communication because the receiver knows where to direct responses. Each device supporting one of these protocols must have a unique address within the collection of devices sending and receiving messages to and from each other.

264 Turnaround Delay

Even if the protocol can distinguish between the server and client sides, ROS does not. Both sides need to know where on the network a given destination device is. If a message is received from the network, the destination address must point to the serial port on the receiving server. If a message is received from the local serial port, the destination address must point to the IP address of the server where the addressed device is connected.

Section 5.10.3.2

The Concept of Links

A communication link is established between two IP addresses. The addressing is described below:

- The remote address is the source IP address in a message received over the network, and also the destination address of a message received from a serial port and transmitted on the network.
- The *local address* is the destination IP address in a message received over the network, and also the source address of a message received from a serial port and transmitted on the network.

For each link, a statistical record will be available to the user if link statistics collection is enabled in the protocol configuration.

Section 5.10.3.3

Address Learning for TIN

Address learning is implemented for the TIN protocol and learned entries are viewable in the TIN Dynamic Device Address Table. For more information about viewing the Dynamic Device Address Table Section 5.10.18, "Viewing the TIN Dynamic Address Table".

The Concept of Links 265

» Address Learning for TIN Mode 1

When a message with an unknown source address is received from the IP network, it is learned on the IP address and IP port. If a message with the same source address is received from another IP address and/or IP port, the address will be relearned.

The aging time will be reset whenever a unicast TIN message is received from a particular source address.

The address will be removed from the table when the aging time expires.

» Address Learning for TIN Mode 2

When a message with an unknown source address is received from the IP network, it is learned on the IP address. If a message with the same source address is received from another IP address and/or IP port, it will be learned again, and another entry will be created in the Dynamic Device Address Table (TIN addresses will be duplicated).

Aging time will be reset whenever a unicast TIN message is received from a particular source address.

The address will be removed from the table when the aging time expires.

Section 5.10.3.4

Address Learning for DNP

For the DNP protocol, both the local and remote concepts of address learning are implemented. Source addresses are learned from messages received from the network for specific IP Addresses. Source addresses from messages received from the serial ports are learned for specific local serial ports.

Although the DNP protocol can be configured for TCP or UDP transport, UDP transport is used during the address learning phase as it supports all types of IP addresses: unicast, multicast and broadcast.

When a message with an unknown source address is received from the local serial port, the address is learned on that port and the local IP address.

When a message with an unknown source address is received from the IP network, on IP interface that is configured as learning interface, it is learned on the IP address of the sender and serial port is unknown.

When a message with an unknown destination address is received from a serial port, a UDP broadcast datagram is transmitted on the UDP port configured for the DNP protocol. The IP interface that transmits this broadcast is the one configured as the learning interface.

When a message with an unknown destination address is received from the IP network, it is sent to all DNP serial ports.

All learned addresses will be kept in the Device Address Table until they are active. They will also be saved in non-volatile memory and recovered if the device reboots, so the learning process does not have to be repeated because of, for example, an accidental power interruption.

The aging timer is reset whenever a message is received or sent to the specified address.

This concept makes the DNP protocol configurable with the minimum number of parameters: an IP port, a learning IP interface and an aging timer.

266 Address Learning for DNP

Section 5.10.3.5

Broadcast Messages

>> DNP Broadcast Messages

Addresses 65521 through 65535 are DNP 3.0 broadcast addresses. ROS supports broadcasts sending messages with those destination addresses received from serial ports to all IP Addresses found in the Device Address Table (either learned or statically configured). When a DNP broadcast message is received from the IP network, it will be distributed to all ports configured to support the DNP protocol.

>> TIN Broadcast Messages

TIN broadcast messages can be received only from devices connected to the serial ports.

>> TIN Mode 1 Broadcast Messages

These messages will be sent to all TIN Address/Ports found in the Dynamic Address Table.

>> TIN Mode 2 Broadcast Messages

These messages will be sent according to the configuration: to all TIN addresses on every IP address found in the Dynamic Address Table and/or to all Wayside Data Radio IP addresses found in the Static Device Address Table.

Section 5.10.3.6

Transport Protocols

For supported protocols, with exception of Modbus, either UDP datagram or TCP connection packets can be used to transport protocol data over the IP network. The Modbus data can be transported only using TCP connection, following Modbus TCP protocol. UDP supports all the addressing modes of IP – unicast, multicast and broadcast. Therefore, if address learning is enabled, UDP broadcasts will be sent across the network.

>>> Transport for Raw Socket

The TCP transport for RawSocket requires configuration of connection request direction, remote IP address, and IP port for listening or requesting outgoing TCP connections. Only one outgoing connection can be requested, but up to 64 connections can be accepted if the port is configured to listen to incoming connection requests. For ports configured to request connections and to listen to incoming connection requests, only one connection can become active.

ROS will attempt to connect periodically if the first attempt fails and after a connection is broken.

ROS can be used to connect to any device supporting TCP (e.g. a host computer's TCP stack or a serial application on a host using port redirection software).

If Raw Socket ports are configured to use UDP for transport, up to 64 remote hosts can communicate with devices connected to local serial ports. Data in UDP packets from remote hosts configured to communicate with a particular serial port will be forwarded to that port, as long as the serial port is configured to listen on the UDP port to which the remote hosts are transmitting. Data received from the serial port will be forwarded to all remote hosts configured to communicate with that serial port.

Broadcast Messages 267

The Raw Socket mechanism transparently passes data. It does not attempt to determine where to demarcate packets in the data received from connected devices. Given this transparency, any protocol can be encapsulated within Raw Socket.

>> Transport for Protocols with Defined Links

All protocols with defined links (source and destination addresses are part of protocol) can use either TCP or UDP to transport data.

The Device Address Table contains addresses and locations of devices configured (or learned) for specific protocols.

If a protocol is configured to use TCP to transport data, the server will start listening to the IP Port configured for the protocol. At the same time, TCP connections will be placed to all IP addresses where devices for that protocol are attached. ROS will keep only one connection open to one IP Address on one IP Port.

>> Use of Differentiated Services Code Point (DSCP)

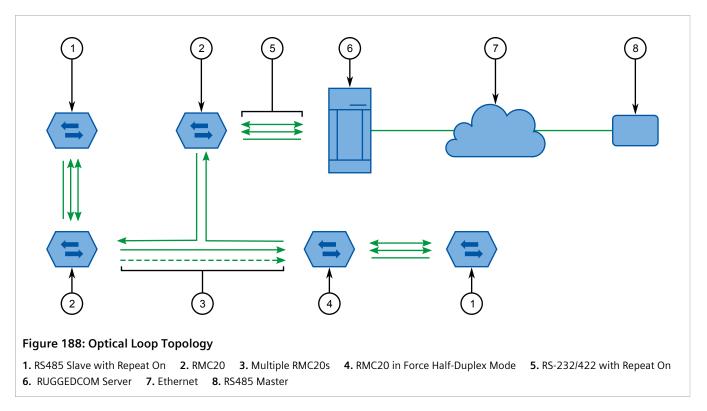
ROS has the ability to set the DS byte in the IP header of outbound IP packets. The value can be configured on an ingress serial port, and/or for a protocol. Which value will be used depends on the protocol configured on a port and the transport configured for the particular protocol.

UDP/IP transport supports a DSCP setting per serial port or per protocol. If a configuration contains a DSCP setting per serial port as well as per protocol then the system will use whichever setting has a higher DSCP value.

TCP/IP transport supports per protocol DSCP setting. RawSocket and Modbus Server protocol properties are configured per port as well, so they always support DSCP setting per serial port.

Section 5.10.4

Force Half-Duplex (HD) Operation Mode

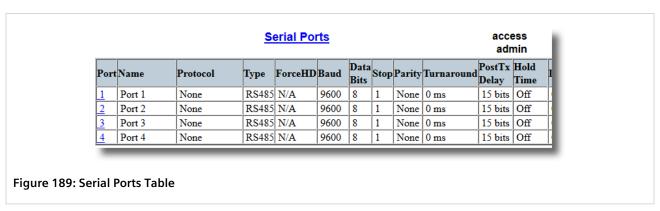

A force half-duplex mode of operation allows use of extensions to create echo loops, similar for example to an optical loop topology that utilizes the RUGGEDCOM RMC20 repeat mode function.

NOTE

If a port is set to force half-duplex mode, all data received while data is being sent will be discarded. To set this mode, the port must work natively in full-duplex mode.

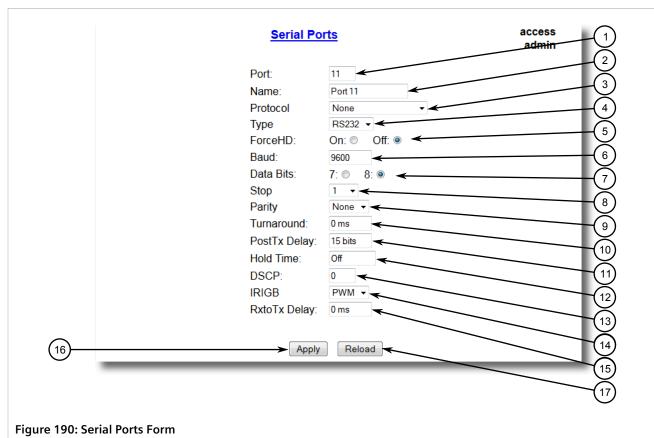
The following illustrates a topology that utilizes the RMC20 repeat mode function.

The repeat function will optically retransmit any data received on the optical receiver, in addition to any connected serial devices. As a result, any data transmitted from the master will be retransmitted optically to all the slaves.


This topology can be used for RS-232, RS485, or RS422 multi-drop networks. In all cases, all slaves have the repeat function (DIP position 4) ON, while the one connected to the RUGGEDCOM RMC30 is configured with the repeat function OFF. The port used on the RMC30 must be in full-duplex mode, while the <code>ForceHD</code> (Force Half-Duplex) parameter must be turned ON.

Section 5.10.5

Configuring a Serial Port


To configure a serial port, do the following:

Navigate to Serial Protocols » Configure Serial Ports. The Serial Ports table appears.

2. Select a serial port. The **Serial Ports** form appears.

Configuring a Serial Port 269

1. Port Box 2. Name Box 3. Protocol List 4. Type List 5. ForceHD Options 6. Baud Box 7. Data Bits Options 8. Stop List 9. Parity List 10. Turnaround Box 11. PostTx Delay Box 12. Hold Time Box 13. DSCP Box 14. IRIGB Box 15. RxtoTx Delay Box **16.** Apply Button **17.** Reload Button

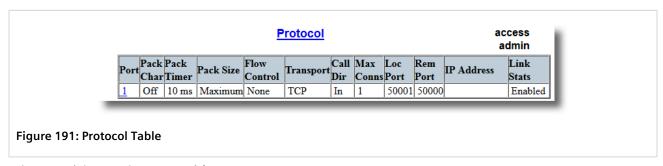
3. Configure the following parameter(s) as required:

Parameter	Description
Port	Synopsis: 1 to maximum port number Default: 1 The port number as seen on the front plate silkscreen of the switch.
Name	Synopsis: Any 15 characters Default: Port 1 A descriptive name that may be used to identify the device connected on that port.
Protocol	Synopsis: { None, RawSocket, ModbusServer, ModbusClient, DNP, DNPRS, WIN, TIN, MicroLok, MirroredBits, PreemptRawSocket, TelnetComPort } Default: None The serial protocol supported on this serial port.
Туре	Synopsis: { RS-232, RS485, RS422 } Default: RS-232 The serial port interface type.
ForceHD	Synopsis: {On, Off}

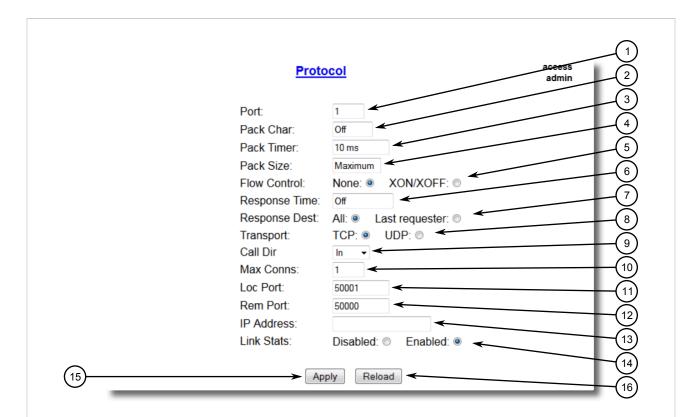
Configuring a Serial Port 270

Parameter	Description
	Default: Off
	Enables forcing half-duplex mode of operation. While sending data out of the serial port, all received data are ignored. This mode of operation is available only on ports that operate in full-duplex mode.
Baud	Synopsis: 100 to 230400 Default: 9600 The baud rate at which to operate the port.
Data Bits	Synopsis: {7,8} Default: 8 The number of data bits to operate the port with.
Stop	Synopsis: { 1, 1.5, 2 } Default: 1 The number of stop bits to operate the port with.
Parity	Synopsis: { None, Even, Odd } Default: None The parity to operate the port with.
Turnaround	Synopsis: 0 to 1000 Default: 0 ms The amount of delay (if any) to insert between the transmissions of individual messages via the serial port. For Modbus protocol this value must be non-zero. It represents the delay between sending a brodcast message and the next poll out of the serial port. Because RTUs do not reply to a broadcast, enough time must be ensured to process it.
PostTX Delay	Synopsis: 0 to 15 Default: 15 bits The number of data bits needed to generate required delay with configured baudrate after the last bit of the packet was sent out before serial UART starts listening to the RX line. This value is relevant for RS485 interfaces only.
Hold Time	Synopsis: 1 to 15000 ms or { off } Default: off The maximum amount of time, in milliseconds, that the serial packet can be held in the queue before being sent to the serial line. Time is measured from the moment the packet is received from the IP layer.
DSCP	Synopsis: 0 to 63 Default: 0 Sets the DS byte in the IP header. DS byte setting is supported in the egress direction only.
RXtoTX Delay	Synopsis: 0 ms to 1000 ms Default: 0 ms The minimum amount of time, in milliseconds, that the transmission of a new message delays after the last message is received through the serial port. This parameter is especially useful for half duplex transmission modes, such as the two-wire RS485 serial protocol. It provides the connected device with time to turn off its transmitter and to turn on its receiver, helping to ensure that the device receives the next message without data loss.
IRIGB	Synopsis: { PWM, PPS, Off }

Configuring a Serial Port 271


Parameter	Description
	Default: Off
	The operational mode of the IRIGB port. Possible options are PWM and PPS. PWM (Pulse Width Modulation) mode complies with IRIG Standard 200-04. IRIG-B format is configured in the IRIG form. PPS (Pulse per Second) provides a generic PPS interface to synchronize external devices.

Section 5.10.6


Configuring the Raw Socket Protocol

To configure the Raw Socket protocol for a serial port, do the following:

- 1. Make sure the serial port is configured to use the Raw Socket protocol. For more information, refer to Section 5.10.5, "Configuring a Serial Port".
- 2. Navigate to **Serial Protocols » Configure Protocols » Configure Raw Socket » Configure Protocol** . The **Protocol** table appears.

3. Select a serial port. The **Protocol** form appears.

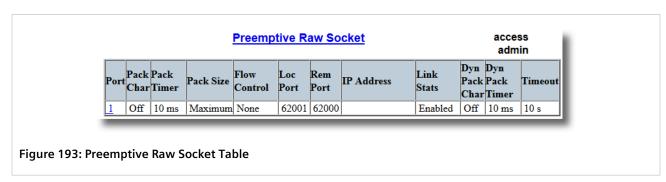
Figure 192: Protocol Form

- Port Box
 Pack Char Box
 Pack Timer Box
 Pack Size Box
 Flow Control Options
 Response Time Box
 Response Dest Options
 Transport Options
 Call Dir List
 Max Conns Box
 Loc Port Box
 Rem Port Box
 Rem Port Box
 Rem Port Box
 Rem Port Box
- 4. Configure the following parameter(s) as required:

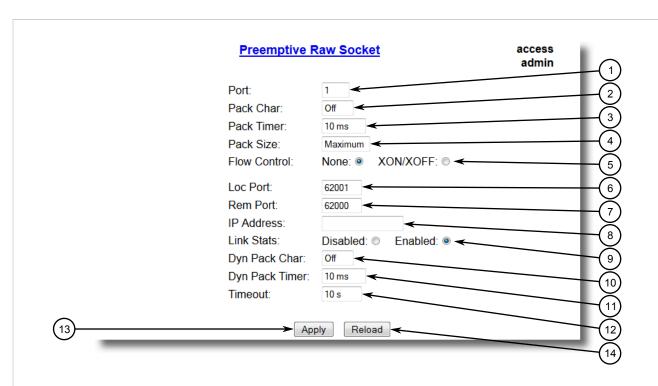
Parameter	Description
Port	Synopsis: 1 to maximum port number Default: 1 The port number as seen on the front plate silkscreen of the
	switch.
Pack Char	Synopsis: 0 to 255 or { Off } Default: Off
	The character that can be used to force forwarding of accumulated data to the network. If a packetization character is not configured, accumulated data will be forwarded based upon the packetization timeout (Pack Timer) parameter.
Pack Timer	Synopsis: 3 to 1000 Default: 10 ms
	The delay from the last received character until when data is forwarded.
Pack Size	Synopsis: 16 to 1400 or { Maximum } Default: Maximum
	The maximum number of bytes received from the serial port to be forwarded.

Parameter	Description
Flow Control	Synopsis: { None, XON/XOFF } Default: None The Flowcontrol setting for serial port.
Response Time	Synopsis: 50 to 60000 ms or { Off } Default: Off The maximum allowable time to wait for the response on serial
Response Dest	Synopsis: { All, Last requester } Default: All The destination where data received from serial port will be sent. If the value of Response Time is not 'Off', Response Dest will be
Transport	autmatically set to All when record is applied. Synopsis: { TCP, UDP } Default: TCP The network transport used to transport protocol data over IP network.
Call Dir	Synopsis: { In, Out, Both } Default: In The Call direction for TCP Tranport. • Whether to accept an incoming connection or • to place an outgoing connection or • to place outgoing connection and wait for incomming (both directions).
Max Conns	Synopsis: 1 to 64 Default: 1 The maximum number of allowed incoming TCP connections (for configurations using TCP).
Loc Port	Synopsis: 1024 to 65535 Default: 50000 The local IP port to use when listening for an incoming connection or UDP data.
Rem Port	Synopsis: 1 to 65535 Default: 50000 The remote TCP port to use when placing an outgoing connection. Note that this parameter is applicable only to TCP connections. If the transport protocol is set to UDP, the remote port is configured using the "Remote Hosts" table.
IP Address	Synopsis: ###.###.###.### where ### ranges from 0 to 255 or {} For direction: 'Out' (client), the remote IP address to use when placing an outgoing TCP connection request. For direction: 'In' (server), the local interface IP address on which to listen for connection requests. An empty string implies the default: the IP address of the management interface. For direction: 'Both' (client or server), the remote IP address to use when placing an outgoing TCP connection request. The listening interface will be chosen by matching mask. Note that this parameter is applicable only to TCP connections. If the transport protocol is set to UDP, the remote port is configured using the "Remote Hosts" table.
Link Stats	Synopsis: { Disabled, Enabled }

Parameter	Description
	Default: Enabled
	Enables link statistics collection for the protocol.


- 5. Click Apply.
- 6. Add one or more remote hosts. For more information, refer to Section 5.10.16.2, "Adding a Remote Host".

Section 5.10.7


Configuring the Preemptive Raw Socket Protocol

To configure the Preemptive Raw Socket protocol for a serial port, do the following:

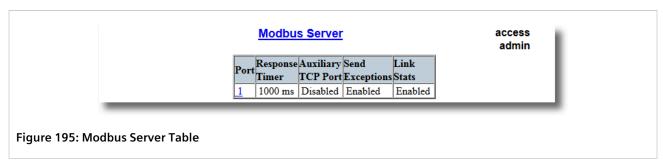
- 1. Make sure the serial port is configured to use the Preemptive Raw Socket protocol. For more information, refer to Section 5.10.5, "Configuring a Serial Port".
- 2. Navigate to **Serial Protocols » Configure Protocols » Configure Preemptive Raw Socket** . The **Preemptive Raw Socket** table appears.

3. Select a serial port. The **Preemptive Raw Socket** form appears.

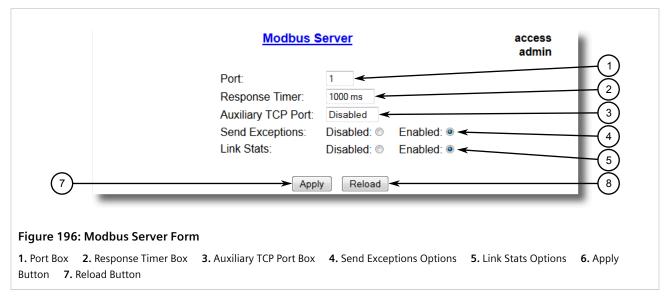
Figure 194: Preemptive Raw Socket Form

Port Box
 Pack Char Box
 Pack Timer Box
 Pack Size Box
 Flow Control Options
 Loc Port Box
 Rem Port Box
 IP Address Box
 Link Stats Options
 Options
 Dyn Pack Char Box
 Dyn Pack Timer Box
 Timeout Box
 Apply Button
 Reload Button

Parameter	Description
Pack Size	Synopsis: 16 to 1400 or { Maximum } Default: Maximum The maximum number of bytes received from serial port to be forwarded.
Dyn Pack Char	Synopsis: 0 to 255 or { Off } Default: Off The character that can be used to force forwarding of accumulated data to the network for connection to dynamic master. If a packetization character is not configured, accumulated data will be forwarded based upon the packetization timeout parameter.
Loc Port	Synopsis: 1 to 65535 Default: 62001 The local IP port to use when listening for an incoming connection or UDP data.
Rem Port	Synopsis: 1 to 65535 Default: 62000 The remote TCP port to use when placing an outgoing connection.
Port	Default: 1


Parameter	Description
	The port number as seen on the front plate silkscreen of the switch.
Pack Char	Synopsis: 0 to 255 or { Off } Default: Off
	The character that can be used to force forwarding of accumulated data to the network. If a packetization character is not configured, accumulated data will be forwarded based upon the packetization timeout parameter.
Pack Timer	Synopsis: 1 to 1000 ms Default: 10 ms
	The delay from the last received character until when data is forwarded. If parameter value is set to be less than 3 ms, there is not guaranty that it will be obeyed. It will be a minimum possible time in which device can react under certain data load.
Dyn Pack Timer	Synopsis: 1 to 1000 ms Default: 10 ms
	The delay from the last received character until when data is forwarded to the dynamic master.
Flow Control	Synopsis: { None, XON/XOFF } Default: None
	The Flowcontrol setting for serial port.
IP Address	Synopsis: ###.###.### where ### ranges from 0 to 255 or { <empty string="">}</empty>
	The permanent master's IP address. Empty string represents management IP address of this device.
Link Stats	Synopsis: { Disabled, Enabled } Default: Enabled
	Enables links statistics collection for protocol.
Timeout	Synopsis: 10 to 3600 s Default: 10 s
	The time in seconds that is allowed to dynamic master to be idle before it's connection is closed. The protocol listens to the socket open to dynamic master, and if no data are received within this time, connection will be closed.

Section 5.10.8


Configuring a TCP Modbus Server

To configure the TCP Modbus Server protocol for a serial port, do the following:

- 1. Make sure the serial port is configured to use the TCP Modbus Server protocol. For more information, refer to Section 5.10.5, "Configuring a Serial Port".
- 2. Navigate to **Serial Protocols » Configure Protocols » Configure Modbus Server**. The **Modbus Server** table appears.

3. Select a serial port. The **Modbus Server** form appears.

Parameter	Description
Port	Synopsis: 1 to maximum port number Default: 1
	The port number as seen on the front plate silkscreen of the switch.
Response Timer	Synopsis: 50 to 10000 Default: 1000 ms
	The maximum allowable time to wait for the RTU to start to respond.
Auxiliary TCP Port	Synopsis: 1024 to 65535 or { Disabled } Default: Disabled
	The TCP Modbus Server always listens on TCP port 502. It may be additionally configured to listen on this auxiliary port number, accepting calls on both.
Send Exceptions	Synopsis: { Disabled, Enabled } Default: Enabled
	This parameter enables/disables sending a TCP Modbus exception back to the master if a response has not been received from the RTU within expected time.
Link Stats	Synopsis: { Disabled, Enabled } Default: Enabled

Parameter	Description
	Enables link statistics collection for this protocol.

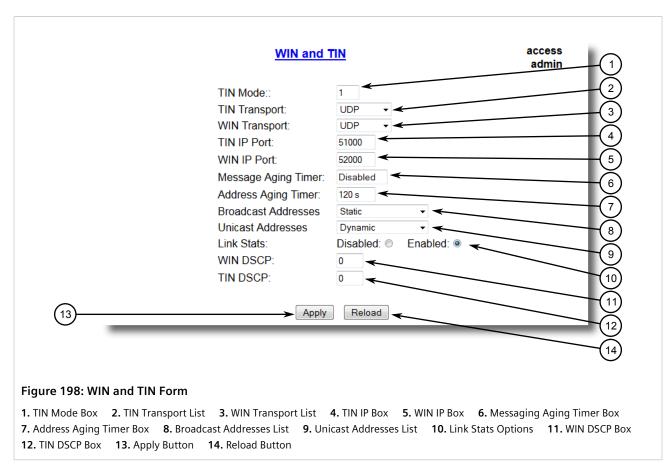
Section 5.10.9

Configuring a TCP Modbus Client

To configure the TCP Modbus Client protocol for a serial port, do the following:

- 1. Make sure the serial port is configured to use the TCP Modbus Client protocol. For more information, refer to Section 5.10.5, "Configuring a Serial Port".
- 2. Navigate to **Serial Protocols » Configure Protocols » Configure Modbus Client**. The **Modbus Client** form appears.

Parameter	Description
IP Port	Synopsis: 1 to 65535 Default: 502 The remote port number at which the Modbus protocol makes TCP connection requests.
Forward Exceptions	Synopsis: { Disabled, Enabled } Default: Enabled
	Enables forwarding exception messages to the Master as exception codes 10 (no path) or 11 (no response) When the Master polls for an unconfigured RTU or the remote Modbus Server receives a poll for an RTU which is not configured or is timing out, it returns an exception message. Disable this feature if your Master does not support exceptions but recognizes failure by time-out when waiting for response.
Link Stats	Synopsis: { Disabled, Enabled } Default: Enabled Enables link statistics collection for this protocol.
DSCP	Synopsis: 0 to 63


Parameter	Description
	Default: 0
	To set the DS byte in the IP header. DS byte setting is supported in the egress direction only.

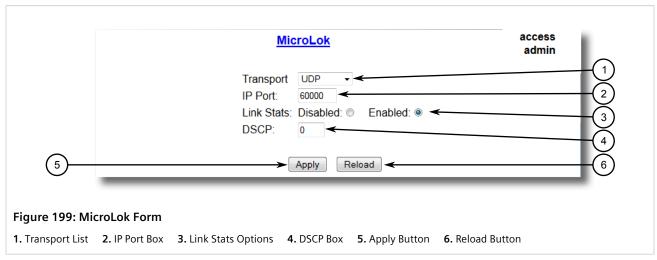
Section 5.10.10

Configuring the WIN and TIN Protocols

To configure the WIN or TIN protocols for a serial port, do the following:

- 1. Make sure the serial port is configured to use either the WIN or TIN protocol. For more information, refer to Section 5.10.5, "Configuring a Serial Port".
- 2. Navigate to **Serial Protocols » Configure Protocols » Configure WIN and TIN**. The **WIN and TIN** form appears.

Parameter	Description
TIN Mode	Synopsis: 1 to 2 Default: 1 The TIN Protocol running mode.


Parameter	Description
TIN Transport	Synopsis: { TCP, UDP, Disabled } Default: UDP
	The network transport used to transport protocol data over an IP network.
WIN Transport	Synopsis: { TCP, UDP, Disabled } Default: UDP
	The network transport used to transport protocol data over an IP network.
TIN IP Port	Synopsis: 1024 to 65535 Default: 51000
	The local port number on which the TIN protocol listens for connections or UDP datagrams.
WIN IP Port	Synopsis: 1024 to 65535 Default: 52000
	The local port number on which the WIN protocol listens for connections or UDP datagrams.
Message Aging Timer	Synopsis: 1 to 3600 or { Disabled } Default: Disabled
	The Aging Time for TIN mode2 messages. It specifies how long a message should be stored in the internal table. When the feature is enabled, any TIN mode2 message received will be stored in an internal table which can be examined by using command 'SQL SELECT FROM ItcsTin2Dup'. If the same message is received within the time window specified by this parameter, the new message is considered duplicate, and thus discarded.
Address Aging Timer	Synopsis: 60 to 1000 Default: 300 s
	The time of communication inactivity after which a learned TIN address is removed from the device address table. Entries in the Link Statistics Table with the aged address will be kept until statistics are cleared.
Broadcast Addresses	Synopsis: { Static, Dynamic, StaticAndDynamic } Default: Static
	The device address table in which addresses will be found for broadcast messages.
Unicast Addresses	Synopsis: { Static, Dynamic, StaticAndDynamic } Default: Dynamic
	The device address table in which addresses will be found for unicast messages.
Link Stats	Synopsis: { Disabled, Enabled } Default: Enabled
WWW.DCCD	Enables link statistics collection for this protocol.
WIN DSCP	Synopsis: 0 to 63 Default: 0
	To set the DS byte in the IP header. DS byte setting is supported in the egress direction only.
TIN DSCP	Synopsis: 0 to 63 Default: 0
	To set the DS byte in the IP header. DS byte setting is supported in the egress direction only.

Section 5.10.11

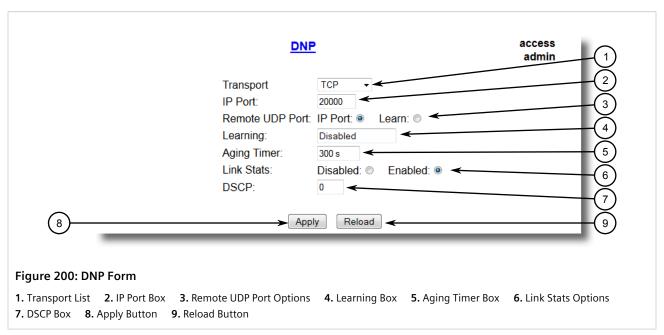
Configuring the MicroLok Protocol

To configure the MicroLok protocol for a serial port, do the following:

- 1. Make sure the serial port is configured to use the MicroLok protocol. For more information, refer to Section 5.10.5, "Configuring a Serial Port".
- 2. Navigate to **Serial Protocols** » **Configure Protocols** » **Configure MicroLok** . The **MicroLok** form appears.

3. Configure the following parameter(s) as required:

Parameter	Description
Transport	Synopsis: { TCP, UDP, Disabled } Default: UDP The network transport used to transport protocol data over an IP network.
IP Port	Synopsis: 1024 to 65535 Default: 60000 A local port number on which the MicroLok protocol listens for UDP datagrams or TCP connections.
Link Stats	Synopsis: { Disabled, Enabled } Default: Enabled Enables link statistics collection for this protocol.
DSCP	Synopsis: 0 to 63 Default: 0 To set the DS byte in the IP header. DS byte setting is supported in the egress direction only.


Click Apply.

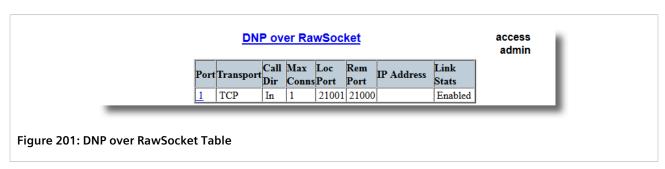
Section 5.10.12

Configuring the DNP Protocol

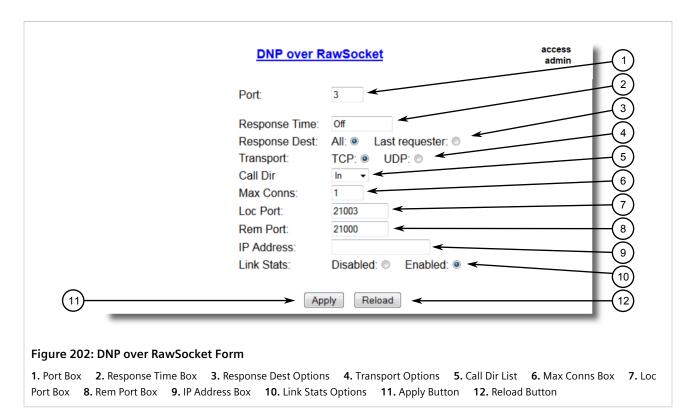
To configure the DNP protocol for a serial port, do the following:

- 1. Make sure the serial port is configured to use the DNP protocol. For more information, refer to Section 5.10.5, "Configuring a Serial Port".
- Navigate to Serial Protocols » Configure Protocols » Configure DNP Protocol » Configure DNP. The DNP form appears.

Parameter	Description
Transport	Synopsis: { TCP, UDP, Disabled } Default: TCP
	The network transport used to transport protocol data over an IP network.
IP Port	Synopsis: 1024 to 65535 Default: 20000
	A local port number on which the DNP protocol listens for UDP datagrams.
Remote UDP Port	Synopsis: { IP Port, Learn } Default: IP Port
	The IP port on which remote device listens to UDP datagrams. This port is either the same IP port that devices in all networks listen to, or can be learned from the UDP datagram.
Learning	Synopsis: ###.###.### where ### ranges from 0 to 255 or { Disabled } Default: Disabled
	Enable or disable address learning. When address learning is enabled, a DNP address can be learned on any IP interface configured in the IP interface table. If learning is enabled and remote address is not known, UDP broadcast message will be


Parameter	Description
	sent to the subnet of the address configured for learning and source addresses will be learned. If local address is not known, message will be sent to all serial ports running DNP protocol. Local addresses will be learned from local responses. If TCP transport is configured, connection will be established to the devices with the corresponding IP address.

Section 5.10.13

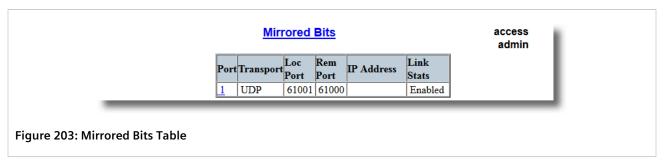

Configuring the DNP Over Raw Socket Protocol

To configure the DNP Over Raw Socket protocol for a serial port, do the following:

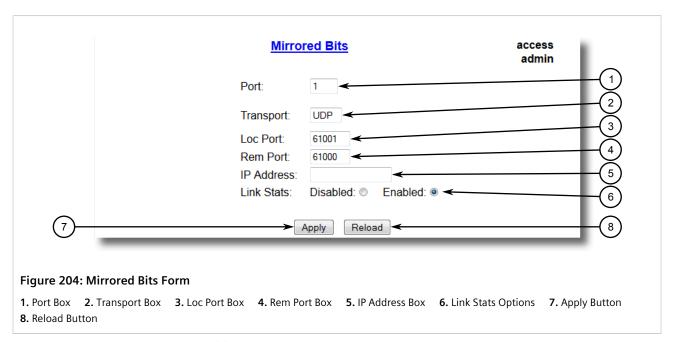
- 1. Make sure the serial port is configured to use the DNP Over Raw Socket protocol. For more information, refer to Section 5.10.5, "Configuring a Serial Port".
- 2. Navigate to **Serial Protocols** » **Configure Protocols** » **Configure DNP Protocol** » **Configure DNP over RawSocket** . The **DNP over RawSocket** table appears.

3. Select a serial port. The **DNP over RawSocket** form appears.

Parameter	Description
Port	Synopsis: 1 to 4 Default: 1
	The port number as seen on the front plate silkscreen on the switch.
Response Time	Synopsis: 50 to 60000 ms or { Off } Default: Off
	The maximum allowable time to wait for the response on serial port.
Response Dest	Synopsis: All, Last requester Default: All
	The destination where data received from serial port will be sent. If the value of Response Time is not 'Off', Response Dest will be autmatically set to All when record is applied.
Transport	Synopsis: { TCP, UDP } Default: TCP
	The network transport used to transport protocol data over the IP network.
Call Dir	Synopsis: { In, Out, Both } Default: In
	The Call direction for TCP Tranport.
	In: accepts an incoming connection.
	Out: places an outgoing connection
	Both: places an outgoing connection and waits for as incoming connection (both directions).


Parameter	Description
Max Conns	Synopsis: 1 to 64 Default: 1
	The maximum number of allowed incoming TCP connections.
Loc Port	Synopsis: 1 to 65535 Default: 21001 The local IP port to use when listening for an incoming connection
	or UDP data.
Rem Port	Synopsis: 1 to 65535 Default: 21000
	The remote TCP port to use when placing an outgoing connection.
IP Address	Synopsis: ###.###.### (where ### ranges from 0 to 255) { <empty string=""> } Default: <empty string=""></empty></empty>
	Defines the IP address based on the following:
	For outgoing TCP connection (client), this is the remote IP address to communicate with.
	For incoming TCP connection (server), this is the local interface IP address to listen to for the local port for connection request. If an empty string is configured, the IP address of the management interface is used.
	When both outgoing and incoming connections are enabled (client or server), this is remote IP address to use to place an outgoing TCP connection request or from which to accept calls
	For UDP transport, this is the IP address of the interface to listen to for UDP datagrams.
Link Stats	Synopsis: { Disabled, Enabled } Default: Enabled
	Enables links statistics collection for the protocol.

Section 5.10.14

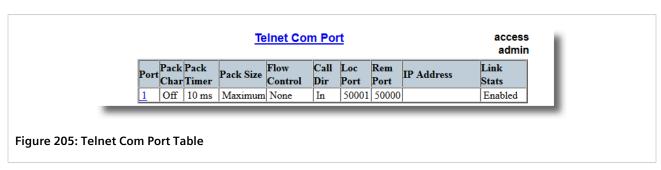

Configuring the Mirrored Bits Protocol

To configure the Mirrored Bits protocol for a serial port, do the following:

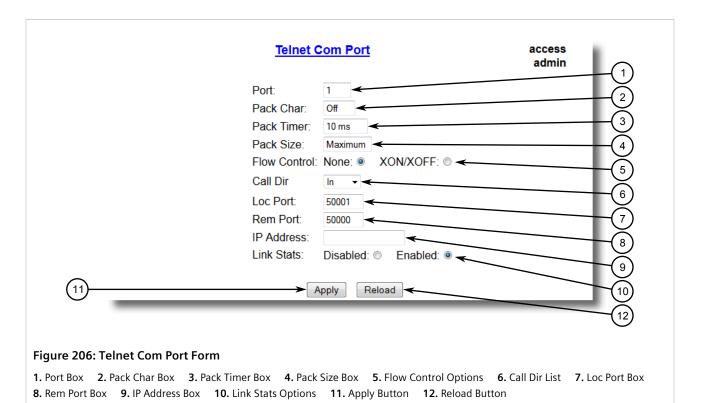
- 1. Make sure the serial port is configured to use the Mirrored Bits protocol. For more information, refer to Section 5.10.5, "Configuring a Serial Port".
- 2. Navigate to **Serial Protocols** » **Configure Protocols** » **Configure Mirrored Bits** . The **Mirrored Bits** table appears.

3. Select a serial port. The Mirrored Bits form appears.

Parameter	Description
Port	Synopsis: 1 to 4 Default: 1 The port number as seen on the front plate silkscreen of the switch.
Transport	Synopsis: { TCP, UDP } Default: UDP The network transport used to transport Mirrored Bits protocol data over an IP network.
Loc Port	Synopsis: 1 to 65535 Default: 61001 The local IP port to use when listening for an incoming connection or UDP data.
Rem Port	Synopsis: 1 to 65535 Default: 61000 The remote TCP port to use when placing an outgoing connection.


Parameter	Description
IP Address	Synopsis: ###.###.### where ### ranges from 0 to 255 or { <empty string="">} Default:</empty>
	For an outgoing TCP connection (client) and UDP transport, this is the remote IP address to communicate with.
	For an incoming TCP connection (server), the local interface IP address on which to listen for connection requests. An empty string implies the default: the IP address of the management interface.
	When both outgoing and incoming connections are enabled (client or server), this is the remote IP address to which to place an outgoing TCP connection request or from which to accept an incoming request.
Link Stats	Synopsis: { Disabled, Enabled } Default: Enabled Enables link statistics collection for this protocol.

Section 5.10.15


Configuring the Telnet Com Port Protocol

To configure the Telnet Com Port protocol for a serial port, do the following:

- 1. Make sure the serial port is configured to use the Telnet Com Port protocol. For more information, refer to Section 5.10.5, "Configuring a Serial Port".
- Navigate to Serial Protocols » Configure Protocols » Configure Telnet Com Port . The Telnet Com Port table appears.

3. Select a serial port. The **Telnet Com Port** form appears.

Parameter	Description
Port	Synopsis: 1 to maximum port number Default: 1 The serial port number as seen on the front plate silkscreen of the
	RS416.
Pack Char	Synopsis: 0 to 255 or { Off } Default: Off
	The character that will be used to force the forwarding of buffered data to the network. If a packetization character is not configured, buffered data will be forwarded based upon the packetization timeout (Pack Timer) parameter.
Pack Timer	Synopsis: 1 to 1000 Default: 10 ms
	The delay from the last received character until when data is forwarded. If parameter value is set to be less than 3 ms, there is not guaranty that it will be obeyed. It will be a minimum possible time in which device can react under certain data load.
Pack Size	Synopsis: 16 to 1400 or { Maximum } Default: Maximum
	The maximum number of bytes received from serial port to be forwarded.
Flow Control	Synopsis: { None, XON/XOFF } Default: None
	The Flowcontrol setting for serial port.
Call Dir	Synopsis: { In, Out, Both }

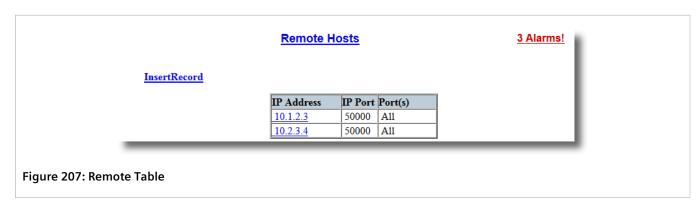
Parameter	Description
	Default: In
	The Call direction for TCP Transport.
	Whether to accept an incoming connection or
	to place an outgoing connection or
	 to place outgoing connection and wait for incoming (both directions).
Loc Port	Synopsis: 1024 to 65535 Default: 50000
	The local IP port to use when listening for an incoming connection.
Rem Port	Synopsis: 1 to 65535 Default: 50000
	The remote TCP port to use when placing an outgoing connection. This parameter is applicable only to TCP transport.
IP Address	Synopsis: ###.###.### where ### ranges from 0 to 255 or {} Default:
	For direction 'OUT' (client), remote IP address to use when placing an outgoing TCP connection request. For direction 'IN' (server), local interface IP address to listen to the local port for connection request. Empty string can be used for IP address of management interface. For direction 'BOTH' (client or server), remote IP address to use when placing an outgoing TCP connection requestListening interface will be chosen by matching mask. This parameter is applicable only to TCP connections. If the transport protocol is set to UDP, the remote port is configured using the "Remote Hosts" table.
Link Stats	Synopsis: { Disabled, Enabled } Default: Enabled
	Enables links statistics collection for this protocol.

Section 5.10.16

Managing Raw Socket Remote Hosts

This section describes how to configure and manage remote hosts.

CONTENTS

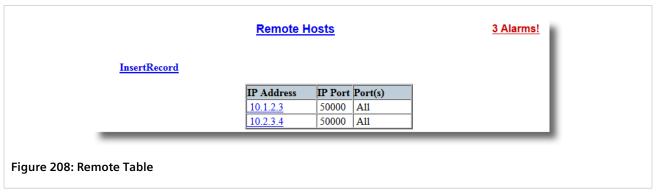

- Section 5.10.16.1, "Viewing a List of Remote Hosts"
- Section 5.10.16.2, "Adding a Remote Host"

• Section 5.10.16.3, "Deleting a Remote Host"

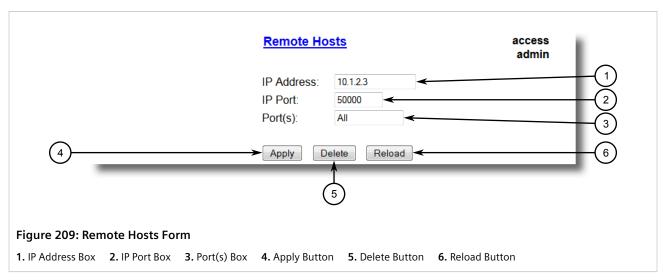
Section 5.10.16.1

Viewing a List of Remote Hosts

To view a list of remote hosts configured for the Raw socket protocol, navigate to **Serial Protocols** » **Configure Raw Socket** » **Configure Remote Hosts** . The **Remote** table appears.


If remote hosts have not been configured, add hosts as needed. For more information, refer to Section 5.10.16.2, "Adding a Remote Host".

Section 5.10.16.2


Adding a Remote Host

To add a remote host for the Raw socket protocol, do the following:

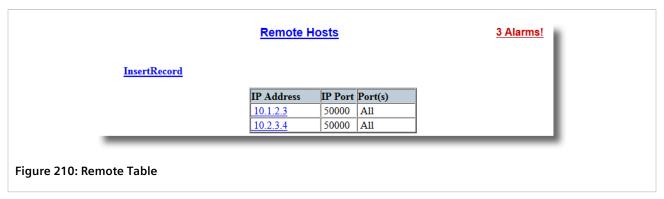
Navigate to Serial Protocols » Configure Protocols » Configure Raw Socket » Configure Remote Hosts .
 The Remote Hosts table appears.

2. Click **InsertRecord**. The **Remote Hosts** form appears.

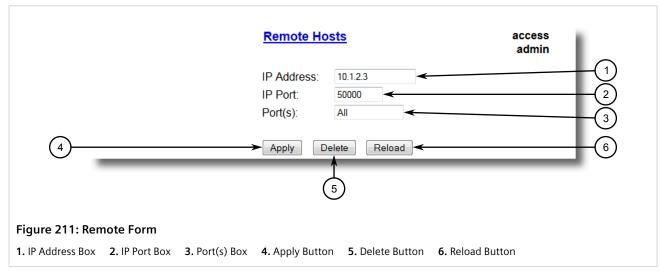
3. Configure the following parameter(s) as required:

Parameter	Description
IP Address	Synopsis: ###.###.### where ### ranges from 0 to 255 Default: The IP address of the remote host.
IP Port	Synopsis: 1 to 65535 or { Unknown } Default: 50000 The IP port that remote host listens to. If this is zero (Unknown), the unit only receives from the remote host but does not transmit to it.
Port(s)	Synopsis: Any combination of numbers valid for this parameter Default: All The local serial ports that the remote host is allowed to communicate with.

4. Click Apply.


Section 5.10.16.3

Deleting a Remote Host


To delete a remote host used by the Raw socket protocol, do the following:

1. Navigate to **Serial Protocols » Configure Protocols » Configure Raw Socket » Configure Remote Hosts** . The **Remote** table appears.

292 Deleting a Remote Host

2. Select the remote host from the table. The **Remote** form appears.

3. Click **Delete**.

Section 5.10.17

Managing Device Addresses

This section describes how to configure and manage device addresses.

CONTENTS

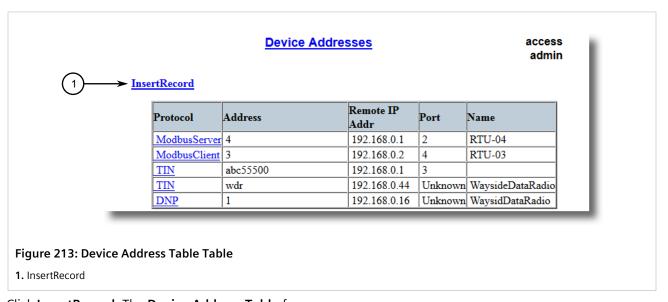
- Section 5.10.17.1, "Viewing a List of Device Addresses"
- Section 5.10.17.2, "Adding a Device Address"
- Section 5.10.17.3, "Deleting a Device Address"

Section 5.10.17.1

Viewing a List of Device Addresses

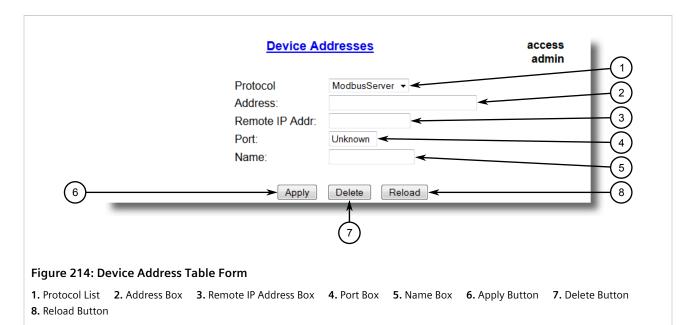
To view a list of device addresses configured on the device, navigate to **Serial Protocols** » **Configure Device Address Table** . The **Device Address Table** table appears.

	Device A	Addresses		acce adm
rtRecord				aui
Protocol	Address	Remote IP Addr	Port	Name
ModbusServer	4	192.168.0.1	2	RTU-04
ModbusClient	3	192.168.0.2	4	RTU-03
TIN	abc55500	192.168.0.1	3	
TIN	wdr	192.168.0.44	Unknown	WaysideDataRadi
11IN		192.168.0.16		WaysidDataRadio


If device addresses have not been configured, add addresses as needed. For more information, refer to Section 5.10.17.2, "Adding a Device Address".

Section 5.10.17.2

Adding a Device Address


To add a device address, do the following:

1. Navigate to Serial Protocols » Configure Device Addresses . The Device Address Table table appears.

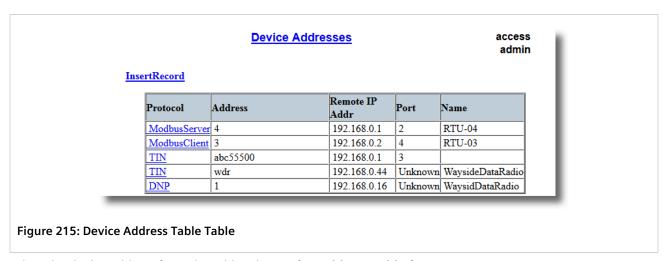
2. Click InsertRecord. The Device Address Table form appears.

294 Adding a Device Address

3. Configure the following parameter(s) as required:

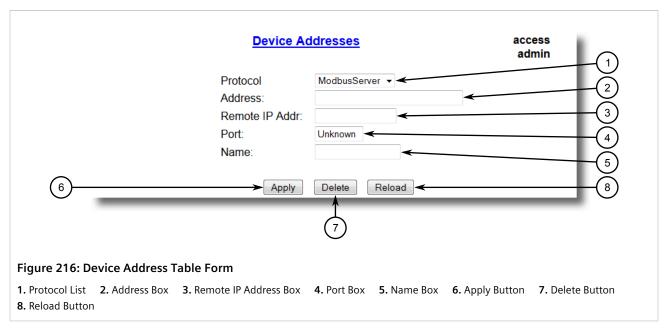
Parameter	Description
Protocol	Synopsis: { ModbusServer, ModbusClient, DNP, WIN, TIN, MicroLok } Default: ModbusServer
	The serial protocol supported on this serial port.
Address	Synopsis: Any 31 characters Default:
	The complete address of a device, which might be either local to the RUGGEDCOM device or remote.
	A local address is one associated with a device connected to a serial port on this device. The corresponding serial port must be configured to match this address specification.
	A remote address is the address of a device connected to a serial port on a remote host over an IP network. In this case, "Remote Ip Addr" must also be configured.
	The format and range of this address field is determined by the protocol:
	• Modbus: 1 to 244
	 MicroLok: 1 to 65535, or 8 to hexadecimal digits '1' to 'a' DNP 3.0: 1 to 65520
	• WIN: 6 bits address (0 to 63)
	• TIN: String 'wdr' for wayside data radio (TIN mode 2), or a 32 bit address (8 digits, expressed in hexadecimal digits '0' through 'f'). An all-zero address is not allowed.
Remote IP Addr	Synopsis: ###.###.### where ### ranges from 0 to 255 Default:
	The IP address of a remote host where a device with a configured remote address is connected.
Port	Synopsis: 1 to maximum port number or {Unknown} Default: Unknown

Adding a Device Address 295


Parameter	Description
	The serial port to which a device is attached. If the device with this address is attached to the serial port of a remote host, the value of this parameter is 'Unknown'.
Name	Synopsis: Any 16 characters Default: The addressed device name.

Section 5.10.17.3

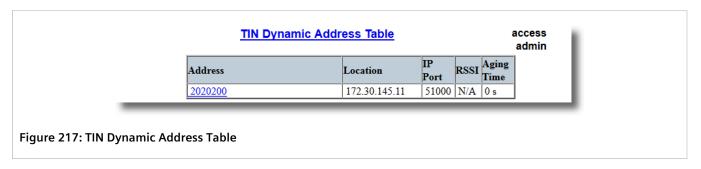
Deleting a Device Address


To delete a device address, do the following:

1. Navigate to Serial Protocols » Configure Device Address Table . The Device Address Table table appears.

2. Select the device address from the table. The **Device Address Table** form appears.

296 Deleting a Device Address



3. Click Delete.

Section 5.10.18

Viewing the TIN Dynamic Address Table

To view the device addresses learned dynamically by the TIN protocol from remote locations, navigate to **Serial Protocols** » **View TIN Dynamic Address Table** . The **TIN Dynamic Address Table** table appears.

This table displays the following information:

Parameter	Description
Address	Synopsis: Any 31 characters The remote device address.
Location	Synopsis: ###.###.### where ### ranges from 0 to 255 The IP Address of the remote host.
IP Port	Synopsis: 1 to 65535 The remote port number through which remote device sent a UDP datagram or TCP connection is established
RSSI	Synopsis: -128 to 0 or { N/A }

Parameter	Description
	The signal strength indicator received from wayside data radio. N/A for TIN Mode 1.
Aging Time	Synopsis: 0 to 1000 s The amount of time since the last packet arrived from the device. Once this time exceeds the Aging Timer setting for protocol, the device will be removed from the table. This value is updated every 10 seconds.

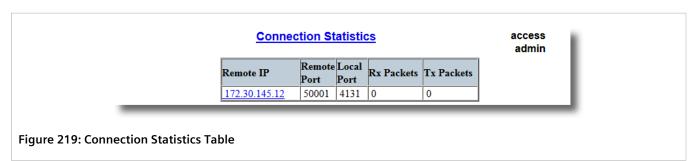
Section 5.10.19

Viewing Statistics for Serial Protocol Links

To view statistics for serial protocol links, navigate to **Serial Protocols** » **View Links Statistics** . The **Links Statistics** table appears.

<u>Links Statistics</u>			access admin		
Protocol	Local Address	Remote Address	Rx Local	Rx Re	
RawSocket	@ COM1:	@ 0.0.0.0	270	0	
RawSocket	@ COM1:	@ 172.30.145.12 : 50001	0	27	
RawSocket	@ COM1:	@ 192.168.0.2 : 50000	0	5	
TIN	01010100 @ COM3:	2020200 @ 172.30.145.11	0	38067	
TIN	01010100 @ COM4:	2020200 @ 172.30.145.11	0	18	
TIN	2020200 @ COM3:	01010100 @ 172.30.145.11	382757	0	

Figure 218: Links Statistics Table


This table displays the following information:

Parameter	Description
Protocol	Synopsis: { None, RawSocket, ModbusServer, ModbusClient, DNP, DNPRS, WIN, TIN, MicroLok, MirroredBits, PreemptRawSocket, TelnetComPort } The serial protocol supported by devices that create this link.
Local Address	Synopsis: Any 27 characters The address of the device connected to the serial port on this device.
Remote Address	Synopsis: Any 35 characters The address of the device connected to the remote host's serial port.
Rx Local	Synopsis: 0 to 4294967295 The number of packets received from the local address that were forwarded to the remote side.
Rx Remote	Synopsis: 0 to 4294967295 The number of packets received from the local address that were forwarded to the local serial port.
Erroneous	Synopsis: 0 to 4294967295 The number of erroneous packets received from the remote address.

Section 5.10.20

Viewing Statistics for Serial Protocol Connections

To view statistics for serial protocol connections, navigate to **Serial Protocols** » **View Connection Statistics** . The **Connection Statistics** table appears.

This table displays the following information:

Parameter	Description
Remote IP	Synopsis: ###.###.### where ### ranges from 0 to 255 The remote IP address of the connection.
Remote Port	Synopsis: 0 to 65535 The remote port number of the connection.
Local Port	Synopsis: 0 to 65535 The local port number of the connection.
Rx Packets	Synopsis: 0 to 4294967295 The number of received packets on the connection.
Tx Packets	Synopsis: 0 to 4294967295 The number of packets transmitted on the connection.

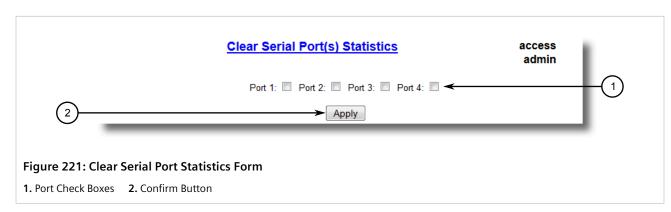
Section 5.10.21

Viewing Serial Port Statistics

To view statistics for serial ports, navigate to **Serial Protocols** » **View Serial Port Statistics** . The **Serial Port Statistics** table appears.

							admi	n
Port	Protocol	Rx Chars	Tx Chars	Rx Packets	Tx Packets	Packet Errors	Parity Errors	Frai Erre
1	RawSocket	354	142	27	139	0	0	0
2	RawSocket	81	261	0	0	0	0	0
3	TIN	27038480	27038496	1689887	1689905	0	0	0
4	TIN	278	288	18	0	0	0	0

This table displays the following information:


Parameter	Description
Port	Synopsis: 1 to maximum port number The port number as seen on the front plate silkscreen of the switch.
Protocol	Synopsis: Any 15 characters The serial protocol supported on this serial port.
Rx Chars	Synopsis: 0 to 4294967295 The number of received characters.
Tx Chars	Synopsis: 0 to 4294967295 The number of transmitted characters.
Rx Packets	Synopsis: 0 to 4294967295 The number of received packets.
Tx Packets	Synopsis: 0 to 4294967295 The number of transmitted packets.
Packet Errors	Synopsis: 0 to 4294967295 The number of packets received from this port and discarded (error in protocol, CRC or routing information not found).
Parity Errors	Synopsis: 0 to 4294967295 The number of Parity Errors.
Framing Errors	Synopsis: 0 to 4294967295 The number of Framing Errors.
Overrun Errors	Synopsis: 0 to 4294967295 The number of Overrun Errors.

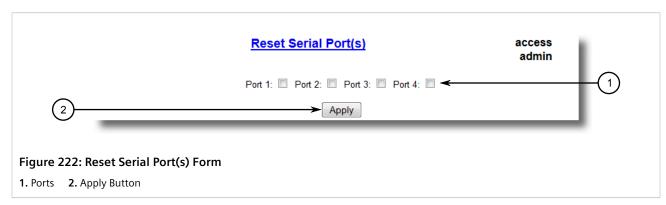
Section 5.10.22

Clearing Statistics for Specific Serial Ports

To clear the statistics collected for one or more serial ports, do the following:

1. Navigate to Serial Protocols » Clear Serial Port Statistics . The Clear Serial Port Statistics form appears.

2. Select one or more serial ports.


3. Click Confirm.

Section 5.10.23

Resetting Serial Ports

To reset a specific serial port(s), do the following:

1. Navigate to **Serial Protocols** » **Reset Serial Port(s)** . The **Reset Serial Port(s)** form appears.

- 2. Select one or more serial ports to reset.
- 3. Click **Apply**. The selected serial ports are reset.

Resetting Serial Ports 301

Resetting Serial Ports 302

RUGGEDCOM ROS
User Guide

Troubleshooting

This chapter describes troubleshooting steps for common issues that may be encountered when using RUGGEDCOM ROS or designing a network.

IMPORTANT!

For further assistance, contact a Customer Service representative.

CONTENTS

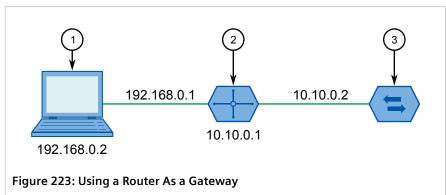
• Section 6.1, "General"

Section 6.1

General

The following describes common problems.

Problem


The switch is not responding to ping attempts, even though the IP address and gateway have been configured. The switch is receiving the ping because the LEDs are flashing and the device statistics are logging the pings. What is going on?

Solution

Is the switch being pinged through a router? If so, the switch gateway address must be configured as well. The following figure illustrates the problem.

Chapter 6

Troubleshooting

1. Work Station 2. Router 3. Switch

The router is configured with the appropriate IP subnets and will forward the ping from the workstation to the switch. When the switch responds, however, it will not know which of its interfaces to use in order to reach the workstation and will drop the response. Programming a gateway of 10.0.0.1 will cause the switch to forward unresolvable frames to the router.

This problem will also occur if the gateway address is not configured and the switch tries to raise an SNMP trap to a host that is not on the local subnet.

General 303

General 304